1.) Consider the function \(f(x) = (1 - x^2) \) on the interval \([-1, 1]\). Calculate a 4-th degree Weierstrass polynomial approximation to this function. Compare the exact and approximate functions.

2.) Assume that \(|f(x) - p_n(x)| < \epsilon \) for all \(x \in [a, b] \), where \(p_n(x) \) is a polynomial. Let \(M \) be a \(2 \times 2 \) Hermitian matrix with real eigenvalues \(\lambda \) satisfying \(a < \lambda < b \). Show that

\[
\| (f(M) - p_n(M)) \| < \epsilon
\]

where \(\|O\| \) is the matrix or operator norm of \(O \).

3.) Let \(f(x) \) and \(g(x) \) have Fourier Transforms.

\[
\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int dy e^{iky} f(y) \quad \hat{g}(k) = \frac{1}{\sqrt{2\pi}} \int dy e^{iky} g(y)
\]

Find an expression for the Fourier transform of the product \(f(x)g(x) \) in terms of their individual Fourier transforms, \(\hat{f}(k) \) and \(\hat{g}(k) \),

4.) Show

\[
\lim_{\lambda \to \infty} \int_{-\infty}^{\infty} e^{i\lambda x} f(x) dx = 0
\]

if \(f \) is absolutely integrable and differentiable for every \(x \).

5.) Show that if \(f(x) \) is a continuous function that is identically zero for \(|x| > L \), then its Fourier transform is an entire function.

6.) Calculate the Fourier transform of \(e^{-x^2/2} \).