Topic 2: example 1

It is useful to illustrate this construction with some examples. The first one is trivial:

\[L_x = \frac{d^2}{dx^2} \quad u(0) = u(a) = 0 \]

In this case we take \(w(x) = 1 \). The Green’s function satisfies

\[\frac{d^2 G(x, y)}{dx^2} = \delta(x - y) \]

In this case the independent solutions are

\[u_1(x) = 1 \quad u_2(x) = x \]

\[G(x, y) = \begin{cases}
\alpha(y) + \beta(y)x & 0 < x < y \\
\gamma(y) + \delta(y)x & y < x < a
\end{cases} \]

Boundary conditions at 0 give \(\alpha(y) = 0 \). The boundary condition at \(x = a \) gives \(\gamma(y) = -a\delta(y) \). Continuity at \(y \) gives

\[y\beta(y) = \delta(y)(y - a) \]

while the discontinuity of \(G(x, y) \) at \(y \) gives

\[\delta(y) - \beta(y) = 1 \]

Solving gives

\[\beta(y) = (y - a)/a \quad \delta(y) = \frac{y}{a} \]

so the Green’s function for this operator (including boundary conditions) is

\[G(x, y) = \begin{cases}
(y - a)x/a & 0 < x < y \\
(x - a)y/a & y < x < a
\end{cases} \]

If we take \(f(x) = 1 \)

\[u(x) = \int_0^a G(x, y)dy = \]

\[\int_0^x G(x, y)dy + \int_x^a G(x, y)dy = \]

\[\int_0^x (x - a)yady + \int_x^a (y - a)xady = \]

\[x^2 - (x^2/2 - ax)x/a + (a^2/2 - a^2)x/a = \]

\[x^2/2 - ax/2 \]

This satisfies the inhomogeneous equation and the boundary conditions. Note that the only linear combination of the form \(u(x) = ax + b \) satisfying \(u(0) = u(a) = 0 \) is the trivial zero solution.