Lecture 15

Degenerate perturbation theory

Normally if \(H = H_0 + V \) and

\(H_0 \) is easy to solve it will often be because there are some simplifying symmetries.

If \(SH = HS \)

and \(H |\psi\rangle = E |\psi\rangle \)

then \(HS |\psi\rangle = SH |\psi\rangle = E S |\psi\rangle \)

which means \(S |\psi\rangle \) is also an eigenstate of \(H \) with the same eigenvalue.

In this case non-degenerate perturbation theory is not applicable.
Assume that H_0 has N eigenstates with the same eigenvalue. Relabel states for $|\psi_1\rangle \ldots |\psi_n\rangle$ all have eigenvalue E^0 and $E^0 \neq E^n$ for all $n > N$.

Without loss of generality, we can choose $|\psi_k\rangle \ 1 \leq k \leq N$ satisfying

$$
\langle \psi_n | \psi_m \rangle = \delta_{nm} \quad n, m \leq N
$$

Let P_n be the orthogonal projection operator on the subspace of the Hilbert space spanned by the N eigenstates with eigenvalue E^0.
\[P_N = \sum_{n=1}^{N} \langle \psi_n^{\circ} | \psi_n^{\circ} \rangle \]

Note that

\[P_N = \rho_N = \rho_N^2 \quad P_N H_0 = E^0 P_N \]

Define

\[Q_0 = I - P_N \]

It follows that

\[Q_N = Q_N^+ = Q_0 \]

\[Q_N P_N = P_N Q_0 = 0 \]

\[P_N + Q_N = I \]

\[Q_N = \sum_{n=N+1}^{\infty} \langle \psi_n^{\circ} | \psi_n^{\circ} \rangle \]

Using these relations

\[H = H_0 + V = \]

\[(P_N + Q_N)(H_0 + V)(P_N + Q_N) \]

\[E^0 P_N + P_N V P_N + Q_N H_0 Q_N + \]

\[Q_N V P_N + P_N V Q_N + Q_0 V Q_0 \]
Note that

\[P_n H_n Q_n = Q_n H_n P_n = E^o P_n Q_n = 0 \]

The strategy is to replace \(H_0 \) and \(V \) by

\[H_0' = P_n H_0 P_n + Q_n H_0 Q_n \]

\[V' = P_n V Q_n + Q_n V P_n + Q_n V Q_n \]

Then from the decomposition on the last page

\[H = H_0 + V = H_0' + V' \]

To use perturbation theory, we need to diagonalize

\[H_0' \]

The \(Q_n H_0 Q_n \) part is already diagonal

\[H_0' |\psi_n\rangle = E_n |\psi_n\rangle \quad n > N \]
for \(n \in \mathbb{N} \)

\[
\langle \psi^0_n | H_0 | \psi^0_n \rangle = E^0_n \psi^0_n + \langle \psi^0_n | V | \psi^0_n \rangle
\]

This is an \(N \times N \) Hermitian matrix \(H_{mn} \) that can be diagonalized.

Eigenvalue:

\[
\det \left(E^\prime S_{mn} - H_{mn} \right) = 0
\]

has \(N \) roots \(E_n^\prime \), \(n = 1 \ldots N \)

\[
\Pi_n = \frac{\prod_{m \neq n} (H_{mn}^\prime - E_m^\prime)}{\prod_{m \neq n} (H_{nn}^\prime - E_n^\prime)}
\]

Project in eigenvector \(\psi_n^\prime \) of \(H^\prime \) with eigenvalue \(E_n^\prime \), \(1 \leq n \leq N \)

Since each \(\langle \psi^0_n | \) is a linear combination of the \(\langle \psi^0_n | \) for \(n \leq N \)
\[\langle \psi_n | \psi_m \rangle = 0 \quad n \leq N \quad m > N \]

Normally it is enough to stop after \(H_0 \) has been diagonalized. Because it is not diagonal in the original basis, the new eigenstates will not generally have the same eigenvalue - even when two of them have the same eigenvalue

\[\langle \psi_n' | \psi_m' \rangle = 0 \quad n,m \leq N \]

because \(\psi' \) has a \(Q_0 \) on the right on left and

\[Q_0 | \psi_n \rangle = 0 \quad n \leq N \]

so there are never any terms where one is dividing by \(\sqrt{(E_n - E_m)} \).
diagonalizing \(H_0 \) is the same problem and diagonalizing \(\Lambda \)

When the eigenvalues are all the same there are many possible choices of \(|\Psi_n> \)

A lot of work can be saved if they are chosen so

\[
\forall |\Psi_n> = \zeta_n |\Psi_n>
\]

* The problem is to diagonalize \(\rho_{11} \).

Put \(P_n \). The resulting solution has terms of \(n-1 \) powers of the potential
Example: Hydrogen atom with spin

\[|S_n \rangle = |n \rangle |+ \rangle \] \hspace{1cm} (1)

or

\[|S_n \rangle = |n \rangle |\pm \rangle |m_s \rangle \] \hspace{1cm} (2)

These are 2 possible bases

for an electron interacting with a proton with a
coulomb interaction. There are small corrections

for example the electron sees a proton moving in
a circle – This creates a magnetic field that couples
to the electron’s magnet moment. This results in

a V of the \[\frac{e^2}{2m_e} \frac{1}{r^3} \hat{\mathbf{L}} \cdot \hat{\mathbf{S}} = V_{Ls}(r) \hat{\mathbf{L}} \cdot \hat{\mathbf{S}} \]
In the absence of this spin-orbit interaction, eigenstates with different \(\mu, m_\epsilon, m_s \) all have the same eigenvalues provided \(n, \ell \) are the same.

Since \(J^2 = (\ell + \hat{s})^2 = \ell^2 + \hat{s}^2 + 2 \ell \cdot \hat{s} \),
we have
\[
\ell \cdot \hat{s} = \frac{1}{2} (J^2 - \ell^2 - \hat{s}^2).
\]

This means that
\[
\langle \text{nu}\mu\epsilon s | \mathbf{V}_0 | \ell \cdot \hat{s} | \text{nu}\mu\epsilon s \rangle = \langle \text{nu}\mu\epsilon s | \mathbf{V}_0 | \text{nu}\mu\epsilon s \rangle \delta_{\ell \mu} \frac{1}{2} (\ell (\ell + 1) - \epsilon (\epsilon + 1) - s (s + 1)).
\]

Notes:

* This choice of basis diagonalizes \(\mathbf{V} \).

* There is still a \(2\ell + 1 \)fold degeneracy.
state with different $|z_i\rangle$ will have their eigenvalues shifted.

If we use the basis $|n, m, m\rangle$ we would get a non-diagonal matrix in m, m.

The problem could still be done but it would be necessary to diagonalize a matrix. Clearly the matrix that does this is

$$ \langle m, m | \sum c_{m, m'} | m, m' \rangle $$

If the atom is put in a magnetic field then
the energy is shifted by

\[V = -\mu \cdot \vec{B} = -\frac{e\hbar}{mc} \cdot \vec{B} \]

If we choose coordinates so \(\vec{B} \) is in the \(z \) direction then

\[V = -\frac{e\hbar}{mc} S_z \cdot \vec{B} \]

Unlike the spin orbit interaction, this is diagonal in the basis \(|m_s \rangle \rightarrow |m_s \rangle \) but not in the basis \(|m_s \rangle \rightarrow |m_s \rangle \).

When both interactions appear, then the choice of basis normally depends on which \(V \) is larger, however in both cases the full interaction matrix is not diagonal.
Next we consider the case when $H = H_0 + V(t)$, where here the perturbing interaction may depend explicitly on time.

This can be an explicitly time dependent interaction or a time independent interaction that is turned on at a given time.

To treat this situation we use the interaction picture which is "between" the Schrödinger and Heisenberg pictures.
Recall

Schrodinger Picture

\[|\psi(t)\rangle = e^{-iHt} |\psi(0)\rangle \]

\[\langle 0 | (t) \rangle = \langle \psi(t) | 0 | \psi(t) \rangle \]

\[= \langle \psi(0) | e^{iHt} 0 e^{-iHt} | \psi(0) \rangle \]

Heisenberg picture

\[0(t) = e^{iHt} \]

\[|\psi(0)\rangle \]

\[\langle 0(t) | = \langle \psi(t) | 0(0) | \psi(t) \rangle \]

\[= \langle \psi(0) | e^{iHt} 0 e^{-iHt} | \psi(0) \rangle \]

Both pictures give identical observables. For the interaction picture
\[H = H_0 + V(t) \]

\[\psi_+(t) = e^{-iH_0 t} \psi_+(t) \]

\[O_+ \psi_+(t) = e^{-iH_0 t} O(t) e^{iH_0 t} \psi_+(t) \]

In this case

\[\langle O(t) \psi_+(t) \rangle = \langle \psi_+(t) | O(t) \psi_+(t) \rangle = \]

\[\langle \psi_+(t) | e^{-iH_0 t} O(t) e^{iH_0 t} \psi_+(t) \rangle \]

\[= \langle \psi_+(t) | O_+ \psi_+(t) \rangle = \langle \psi_+(t) | O(t) \psi_+(t) \rangle \]

all three pictures give the same probabilities, expectation values and ensemble averages.

\[\frac{d}{dt} \psi_+(t) = iH_0 \psi_+(t) + iV(t) \psi_+(t) \]

\[= e^{-iH_0 t} (-iH_0 \psi_+(t)) \]

\[= e^{(-iH_0 + iH_0) t} \psi_+(t) \]

\[= e^{-iV(t) \psi_+(t)} \]
This gives
\[\frac{d\psi_{\pm}(t)}{dt} = -i V_x(t) \psi_{\pm}(t) \]

with initial condition
\[\psi_{\pm}(0) = \psi_{\pm}(0) = \psi_{\pm}(0) \]

The differential equation and initial condition can be expressed as an integral equation
\[\psi_{\pm}(t) = \psi_{\pm}(0) - i \int_0^t V_x(t') \psi_{\pm}(t') \, dt' \]

This can be formally solved by iteration:
\[\psi_{\pm}(t) = \lim_{n \to \infty} \psi_{\pm}^{(n)}(t) \]
\[\psi_{\pm}^{(n)}(t) = \psi_{\pm}(0) \]
\[\psi_{\pm}(t) = \psi_{\pm}(0) \]
\[|\Psi_{I}^{(n)}(t)\rangle = |\Psi_{I}^{0}(t)\rangle - i \int_{0}^{t} V_{I}(t') |\Psi_{I}^{0}(t')\rangle \, dt' \]

In order to discuss the convergence first consider the second order term

\[|\Psi_{I}^{(2)}(t)\rangle = |\Psi_{I}^{0}(t)\rangle - \int_{0}^{t} V_{I}(t') \int_{0}^{t'} V_{I}(t'') |\Psi_{I}^{0}(t'')\rangle \, dt' \, dt'' \]

Remarks

(1) Since \([H_{0}, V_{I}] \neq 0\) in general

\([V_{I}(t'), V_{I}(t'')]=0\)

i.e. the interactions at different times do not generally commute

(2) \(t \geq t'' \geq t'\) has

\[V_{I}(t'') V_{I}(t') \]

with \(V_{I}(t')\) to the right of \(V_{I}(t'')\)
If we consider 0 ≤ t', t'' < t there are 2 possible orderings,

\[t' > t'' \quad \text{and} \quad t'' > t' \]

\[
\int_0^t dt' \int_0^{t''} V_{1}(t') V_{1}(t'') = (t' > t'')
\]

\[
\int_0^t dt'' \int_0^{t'} dt' V_{1}(t') V_{1}(t'') = (t'' > t')
\]

\[
= \frac{1}{2} \int_0^t dt' \int_0^{t''} \left(\Theta(t'' - t') V_{1}(t'') \left| V_{1}(t') \right| - \Theta(t'' - t') V_{1}(t') \left| V_{1}(t'') \right| \right)
\]

In general if there are

N times 0 ≤ t_i ≤ t there are N! possible orderings

\[
T \left(V_{1}(t) \left| V_{1}(t) \right| \right) =
\]

\[
\Theta(t_1 - t) \Theta(t_2 - t) \cdots \Theta(t_N - t) + V_{1}(t_1) V_{2}(t_2) \cdots V_{1}(t_N)
\]

similar contributions from each ordering
This gives the following expression for $|\psi_1(t)\rangle$

$$|\psi_1(t)\rangle = |\psi_5(0)\rangle + \sum_{n=1}^{\infty} \frac{1}{n!} \int_0^t dt_1 \int_0^{t_1} dt_2 \ T(V_2(t_2), V_2(t_2)) \ T(V_3(t_1), V_3(t_1)) |\psi_5(0)\rangle$$

This is called the Dyson expansion. The advantage of writing things this way is that there are not variables in the limit of integration. If V_5 is bounded

$$\| T(V_2(t_1), V_3(t_1)) \| = e^{\| H \| t_1} \leq e^{\| V \| t_1}{\epsilon} |V| - \frac{iHt_n}{n!}$$
It follows that

\[\| \mathbf{v} \| \leq \frac{1}{n!} \int_0^t dt_1 \cdots dt_n \left(V_{\frac{1}{2}}(t_1) \cdots V_{\frac{1}{2}}(t_n) \right) \left| Y_0(t) \right| \]

\[\leq \frac{i}{n!} t^n \| \mathbf{V} \| \| Y_0 \| = e^{t \| \mathbf{V} \|} < \infty \]

This means that if \(\| \mathbf{V} \| \| Y_0 \| < \infty \) that the series converges strongly.