1. **Group theory:** Consider a group of order 3 with multiplication table of the form

\[
\begin{array}{c|ccc}
 & e & a & b \\
\hline
e & e & a & b \\
a & a & b & ? \\
b & b & ? & ? \\
\end{array}
\]

a. What do the values of the ?'s have to be. Why?
b. Show \(D(e) = 1, D(a) = e^{2\pi i/3}, D(b) = e^{4\pi i/3} \) is a representation of this group.
c. Is this representation reducible?
d. What are the characters of this representation?

2. **Lie Groups/Lie Algebras:** The Lie Algebra for \(SU(2) \) has the form

\[
[L_i, L_j] = i \sum_{j=1}^{3} \epsilon_{ijk} L_k
\]

a. Write down elements of the adjoint representation of this Lie algebra.
b. Calculate \(\text{Tr}(L_i L_j) \).
c. What is the Cartan sub algebra of this representation?

3. **Orthogonal Polynomials:** The classical orthogonal polynomials are defined by

\[
C_n(x) = \frac{1}{w(x)} \frac{d^n}{dx^n} (w(x) s^n(x))
\]

where \(w(x) > 0, s(x) \) is a polynomial of degree less than or equal to two, \(C_1(x) \) is a polynomial of degree 1, and \(w(a)s(a) = w(b)s(b) = 0 \). Consider the case where \(s(x) = 1/2 \) and \(C(x) = -x \).

a. Find an equation for the weight function \(w(x) \). Find the solution.
b. Find the points \(a \) and \(b \) satisfying \(w(a)s(a) = w(b)s(b) = 0 \).
c. Show that \(C_n(x) \) defined this way are polynomials in \(x \).

4. **Distributions/Fourier Transforms** The delta function is the continuous linear functional acting on the space of Schwartz functions defined by

\[
\int \delta(x - y) f(y) dy = f(x)
\]

where \(f(x) \) is a Schwartz function. Let \(f(x) = x^2 e^{-ax^2} \) with \(a > 0 \). Calculate
1a) since the rows and columns of the multiplication table have to have different elements

\[
\begin{array}{ccc}
 e & a & b \\
 e & e & a & b \\
 a & a & b & e \\
 b & b & e & a \\
\end{array}
\]

1b) \(D(a) D(a) = D(b) \)
\(D(a) D(b) = D(b) D(a) = D(c) \)

This shows that this representation has the same multiplication table as
\(D(a) D(b) = D(a b) \)

1c) no - it is one dimensional

1d) \(e^{2 \pi i / 3} e^{4 \pi i / 3} (\text{traces of } D(a)) \)

2c)
\[
L_1 = -i E_{ijk} = -i \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}
\]

\[
L_2 = -i E_{2jk} = -i \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}
\]

\[
L_3 = -i E_{3jk} = -i \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
\]
\[L_1^2 L_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{Tr} = 0 \]

\[L_2^2 L_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{Tr} = 0 \]

\[L_3^2 L_1 = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{Tr} = 0 \]

\[\text{Tr} (L_1^2 L_1) = \text{Tr} (L_2^2 L_3) = \text{Tr} (L_3^2 L_1) = 2 \]

3) Take any one generator \(\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \)

3a) \[-x = \frac{1}{w} \frac{d \omega}{dx}, \quad \frac{1}{2} \]

\[\frac{d \omega}{\omega} = -2x \]

\[\int \frac{d \omega}{\omega} = -x^{\frac{3}{2}} = \ln \omega \]

\[\omega = e^{-x^\frac{3}{2}} \]

3b) This vanishes at \(a = -\infty \) \(b = +\infty \)

3c) \[C(x) = \frac{1}{2} e^{x^2} \left(\frac{d}{dx} \right)^n \left(\frac{1}{2} e^{-x^2} \right) \]

Since \(\frac{d}{dx^n} \left(e^{-x^2} \right) = e^{-x^2} \) polynomials of degree \(n \), \(C(x) = \) polynomial of degree \(n \).
\[4.9) \quad - \frac{df}{dx}(x) = -(2x - 2ax^3)e^{-ax^2} \]

\[4.10) \quad \frac{d^2f}{dx^2}(x) = \left(2 - 6ax^2 - 4ax + 4a^2x^4\right)e^{-ax^2} = 2(1 - 5ax^2 + 2a^2x^4)e^{-ax^2} \]

\[4.11) \quad \frac{1}{|b|} f(x) = \frac{1}{|b|} x^2 e^{-ax^2} \]