Topic 4: Calculating Green’s functions

Green functions are only useful if they can be computed. Since any second order differential operator with real coefficients is a self-adjoint operator on a space Hilbert space with weight \(w(x) \), in that case the Green’s function is a solution to

\[
L_x G(x, y) = \frac{\delta(x - y)}{w(x)} \tag{1}
\]

When \(x \neq y \) the right-side of this equation is zero and \(G(x, y) \), as a function of \(x \), is a solution of the homogeneous differential equation.

\[
(a(x) \frac{d^2}{dx^2} + b(x) \frac{d}{dx} + c(x)) G(x, y) = 0 \quad x \neq y
\]

Using

\[
\frac{1}{p(x)} \frac{dp(x)}{dx} = \frac{b(x)}{a(x)} \quad p(x) = e^{\int_{x_0}^{x} \frac{b(x')}{a(x')} dx'}
\]

this equation becomes, including the delta-function term:

\[
\frac{d}{dx} \left(p(x) \frac{dG(x, y)}{dx} \right) + \frac{p(x)c(x)}{a(x)} G(x, y) = \frac{\delta(x - y)p(x)}{a(x)w(x)}.
\]

Integrating both sides of this equation over a small volume \((y - \epsilon, y + \epsilon)\) gives

\[
(p(y^+) \frac{dG(y^+, y)}{dx}) - (p(y^-) \frac{dG(y^-, y)}{dx}) + \int_{y-\epsilon}^{y+\epsilon} c(x)p(x) \frac{dx}{a(x)} G(x, y) dx = \frac{p(y)}{a(y)w(y)}
\]

Taking the limit \(\epsilon \to 0 \) gives

\[
\frac{dG(y^+, y)}{dx} - \frac{dG(y^-, y)}{dx} = \frac{1}{a(y)w(y)} \tag{2}
\]

If \(G(x, y) \) is bounded near \(x = y \) then the derivative of \(G(x, y) \) with respect to \(x \) has a discontinuity at \(x = y \). Since the discontinuity is finite, integration over the discontinuity is continuous which implies that \(G(x, y) \) is continuous at \(x = y \).

The solution (1) involves using linear combinations of of the independent solutions of the homogeneous equations that satisfy the boundary conditions at \(a \) and \(b \) and have the discontinuity (2) at \(x = y \). In general there will be two solutions for \(a \leq x \leq y \) and two more for \(y \leq x \leq b \).

\[
G(x, y) = \begin{cases}
\alpha(y)u_1(x) + \beta(y)u_2(x) & x < y \\
\gamma(y)u_1(x) + \delta(y)u_2(x) & x > y
\end{cases}
\]

where

\[
\alpha(y)u_1(y) + \beta(y)u_2(y) = \gamma(y)u_1(y) + \delta(y)u_2(y)
\]
\[\gamma(y)u_1'(y) + \delta(y)u'_2(y) - \alpha(y)u'_1(y) - \beta(y)u'_2(y) = \frac{1}{a(y)w(y)} \]

and \(G(x, y) \) and \(\frac{\partial G(x, y)}{\partial x} \) satisfy the same boundary conditions as \(u(x), u'(x) \) at \(x = a \) and \(b \).

This assumes that \(L_x \) has an inverse. This will happen if the boundary conditions uniquely fix all of coefficients. This can fail if there are non-zero solutions to \(L_x u(x) = 0 \) that satisfy both boundary conditions. Then it is necessary to use a more general construction.