Problem 1: Use the relation

\[Y_{lm}^{m}(\hat{n}) = \sqrt{\frac{1l + 1}{4\pi}} D_{m0}^{*l}(R) \]

where \(\hat{n} = R\hat{z} \) to integrate a product of three spherical harmonics

\[\int \sin^7(\theta) d\theta \int_0^{2\pi} d\phi Y_{lm}^{ma}(\theta, \phi) Y_{lm}^{mb}(\theta, \phi) Y_{lm}^{mc}(\theta, \phi) \]

Express your answer in terms of Clebsch Gordan coefficients.

Problem 2: Assume that a Hamiltonian is invariant with respect to rotations about the \(x \) and \(y \) axes. Show that it must also be invariant with respect to rotations about the \(z \) axis.

Problem 3: Express the spherical harmonics \(Y_{lm}^2(\theta, \phi) \) in term of the Cartesian coordinates, \(x/r, y/r, z/r \). Convince yourself that each \(Y_{lm}^2 \) is a homogeneous polynomial of degree 2 in these quantities.

Problem 4: The spherical harmonics \(Y_{lm}^1(\hat{r}) \) are simultaneous eigenstates of \(L^2 \) and \(L_z \) with the eigenvalues \(1(1 + 1) = 2 \) and \(m \). Use properties of rotations to find linear combinations of these states that are simultaneous eigenstates of \(L^2 \) and \(L_y \) with eigenvalues 2 and \(m \).

Problem 5: Assume that a spinless particle is bound to a rotationally invariant potential and assume that it is in an eigenstate of \(L^2 \) with eigenvalue \(2(2+1) = 6 \). Show that this state must be degenerate. (this means that there is more than one eigenstate with the same energy eigenvalue).

Problem 6: Using the \(|n_+, n_-\rangle \) basis for the angular momentum states find operators (in terms of \(a_+ \) and \(a_\perp \) that raise and lower the eigenvalue \(j \) without changing \(m \)?)