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Abstract

In these notes I provide an overview of time-dependent scattering

theory.
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1 Classical Scattering

I begin with a discussion of scattering of a particle by a potential in classical
mechanics. This discussion is based primarily on the textbook by Araki
(chapter 6) and the article by Hunziker (see also the text by Thirring).

I assume that the dynamics is given by a classical Hamiltonian that is the
sum of a kinetic energy term and a potential that vanishes for large values
of the particle coordinate:

H = H0 + V H0 =
p2

2m
, V = V (~x). (1)

The dynamics of the particle is given by Hamilton’s equations

d~p

dt
= −{H, ~p} = −∂H

∂~x
= −∂V

∂~x
(2)
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d~x

dt
= −{H,~x} =

∂H

∂~p
=
∂H0

∂~p
=

~p

m
(3)

where {A,B} is the classical Poisson bracket of A and B.
These are ordinary differential equations. I call a potential acceptable if

for each initial condition these equation have a unique solution for all time.
While local solutions are guaranteed by standard existence and uniqueness
theorems for ordinary differential equations, the question of when these equa-
tions can be extended to all times is more difficult. I will not attempt to clas-
sify acceptable potentials, however every potential that describes a physical
system is acceptable.

I use the following notation for phase space variables:

~f := (~x, ~p) (4)

In terms of these variables the differential equations can be written in the
form

d~f

dt
= −{H, ~f} := −DH

~f (5)

where DH is the first-order differential operator

DH =
∑

i

(

∂H

∂xi

∂

∂pi
− ∂H

∂pi

∂

∂xi

)

(6)

The unique solution of the above equations satisfying ~f = ~f0 at t = t0 is
denoted by

~F (t; ~f0, t0) (7)

which can be formally written as

~F (t; ~f0, t0) = e−DH(t−t0) ~f|f=f0

Here the condition f = f0 means that one should compute all partial deriva-
tives first and then evaluate the expression at x = x0 and p = p0. A simple
calculation shows that if the exponential function is expanded in powers of
t− t0 this generates the Taylor series in time.

When V (~x) = 0 the solution of this system of equations is

~F0(t, ~f0, t0) = (~x0 +
~p0

m
(t− t0), ~p0) (8)
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which is the solution of Hamilton’s equations for constant velocity motion.
Scattering concerns Hamiltonians H where the potential V (~x) vanishes

for sufficiently large finite ~x. To be specific I assume that the potential
satisfies

V (~x) = 0 |~x| < R <∞. (9)

If a particle has a coordinate ~x0 with |~x0| > R at time t0 then it also
satisfies the free particle equations of motion. As mentioned above, as long
as the particle does not feel the interaction, the motion is in a straight line.
There are three possibilities:

1. The particle is moving towards the target. This means that the straight-
line trajectory will intersect the region where the potential is non-zero
in the future.

2. The particle is moving away from the target. This means that the
straight-line trajectory intersected the region where the potential is
non-zero in the past.

3. The straight line trajectory never intersects the region where the po-
tential is non-zero.

For case 1 there is a solution of Hamilton’s equations, ~F−(t; f0, t0), satis-
fying the asymptotic condition

lim
t→−∞

|~F−(t; f0, t0)− ~F0(t; f
′
0, t

′
0)| = 0. (10)

I can also write this in the equivalent form

lim
t→−∞

|[e−DH(t−t0) ~f|f=f0
− e−DH0

(t−t′0) ~f|f=f ′
0
| = 0 (11)

Note the initial times and coordinates do not have to be the same in these
two solutions, however they are constrained because for sufficiently large
negative time the coordinates and moment of these solutions agree. In this
case when t < −t0 the right hand side is identically zero. The − sign denotes
the solution of the interacting problem that asymptotically looks like a free
particle in past.

For case 2 there is a solution of Hamilton’s equations,

~F+(t; ~fi, ti) (12)
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satisfying the asymptotic condition

lim
t→+∞

|~F+(t; f0, t0)− ~F0(t; f
′
0, t

′
0)| = 0 (13)

or equivalently

lim
t→−∞

|[e−DH(t−t0) ~f|f=f0
− e−DH0

(t−t′0) ~f|f=f ′
0
| = 0 (14)

The + sign denotes the solution of the interacting problem that asymptoti-
cally looks like a free particle in future.

Equations (10) and (13) are called scattering asymptotic conditions. Gen-
eralizations of these equations will be important for the entire course. They
relate the unique solution of the non-interacting system that agrees with the
interacting systems for large positive or negative time.

One formulation of the scattering problem is to relate the initial and final
scattering asymptotes. This can be done if the particle trajectory is such
that it both enters and exits the interaction region. This does not have to
happen. A particle coming into the interaction region along a straight line
trajectory could be trapped by the potential. Likewise a particle that was
always in the interaction region could be ejected in a straight-line trajectory.

In the case that the particle both enters and exits the interaction region
then at some time ti it will have phase-space coordinates ~fi in the interaction
region. Since Hamilton’s equations have unique solutions for each initial
condition we necessarily have

~F−(t; ~fi, ti) = ~F+(t; ~fi, ti) (15)

for all time t.
Choose a time tl that is sufficiently large that

(~x+, ~p+) = ~f+ := ~F+(tl; ~fi, ti) (16)

and
(~x−, ~p−) = ~f− := ~F−(−tl; ~fi, ti) (17)

is out of the range of the potential.
The corresponding free particle solutions that satisfy the asymptotic con-

dition (10) and (13) are

F0+(t; ~f+, tl) := (~x+ +
~p+

m
(t− tl), ~p+) (18)
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F0−(t; ~f−,−tl) := (~x− +
~p−
m

(t + tl), ~p−). (19)

The scattering operator is the mapping that maps the initial scattering
asymptote to the final scattering asymptote

S[F0+(t; ~f+, tl)] = F0−(t; ~f−,−tl). (20)

From the above this relation is determined by the solution of the dynamical
equations.

Another property of the scattering operator concerns symmetries. In
classical mechanics the condition

{G,H} = 0 (21)

means
dG

dt
=
∂G

∂~q
· d~q
dt

+
∂G

∂~p
· d~p
dt

= (22)

∂G

∂~q
· ∂H
∂~p

+
∂G

∂~p
· −∂H
∂~q

= {G,H} = 0 (23)

which shows that G(t) does not change in time. This means that the value of
G does not change along the trajectory of the particle in phase space. Since
the physical trajectory is identical to the asymptotic trajectories for |t| > |tl|,
this means that it has the same value on each asymptote. It follows that the
scattering operator has the same symmetry.

A simple example is the case that G = H, which shows that the a particle
moving along the initial and final scattering asymptote have the same energy.

In this classical case the scattering operator maps any incoming asymp-
tote to the associated outgoing asymptote. Many of the concepts discussed
in this classical case will be reformulated in the quantum mechanical case.

2 Quantum Theory

I begin with a brief discussion of the essential elements of quantum theory.
In quantum theory the state of a system is described by a ray, or one-

dimensional subspace in a complex vector space, or Hilbert space. In most
applications rays are represented by unit normalized vectors. In what follows
I will use Dirac notation to denote states, |ψ〉.
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If a physical system is prepared in a state represented by a vector |ψ〉 and
a measurement is made to determine if the systems is in a different state, |φ〉,
the result of a given experiment will be “yes” or “no”. If the same experiment
is repeated a large number of times the ratio of the “yes” outcomes ,Ny, to
the total number of measurements N approaches the probability

lim
N→∞

Ny

N
= |〈φ|ψ〉|2. (24)

This probability on the right-hand side of this equation is a prediction of
quantum theory.

In a scattering experiment a typical goal is to measure of the probability
that in a large ensemble of scattering experiments that a given detector
will register a “count”. Additional care is needed because the detector will
register “yes” for several quantum states. Likewise the ensemble of beam-
target states will normally contain different states.

This discussion is abstract. The structure of the Hilbert space is fixed
by the experiment. The construction of the relevant Hilbert space is done
by defining a complete measurement of the state of the physical system.
A complete measurement involves measuring the eigenvalues of a maximal
set of mutually commuting Hermitian operators. For an N -particle system
a complete measurement involves a measurement of the mass, linear mo-
mentum, total spin, and magnetic quantum number of each particle. These
measurements are normally done when the particles are separated beyond
the range of their mutual interaction. These measurements are compatible
in the sense that the outcome of each measurement does not depend on the
order of the measurements. More generally if the commuting operators are
O1 · · ·ON with eigenvalues η1 · · · ηN , then the “wave function” of the state
|ψ〉 is

〈η1, · · · , ηN |ψ〉 (25)

The wave function has the interpretation that

|〈η1, · · · , ηN |ψ〉|2 (26)

is the probability that if the system is prepared in the state |ψ〉 that a mea-
surement of O1, O2, · · · , and ON will yield values η1, η2, · · · and ηN .

The requirement that a measurement of all of these quantities has to
be in the set of eigenvalues of these operators with probability 1 gives the
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normalization condition

1 =
∑

η1···ηN

|〈η1 · · · ηN |ψ〉|2. (27)

This also yields an explicit representation for the Hilbert-space scalar
product

〈φ|ψ〉 =
∑

η1,··· ,ηN

〈φ|η1, · · · , ηN〉〈η1, · · · , ηN |ψ〉. (28)

In theses two expressions the sum over ηi ranges over all possible eigenvalues
of Oi. When some of the operators have a continuous eigenvalue spectrum
the sum over eigenvalues is replaced by an integral over the eigenvalues.

While one can in principle formulate quantum mechanics using any set
of commuting observables, nature limits the set of commuting observables
that can be used to label the states of realistic systems. The relevant macro-
scopic observables are related to the behavior of free particles after they
enter classical electromagnetic and gravitational fields. These fields, along
with conservation laws, can be used to measure the momentum and mag-
netic quantum numbers of free particles. This is relevant because these are
the normal observables of the scattering matrix in both classical and quantum
mechanics.

3 Quantum Dynamics

The previous section discussed quantum measurements. In this section I
introduce dynamics. It is a reasonable physical requirement that the laws
of physics do not change with time. This is the simplest formulation of the
principle of relativity.

Classically this means that if the time is shifted in the classical equation
of motion, the solutions (as functions of initial conditions) do not change. In
Hamilton’s equations this means that the potentials do not have an explicit
time dependence. This is the appropriate form of the relativity condition
because the solution of the equations of motion, which are the coordinates
and momenta of the particles, are experimental observables.

The above discussion applies only to isolated systems, where there are
no externally applied forces. For isolated systems the relevant forces are
the fundamental forces of nature associated with the electromagnetic, weak,
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strong, and gravitational interactions. This statement means that these basic
forces do not change in time.

This principle has to be modified in quantum mechanics because the
prediction of the theory is a probability. The time translation invariance of
the measurement requires that the probabilities are time independent, not

the equations of motion.
In quantum mechanics I formulate this condition by assuming an abstract

correspondence between equivalent states at different times:

|ψ(t)〉 → |ψ(t′)〉. (29)

Time translation invariance is the requirement

|〈ψ(t)|φ(t)〉|2 = |〈ψ(t′)|φ(t′)〉|2 (30)

for all time. This means that I cannot experimentally distinguish the results
of equivalent experiments done at different times.

If this is true for all vectors then Wigner’s theorem [?] [?] requires

|ψ(t)〉 = U(t)|ψ(0)〉 (31)

|φ(t)〉 = U(t)|φ(0)〉 (32)

where U(t) is a unitary or anti-unitary operator. Consistency of

|ψ(t+ t′)〉 = U(t + t′)|ψ(0)〉 = U(t)U(t′)|ψ(0)〉 = U(t′)U(t)|ψ(0)〉 (33)

for all |ψ(0)〉 implies

U(t + t′) = U(t)U(t′) = U(t′)U(t) (34)

and
U(t) = U(t/2)U(t/2). (35)

Since the composition of two anti-unitary transformations is unitary, equa-
tion (35) means the U(t) must be unitary. Technically because the physical
states are described by rays, these relations only have to hold up to a phase.
In the simplest cases [?] the phases can be absorbed into the unitary opera-
tors. Similar arguments give

U(0) = I U(−t) = U †(t) = U−1(t). (36)
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If I let t′′ = t+ t′ it is easy to calculate

dU(t′′)

dt′′
U †(t′′) =

dt′′

dt

dU(t + t′)

dt
U †(t+ t′) = (37)

dU(t)

dt
U(t′)U †(t′)U †(t) =

dU(t)

dt
U †(t) (38)

which shows explicitly that dU(t)
dt

U †(t) is independent of time t.
If I differentiate

0 =
d

dt
I =

d

dt
U(t)U †(t) =

dU(t)

dt
U †(t) + U(t)

dU †(t)

dt
(39)

I get

i
dU(t)

dt
U †(t) = −iU(t)

dU †(t)

dt
[i
dU(t)

dt
U †(t)]† (40)

which shows that

i
dU(t)

dt
U †(t) (41)

is a time independent Hermitian operator. It has units of inverse time. The
quantity

H := i~
dU(t)

dt
U †(t) (42)

has units of energy. It is the Hamiltonian of the quantum mechanical system.
In all that follows I use units where ~ = c = 1.

Equation (42) can be written as a differential equation for U(t):

dU(t)

dt
= −iHU(t) U(0) = I (43)

This has the formal solution

U(t) = e−iHt (44)

which is the standard expression for the time evolution operator. The Schrödinger
is obtained by noting that

|ψ(t)〉 = U(t)|ψ(0)〉. (45)

With this identification (43) becomes the Schrödinger equation for the state
vector |ψ(t)〉:

i
d|ψ(t)〉
dt

= H|ψ(t)〉. (46)

Stone’s theorem [?] implies that if the time translation operator U(t) is
(strongly) continuous that Hamiltonians constructed in this manner are nec-
essarily self-adjoint operators on the Hilbert space.
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4 Hilbert Space Topologies

In this section I look at properties of free particles to discuss the proper
formulation of the asymptotic conditions in quantum mechanics. In this
section I take consider a Hamiltonian of the form that was discussed in the
classical example:

H =
p2

2m
+ V (~x), V (~x) = 0, |~x| > R (47)

In a quantum theory Hamilton’s equations are replaced by the Schrödinger
equation:

i
d|ψ(t)〉
dt

= H|ψ(t)〉. (48)

When the interaction is turned off this becomes the Schrödinger equation for
a free particle:

i
d|ψ0(t)〉
dt

= H0|ψ0(t)〉. (49)

The expectation, based on the classical example, is that a solution of (48)
should approach a solution of (49) as t→ ±∞. The formulation of how this
happens is not entirely trivial. It depends on how we define convergence of
operators in the Hilbert space.

Before I can properly formulate the asymptotic condition it is instructive
to consider solutions of (49) corresponding to a particle moving with a linear
momentum ~p0. The initial state can be described by a wave function of the
form

〈~p|ψ0(0)〉 = Ne−
(~p−~p0)2

2a2 (50)

where a is a constant with units of momentum that fixes the width of the
wave packet and N is a normalization constant. The vector ~p0 is a constant
that describes the momentum of the wave packet. I use the Gaussian form for
the purpose of illustration. It has the advantage that integrals can be done
analytically and it has the additional feature that it is a minimal uncertainty
state.

The solution of the configuration space Schrödinger equation with this
initial condition is

〈~x|ψ0(t)〉 =
N

(2π)3/2

∫

ei~p·~xe−i
~p·~p
2m

te−
(~p−~p0)2

2a2 d3p. (51)
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This is a Gaussian integral that can be done using the standard integral

∫ ∞

−∞

e−au
2+bu+cdu =

√

π

a
e

b2

4a
+c (52)

The integral (51) breaks up into a product of three identical Gaussian inte-
grals. To compute the integral we write it in the standard form:

〈~x|ψ0(t)〉 =
N

(2π)3/2

∫

e−( 1
2a2 +i t

2m
)~p·~p+~p·(i~x+

~p0
a2 )−

~p0·~p0
2a2 d3p. (53)

Using the standard Gaussian integral this becomes

〈~x|ψ0(t)〉 =
N

(2π)3/2

2a2π

(1 + i ta
2

m
)3/2

e
−a2

2
1

1+ t2a4

m2

(~x−
~p0t

m
)2

eiφ(~x,t) (54)

where φ(~x, t) is the real phase factor:

φ(~x.t) = ~x · ~p0 −
~p0 · ~p2

2m
t+

a4~x · ~xt
2m

. (55)

This expression has two important properties. First, because the time-
evolution is unitary this remains normalized to unity for all time. The second
property is that the wave packed spreads out. The peak of the wave func-
tion moves with the classical velocity ~p0/m but the maximum amplitude falls
off like t−3/2 for large values of t, while the width of the wave packet gets
correspondingly wide.

These observations have important consequences for the formulation of
the asymptotic condition in quantum mechanics. The naive requirement that

lim
t→±∞

|〈~x|ψ(t)〉 − 〈~x|ψ0(t)〉| = 0 (56)

is useless for scattering. This is because for any value of x both terms sep-
arately vanish for large times. So far we have only shown this for 〈~x|ψ0(t)〉,
but we will establish it for both terms shortly.

So while the condition is true, it vanishes because both terms go to zero
rather than having non-zero terms that asymptotically become identical.

It is also true if the wave function is replaced by a limit involving matrix
elements of the form

lim
t→±∞

|〈φ|ψ(t)〉 − 〈φ|ψ0(t)〉| = 0 (57)
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where |φ〉 is any other vector in the space. Again, for any fixed |φ〉 both
terms vanish separately.

This behavior can be easily understood in the general case by noting that

〈φ|ψ(t)〉 =

∫

dEe−iEt
∫

du〈φ|E, u〉〈E, u|ψ〉 (58)

where E is the free energy eigenvalue and u indicates any other quantum
numbers that are needed to get a complete set of commuting observables.
The normalizability of the wave functions means that

f(E) =

∫

du〈φ|E, u〉〈E, u|ψ〉 (59)

is absolutely integrable. The Riemann-Lebesgue lemma then requires that

lim
t→±∞

∫

dEe−iEtf(E) = 0. (60)

The same argument applies in the interacting case.
The limit in equation (57) is called a weak limit. It is a limit involving

matrix elements. Formally |ψn〉 converges weakly to |ψ〉 provided

lim
n→∞

|〈φ|ψn〉 − 〈φ|ψ〉| = 0 (61)

for every normalizable vector φ. What is relevant for weak limits is that the
rate of convergence can be different for different choices of 〈φ|.

To understand how to proceed, we note that even though the peak value
of the time evolved state becomes smaller, this is exactly compensated for
by an increase in the width of the wave function for large time. This is easy
to see because

〈ψ(t)|ψ(t)〉 = 〈ψ(0)|U †
0(t)U0(t)ψ(0)〉 = 〈ψ(0)|ψ(0)〉 (62)

is time independent by unitarity. This suggests that the asymptotic condition
can be formulated using limits involving the Hilbert space norm rather than
matrix elements:

lim
t→±∞

‖|ψ±(t)〉 − |ψ0(t)〉‖ = 0 (63)

This limit is called a strong limit. If the limit is a strong limit it means that
the rate of convergence of different matrix elements in (61) is independent
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of 〈φ|. It is obvious from this characterization that if something converges
strongly it also converges weakly. The converse is not true.

In what follows I show that the strong limit leads to a non-trivial for-
mulation of the asymptotic condition in quantum mechanics. I will use this
form of the asymptotic condition to formulate quantum scattering theory.

While strong limit can be used to formulate a scattering theory, it is not
the only possible formulation of the asymptotic condition. Some alternate
formulations [?] involve the strong Abelian limit:

lim
ε→0

ε

∫ ∞

0

e−εt‖|ψ±(t)〉 − |ψ0(t)〉‖dt = 0 (64)

and the Cesaro mean

lim
T→∞

1

T

∫ T

0

‖|ψ±(t)〉 − |ψ0(t)〉‖dt = 0. (65)

Most results that can be proved with one type of limit can also be proved
with one of the other limits. Note that both the Cesaro mean and the strong
Abelian limit involve vector norms.

Finally there is one more type of limit that is important for scattering.
This is the uniform limit, which applies to operators. To illustrate the differ-
ence in all three limits consider a set of operators Wn and a limiting operator
W .

The operators Wn converge weakly to W if

lim
t→∞
|〈φ|Wn|ψ〉 − 〈φ|W |ψ〉| = 0 (66)

for all 〈φ| and |ψ〉.
The operators Wn converge strongly to W if

lim
t→∞
‖Wn|ψ〉 −W |ψ〉‖ = 0 (67)

for all |ψ〉.
The operators Wn converge uniformly to W if

lim
t→∞
‖Wn −W‖ = 0. (68)

In the uniform case the rate of convergence is independent of any states, and
only depends on the operator.

Uniform convergence plays an important role in solving the equations of
scattering theory.
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5 Møller wave operators

In this section I show that the strong limits defined in the previous section
lead to non-trivial asymptotic conditions. Before getting started, I discuss
the physics of the asymptotic condition.

As in the classical case, long before the particle is within the range of the
potential, it looks like a free particle. The state of this particle should be
described by a localized wave packet with a mean momentum ~p0 directed at
the target. The Gaussian wave function of the previous section is a suitable
candidate for such a wave function. There are two relevant state vectors.
One satisfies the Schrödinger with the interacting Hamiltonian and the other
satisfies the Schrödinger equation with a free particle Hamiltonian:

i
d|ψ−(t)〉

dt
= H|ψ−(t)〉 (69)

i
d|ψ−0(t)〉

dt
= H0|ψ−0(t)〉. (70)

The Schrödinger equation is first order in time, so to obtain a solution it is
necessary to specify an initial condition. This is done by demanding that the
non-interacting and interacting solutions of the Schrödinger equation agree
for some sufficiently large negative time:

lim
t→−∞

‖U(t)|ψ−(0)〉 − U0(t)|ψ0(0)〉‖ = 0. (71)

Note that in a real scattering experiment this condition is well satisfied for
finite times, however the value of the finite time depends on the initial wave
packet. Letting t→ −∞ provides a means to treat all states simultaneously.
The price for doing this is that in the limit that t → −∞ all of the wave
functions spread out. This is why the strong limits are needed. It is important
to note however in a real experiment the wave packets associated with the
beam and detector remain highly localized over experimental time scales.

It is possible to use the unitarity of U(t) to rewrite the asymptotic con-
dition (71) in the equivalent form

lim
t→−∞

‖|ψ−(0)〉 − U(−t)U0(t)|ψ0(0)〉‖ = 0 (72)

The relevant limiting operator

Ω− = Ω−(H,H0) := s lim
t→−∞

U(−t)U0(t) (73)
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is called the Møller wave operator. The s is a reminder that the relevant
limit is a strong limit.

The wave operator Ω− satisfies

|ψ−(0)〉 = Ω−|φ0−(0)〉. (74)

The solutions of the interacting and non-interacting Schrödinger equations
at time zero are expected to be localized states. The wave operators relate
these states. If all of the limits exist it should be a well behaved operator.

As in the classical case, it is also useful to formulate an asymptotic con-
dition as t→ +∞. This leads to the asymptotic condition

lim
t→+∞

‖|ψ+(0)〉 − U(−t)U0(t)|ψ0+(0)〉‖ = 0 (75)

and
Ω+(H,H0) := s lim

t→+∞
U(−t)U0(t) (76)

The wave operator Ω+ satisfies

|ψ+(0)〉 = Ω+|φ0+(0)〉. (77)

Given the solution of the Schrödinger equation at time zero that looked like
a free particle moving towards the target in the past and another solution
that looks like a free particle moving towards the detector in the future, we
can calculate the probability amplitude for the corresponding transition:

Sfi := 〈ψ+(0)|ψ−(0)〉 = 〈ψ0+(0)|Ω†
+(H,H0)Ω−(H,H0)|ψ0−(0)〉. (78)

The quantity Sfi is called scattering matrix. The associated operator

S = S(H,H0) := Ω†
+(H,H0)Ω−(H,H0) (79)

is called the scattering operator. The quantity

Pfi := |Sfi|2 (80)

represents the probability that a particle in a state that looks like |ψ0−(t)〉
as t→ −∞ transitions to a state that looks the |ψ0+(t)〉 as t→∞.

This can be used to calculate the probability that a given detector will
detect the particle if the beam is prepared with a sharply peaked momentum
heading towards the target,

15



In what follows I establish sufficient conditions for the existence of the
strong limits that define the wave operators: Consider

lim
t→±∞

‖U(−t)U0(t)|ψ(0)〉‖ = ‖[
∫ ±∞

0

d

dt
U(−t)U0(t)− I]|ψ(0)〉‖dt (81)

To show that this integral converges note that if I think of the integral as a
limit of Riemann sums and then use the triangle inequality

‖|φ〉+ |ψ〉‖ ≤ ‖|φ〉‖+ ‖|ψ〉‖ (82)

on each term in the sum I obtain

‖
∫ ±∞

0

d

dt
U(−t)U0(t)|ψ(0)〉dt‖ ≤ (83)

∫ ±∞

0

‖U(−t)V U0(t)|ψ(0)〉‖dt =

∫ ±∞

0

‖V |ψ(t)〉‖dt. (84)

In the last step I used the unitarity of U(−t) for all t to get:

‖U(−t)V U0(t)|ψ(0)〉‖ = ‖V U0(t)|ψ(0)〉.‖ (85)

The condition that
∫ ±∞

0

‖V |ψ(t)〉‖dt <∞ (86)

for a dense set of vectors is called Cook’s condition.
Note that a dense set of vectors is a set of vectors |ψn 〉 that can be used

to approximate any vector |ψ〉 in the sense that for any ε > 0 there is an N
such that for any n > N

‖|ψn〉 − |ψ〉‖ < ε (87)

To use this in the above note

‖[U(−t)U0(t)−U(−t′)U0(t
′)]|ψ0(0)〉‖ ≤ ‖[U(−t)U0(t)−U(−t′)U0(t

′)]|ψn0(0)〉‖+

‖[U(−t)U0(t)[|ψ0(0)〉 − |ψn0(0)〉]‖+
‖[U(−t′)U0(t

′)[|ψ0(0)〉 − |ψn0(0)〉]‖ = (88)

‖[U(−t)U0(t)− U(−t′)U0(t
′)]|ψn0(0)〉‖+ 2‖|ψ0(0)〉|ψn0(0)〉‖ (89)
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The first term involves a vector in the dense set and can be made as small as

desired by choosing t sufficiently large while the second term can be made as

small as desired by choosing n large enough. This is done by first choosing n
large enough to make the second term sufficiently small; for that value of n
I choose t large enough to make the first term small. It follows that the left

side of this equation can be made as small as desired.

A necessary and sufficient way to to check if a sequence ‖fn − f‖ → 0 is

convergent is to check that the sequence is a Cauchy sequence. This means

for every ε > 0 I can find a large enough N such that for every m,n > N

‖fm − fn‖ < ε

The proof shows that the sequence itself has all of the properties of a vector

and actually coincides with f if the limit is given. Showing that the time in-

tegral is bounded is equivalent to showing that the time sequences is a Cauchy

sequence. Formally the sequence can be shown to define an element in the

Hilbert space with all of the expected properties of the limiting vector.

The Gaussian wave functions are dense. I use them to show that a finite-
range bounded potential satisfy Cook’s condition. To estimate this integral
note that V has a finite range, which cuts off the spatial integral. If the
potential is bounded by a constant V (x) ≤ v, inspection of the Gaussian
wave function shows that for ~x < R the wave function is bounded by

c1
c2 + t3/2

. (90)

It follows that
‖V |ψ(t)〉‖ ≤ v

√

〈ψ(t)|ΠR|ψ(t)〉 (91)

where ΠR is the projection on the space of functions that vanish for |x| > R
where R is the the range of the potential. This in turn is bounded by

‖V |ψ(t)〉‖ ≤ v(
4

3
πR3)1/2 c1

c2 + t3/2
(92)

This is clearly integrable with respect to t
∫ ∞

0

vc1dt

c2 + t3/2
<∞. (93)

For more general potentials (86) can be checked directly. This shows that
bounded finite range potentials satisfy the Cook condition. In this example
R is the range of the potential and v is the bound on the potential.
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In existence of wave operators can be proved by a variety of methods.
Typically the interaction must fall off faster than the Coulomb interaction
for large x for wave operators to exist. Cook’s condition is only a sufficient
condition for the existence of the Møller wave operators; failure of Cook’s
condition does not necessarily imply that the wave operators do not exist.

The Møller wave operators have some important properties that follow
directly from the definitions. An important property is the intertwining
relation. The intertwining relation is

HΩ±(H,H0) = Ω±(H,H0)H0. (94)

To prove this consider

U(s)Ω±(H,H0) = s− lim
t→±∞

U(s)U(−t)U0(t) =

s− lim
t→±∞

U(s− t)U0(t− s+ s) =

s− lim
t→±∞

U(s− t)U0(t− s)U0(s) =

s− lim
t′→±∞

U(−t′)U0(t
′)U0(s) = Ω±(H,H0)U0(s) (95)

where t′ = t− s for fixed s.
If I differentiate this result with respect to s and set s = 0 I get the

intertwining relations

HΩ±(H,H0) = Ω±(H,H0)H0 (96)

If |E0〉 is an eigenstate of H0 with energy E0 then

HΩ±(H,H0)|E0〉 = Ω±(H,H0)H0|E0〉 = E0Ω±(H,H0)|E0〉 (97)

which means that Ω±(H,H0)|E0〉 is an eigenstate of H with the same eigen-
value, E0.

This is the quantum mechanical version of the energy conservation condi-
tion that was found for classical scattering. It means that the energy of the
asymptotic solution is the same as the energy for the corresponding exact
solution.

A second important result that follows from the intertwining relation is
that the ranges of the wave operators are orthogonal to the bound states of
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H. To see this let |Eb〉 be a bound state of H with energy Eb < 0 and let
|E0〉 be an energy eigenstate of H0 with energy E0 ≥ 0. It follows that

0 = 〈Eb|(H −H)Ω±(H,H0)|E0〉 = (E0 − Eb)〈Eb|Ω±(H,H0)|E0〉. (98)

Since (E0 − Eb) > 0 it follows that

〈Eb|Ω±(H,H0)|E0〉 = 0. (99)

This says that the scattering eigenstates of H are necessarily orthogonal to
the bound states. To prove this I used the orthogonality of the eigenstates
with different eigenvalues.

This result is surprising because the wave operators are limits of products
of unitary operators. When a product of unitary operators is applied to a
complete set of free particle eigenstates the result will be a complete set of
states.

The above calculation shows that this is no longer the case after the limit
is taken, since the application of the wave operators to a complete set of free
particle eigenstates is orthogonal to the bound states. This means that the
Møller wave operators are not unitary.

In general the wave operators are isometric operators, this means the
they preserve the norm of vectors, but their range is not the necessarily full
Hilbert space.

I define the subspaces H± to be the subspaces of vectors in the Hilbert
space spanned by vectors of the form

|ψ±〉 = Ω±(H,H0)|ψ0±〉. (100)

Vectors in these spaces are linear combinations of eigenstates of H with
positive eigenvalues.

I define Hb to be the subspace of the Hilbert space spanned by the bound
states of H.

I have shown that
Hb ⊥ H+ (101)

and
Hb ⊥ H− (102)

If there are no other eigenstates of H then I expect

H = Hb ⊕H− = Hb ⊕H+. (103)
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When this holds the scattering theory is said to be asymptotically com-
plete.

Note that I do not expect H− to be orthogonal to H+ because these
overlaps are precisely the scattering matrix elements. If these spaces were
orthogonal there would be no scattering. Asymptotic completeness implies
that the scattering matrix is unitary.

In the quantum mechanical case asymptotic completeness means that
every particle that enters the scattering region comes out with probability 1.
Mathematically asymptotic completeness is difficult to prove, however it is a
standard assumption of scattering theory. I will discuss one method to test
asymptotic completeness.

Before constructing the scattering operator I want to point out some
additional properties of the wave operators.

The relation
U(s)Ω±(H,H0) = Ω±(H,H0)U0(s) (104)

means

1

2π

∫

dsf(s)U(s)Ω±(H,H0) =
1

2π

∫

dsΩ±(H,H0)U0(s)f(s) (105)

or
f̃(H)Ω±(H,H0) = Ω±(H,H0)f̃(H0) (106)

where f̃(E) is the Fourier transform or f(s).
The means that the wave operators transform functions of H0 to the same

functions of H.
The same identity also gives

|ψ±(t)〉 = U(t)|ψ±(0)〉 = (107)

U(t)Ω±(H,H0)|ψ0±(0)〉 = Ω±(H,H0)U0(t)|ψ0±(0)〉 = Ω±(H,H0)|ψ0±(t)〉
(108)

which shows that the wave operators relate the free and interacting states at
all times, not just t = 0.

|ψ±(t)〉 = Ω±(H,H0)|ψ0±(t)〉 .

The next result that I discuss is called the chain rule for wave operators.
I consider the special case where I have three Hamiltonians and none of them
have bound states. If I assume

Ω±(H1, H2) (109)
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and
Ω±(H2, H3) (110)

exist then
Ω±(H1, H3) (111)

exists and is equal to

Ω±(H1, H3) = Ω±(H1, H2)Ω±(H2, H3) (112)

To prove this result I note that

‖[e−iH1teiH3t − Ω±(H1, H2)Ω±(H2, H3)]|ψ〉‖ =

‖[e−iH1teiH2te−iH2teiH3t − Ω±(H1, H2)Ω±(H2, H3)]|ψ〉‖ =

‖[e−iH1teiH2t(e−iH2teiH3t − Ω±(H2, H3))+

Ω±(H2, H3))− Ω±(H1, H2)Ω±(H2, H3)]|ψ〉‖ ≤

‖e−iH1teiH2t[e−iH2teiH3t − Ω±(H2, H3)]|ψ〉‖+
‖[e−iH1teiH2t − Ω±(H1, H2)]Ω±(H2, H3)|ψ〉‖ =

‖[e−iH2teiH3t − Ω±(H2, H3)]|ψ〉‖+
‖[e−iH1teiH2t − Ω±(H1, H2)]Ω±(H2, H3)|ψ〉‖

This vanishes as t → ±∞ provided Ω±(H1, H2) and Ω±(H2, H3) both exist.
In this case the limit is

Ω±(H1, H3) = Ω±(H1, H2)Ω±(H2, H3)

This proves the chain rule in the simplest case.
We proved the chain rule for the case that there are no bound states.

When there are bound states the chain rule holds provided the definition of
the wave operator is generalized by

Ω±(Hi, Hj) = s lim
t→±∞

eiHite−iHjtΠjc (113)
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where Πjc is the orthogonal projector on the subspace orthogonal to the
bound states of Hj. This is consistent with the previous definition because
the free Hamiltonian has no bound states.

A useful property of the chain rule is that is gives a simple condition for
the asymptotic completeness of the wave operators which is: If Ω±(H,H0)
both exist then scattering theory is asymptotically complete if and only if

Ω±(H0, H) (114)

also exist. Note that I have reversed the order of H and H0.
A simple application of the chain rule gives for both time limits

Ω±(H,H0)Ω±(H0, H) = Πc (115)

and
Ω±(H0, H)Ω±(H,H0) = I. (116)

The first equation means that any vector that is orthogonal to the bound
states is necessarily in the range of both Ω+(H,H0) and Ω−(H,H0) or

H+ ⊇ H⊥ H− ⊇ H⊥ (117)

which when coupled with (101) and (102) requires

H⊥ = H− = H+.

Another useful property of wave operators is the Kato-Birman invariance
principle. I begin with the following characterization of the limit that defines
the wave operator

lim
t→±∞

‖[U(t)Ω±(H,H0)− U0(t)]|ψ〉‖ = 0. (118)

The intertwining relations imply

lim
t→±∞

‖[Ω±(H,H0)− I]U0(t)|ψ〉‖ = 0 (119)

or
lim
t→±∞

‖[Ω±(H,H0)− I]e−iH0t|ψ〉‖ = 0 (120)

If I replace H0 by a function f(H0) I can consider the limit

lim
s→±∞

‖[Ω±(H,H0)− I]e−if(H0)s|ψ〉‖ (121)
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If this limit vanishes then it follows that

Ω±(H,H0) = s lim
s→±∞

eif(H)se−if(H0)s. (122)

To find conditions for this replacement first note that

‖[Ω±(H,H0)− I]e−if(H0)s|ψ〉‖2 =

〈ψ|eif(H0)s[Ω†
±(H,H0)− I][Ω±(H,H0)− I]e−if(H0)s|ψ〉 =

2− 2Re〈ψ|eif(H0)sΩ†
±(H,H0)e

−if(H0)s|ψ〉 =

2Re〈ψ|e−if(H0)sΩ†
±(H,H0)[Ω±(H,H0)− I]eif(H0)s|ψ〉. (123)

Next I write [Ω±(H,H0)− I] as an integral

[Ω±(H,H0)− I]e−if(H0)s|ψ〉 = i

∫ ±∞

0

eiHtV e−iH0te−if(H0)s|ψ〉dt (124)

and use it in equation (123) to get

2Im

∫ ±∞

0

〈ψ|e−if(H0)sΩ†
±(H,H0)e

iHtV e−iH0te−if(H0)s|ψ〉 (125)

The intertwining relations give

2Im

∫ ±∞

0

〈ψ|eif(H0)seiH0tΩ†
±(H,H0)V e

−iH0te−if(H0)s|ψ〉 (126)

In what follows I assume that the potential is trace class, which means
that it has the form

V =
∑

n

|vn〉λn〈vn|
∑

n

|λn| = Tr(V ) <∞ (127)

Note that the theorem is valid for a more general class of potential, the proofs
are just more complicated.

Next I insert the expansion for the interaction in (126) to get

2Im
∑

n

∫ ±∞

0

〈ψ|eif(H0)seiH0tΩ†
±(H,H0)|vn〉λn×

〈vn|e−iH0te−if(H0)s|ψ〉 (128)
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The Schwartz inequality (considering both t and n as vector component la-
bels) gives

‖[Ω±(H,H0)− I]eif(H0)s|ψ〉‖2 ≤

2

√

∑

n

∫ ±∞

0

dt|λn||〈ψ|eif(H0)seiH0t Ω†
±(H,H0)|vn〉|2×

√

∑

n

∫ ±∞

0

dt|λn||〈vn|e−iH0te−if(H0)s|ψ〉|2. (129)

The term with the wave operator is bounded by
√

∑

n

∫ ∞

−∞

|λn||
∫

〈ψ|P (E)Ω†
±(H,H0)|vn〉eif(E)seiEtdE|2

where P (E) is the differential projection on the spectral subspace of H0 with
eigenvalue E.

The energy integral is a Fourier transform ĝn(t) of the following function
of energy

gn(E) = 〈ψ|P (E)e−if(E)sΩ†
±(H,H0)|vn〉

As long as
∫

|ĝn(t)|2dt < G2 <∞

with G independent of s and n, the first terms is bounded by G
√

Tr(V ):

‖[Ω±(H,H0)− I]eif(H0)s|ψ〉‖2 ≤

G
√

Tr(V )

√

∑

n

∫ ±∞

0

dt|λn||〈vn|eiH0teif(H0)s|ψ〉|2

It is enough to show
√

∑

n

|λn|
∫ ∞

0

|〈vn|eiH0teif(H0)s|ψ〉|2 (130)

vanishes as s→ ±∞.
The square of this integral is bounded by

∫ ∞

0

∑

n

|λn||〈vn|eiH0t+if(H0)s|ψ〉|2dt (131)
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The free Hamiltonian can be replaced by its eigenfunction expansion

∫ ∞

0

g(E)eiEteif(E)sdE (132)

To keep life simple I choose a dense set of functions ψ so f(E) is constant
on a small subinterval [a, b] in energy and vanishes everywhere else. In this
case the energy integral becomes

∫ b

a

eiEteif(E)sdE =

−i
∫ b

a

1

t+ f ′(E)s

d

dE
eiEteif(E)sdE =

−i 1

t + f ′(b)s
eibteif(b)s

+i
1

t+ f ′(a)s
eiateif(a)s

−i
∫ b

a

(

1

t+ f ′(E)s

)2

f ′′(E)eiEteif(E)sdE.

This is bounded by
1

t + f ′(b)s

1

t+ f ′(a)s
(

1

t + f ′(E)s

)2 ∫ b

a

|f ′′(E)|dE

The square of this appears in (131). It is integrable with respect to t and
the integral vanishes at s→∞ provided f ′(E) is positive and the integral of
|f ′′(E)| is finite on closed bounded intervals.

This shows that for trace class potentials

Ω±(H,H0) = s lim
s→±∞

eif(H)se−if(H0)s (133)

when f has a positive first derivative and the second derivative is locally
integrable.
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The invariance theorem works for a much larger class of potentials. It
implies that we can replace H by f(H) in computing Møller wave operators
as long as f(E) is reasonably nice increasing function of energy

Ω±(H,H0) = Ω±(f(H), f(H0)) f ′(E) > 0 (134)

This freedom is useful in relativistic formulations of scattering theory.
It is worth noting that this does not necessarily imply the existence of the

modified wave operators, only that if both exist then they must be equal.
One of the goals of scattering theory is to learn something about micro-

scopic interactions by looking at the results of a scattering experiments. I will
show even if it is possible to experimentally measure every scattering matrix
element that it is still impossible to extract a unique potential. I show this
by exhibiting distinct potentials that lead to the same matrix elements.

I begin by assuming a Hamiltonian of the standard form

H =
p2

2m
+ V = H0 + V

where H0 represents the kinetic energy operator or free particle Hamiltonian.
Let A be a unitary operator that satisfies the asymptotic condition:

s− lim
t→±∞

(I − A)U0(t) = 0 (135)

for both times. Unitary operators A satisfying (135) are called scattering
equivalences. Operators of the form

A =
I − iB
I + iB

where B is a finite rank Hermitian operator can be shown to be unitary
and satisfy this condition, so it is clear that there are an infinite number of
scattering equivalences. It is useful to express A in the form

A = I + ∆

Let
H ′ = A†HA = (I + ∆†)(H0 + V )(I + ∆) = H0 + V ′

where V ′ represents all of the short range contributions to H ′.
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I show that H and H ′ lead to the same scattering operator. To see this
note

Ω±(H ′, H0) = s− lim
t→±∞

e−iH
′teiH0t =

s− lim
t→±∞

e−iA
†HAteiH0t =

s− lim
t→±∞

A†e−iHtAeiH0t = s− lim
t→±∞

A†e−iHt(A− I + I)eiH0t

The term

lim
t→±∞

‖A†e−iHt(A− I)eiH0t|ψ0±〉‖ ≤ lim
t→±∞

‖(A− I)eiH0t|ψ0±〉‖ = 0

vanishes by (135). What remains is

Ω±(H ′, H0) = s− lim
t→±∞

e−iH
′teiH0t =

s− lim
t→±∞

e−iA
†HAteiH0t =

s− lim
t→±∞

A†e−iHteiH0tA†Ω±(H,H0)

Since this result holds for both time limits we have

S(H ′, H0) = Ω†
+(H ′, H0)Ω−(H ′, H0) = Ω†

+(H,H0)AA
†Ω−(H,H0) =

Ω†
+(H,H0)Ω−(H,H0) = S(H,H0)

so the scattering matrix is the same for both V and V ′.
This has a number of interesting implications. First I note that the op-

erator A was not applied to the the free particle Hamiltonian, only to the
interacting Hamiltonian. The net result is to replace the original potential
with a new potential. The operator A will transform the wave functions that
are eigenstates of H ′ to different wave functions that are eigenstates of H.

• A unique potential cannot be extracted from a knowledge of the scat-
tering operator.

• The quantum mechanical wave function is not an observable - in these
examples two different wave functions give identical scattering observ-
ables.

• A single scattering matrix is associated with an infinite number of scat-
tering equivalent theories.
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6 The Transition operator

The scattering operator is the central element of scattering theory. In this
section I demonstrate how to calculate the scattering operator. I develop the
connection between time-dependent and time-independent scattering.

Formally the scattering matrix is defined by

Sfi := lim
s,t→∞

〈ψ0+|eiH0se−iH(t+s)eiH0t|ψ0−〉

which can be written in terms of a single limit:

Sfi := lim
t→∞
〈ψ0+|eiH0te−iH(2t)eiH0t|ψ0−〉.

In order to evaluate this let ε(p) := p2

2m
be the kinetic energy and expand the

initial and final states in terms of momentum eigenstates:

Sfi := lim
t→∞

∫

〈ψ0+|~p〉eiε(p)t〈~p|e−iH(2t)|~p ′〉eiε(p′)t〈~p ′|ψ0−〉d3pd3p′.

This expression only makes sense if the ~p and ~p ′ integrals are performed
before taking the time limit. I replace this with the equivalent expression:

Sfi := lim
λ→0+

lim
t→∞

∫

〈ψ0+|~p〉eiε(p)t〈~p|e−iH(2t)|~p ′〉eiε(p′)t〈~p ′|ψ0−〉e−λtd3pd3p′

The term e−λt has no impact on the result in the limit that λ → 0 as long
as the integrals are performed before taking the limit.

Adding this factor allows me to change the order of the limit and integral.
Thus I can remove the wave functions and consider the time limit

S = lim
λ→0+

lim
t→∞
〈~p|e−iH(2t)+i(ε(p)+ε(p′))t−λt|~p ′〉.

I write the limit as the integral of a derivative

S = 〈~p|~p ′〉+
∫ ∞

0

lim
λ→0+

d

dt
〈~p|e−iH(2t)+i(ε(p)+ε(p′))t−λt|~p ′〉 =

〈~p|~p ′〉 − i
∫ ∞

0

lim
λ→0+

[〈~p|(H − ε(p))e−iH(2t)+i(ε(p)+ε(p′))t−λt|~p ′〉+

〈~p|e−iH(2t)+i(ε(p)+ε(p′))t−λt(H − ε(p′))|~p ′〉
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Performing the integral using

〈~p|(H − ε(p)) = 〈~p|V

and
(H − ε(p′))|~p ′〉 = V |~p ′〉

gives

〈~p|S|~p ′〉 = 〈~p|~p ′〉+ 1

2
lim
λ→0+

[〈~p|V 1

ε̄ + iλ−H |~p
′〉+ 〈~p|V 1

ε̄ + iλ−HV |~p ′〉]

where ε̄ is the average of the initial and final energy. Next I use the second
resolvent identities

1

z −H =
1

z −H0

+
1

z −H0

(H −H0)
1

z −H =

1

z −H0
+

1

z −H (H −H0)
1

z −H0
(136)

which can be easily derived. Let z := ε̄ + iλ then

〈~p|S|~p ′〉 = 〈~p|~p ′〉+ 1

2
lim
λ→0+

[〈~p|V 1

z −H |~p
′〉+ 〈~p|V 1

z −HV |~p ′〉] =

= 〈~p|~p ′〉+ 1

2
lim
λ→0+

[〈~p|V [1 +
1

z −HV ]
1

z −H0

|~p ′〉+

〈~p|V 1

z −H0

[1 + V
1

z −H ]V |~p ′〉] =

= 〈~p|~p ′〉+ 1

2
lim
λ→0+

[〈~p|V [1 +
1

z −HV ]
1

z − ε′ |~p
′〉+

〈~p|V 1

z − ε [1 + V
1

z −H ]V |~p ′〉] =

= 〈~p|~p ′〉+ 1

2
lim
λ→0+

[〈~p|T (z)|~p ′〉[ 1

z − ε′ +
1

z − ε ]

Note that
1

z − ε′ +
1

z − ε =

2

ε− ε′ + i2λ
+

2

ε′ − ε + i2λ
=
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−8iλ

(ε− ε′)2 + 4λ2
→ −4πiδ(ε− ε′)

where I have used

πδ(x− y) = lim
λ→0

λ

(x− y)2 + λ2
.

This gives the final result

〈~p|S|~p ′〉 = δ3(~p− ~p ′)− 2πiδ(
p2

2m
− p′2

2m
)〈~p|T (

p′2

2m
+ i0+)|~p ′〉 (137)

where

T (z) = V + V
1

z −HV (138)

T is called the transition operator.
Equation (137) is an important equation in scattering theory. It shows

that S is the sum of two terms. The delta function term corresponds to the
contribution from no scattering. The second term, containing the transition
operator, describes the scattering. It is the dynamical contribution to the
scattering matrix.

The operator
R(z) := (z −H)−1 (139)

is called the resolvent operator. In general z is a complex number. The
resolvent operator does not exist for all z. The points z where R(z) does not
exist is called the discrete spectrum of H; the points where R(z) exists
as an unbounded operator is called the continuous spectrum of H, and
the points where R(z) has a bounded inverse is called the resolvent set of
H. It is clear from this definition that every point in the complex plane is
either in the discrete spectrum of H, the continuous spectrum of H, or the
resolvent set of H.

The matrix elements of the transition operator that appear in the scat-
tering matrix

〈~p|T (ε+ 0+)|~p ′〉
are multiplied by an energy conserving delta function which gives

εi = εf = ε. (140)

Transition matrix elements where all energies are the same are called on
energy-shell transition matrix elements. The transition operator itself can
be evaluated with all three quantities being different.
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I use the second resolvent identity to obtain an equation for the transition
operator. The definition (138) can be put in the form

T (z) = V + V R(z)V (141)

while the second resolvent identities (139) can be written

R(z) = R0(z) + R0(z)V R(z) = R0(z) +R(z)V R0(z) (142)

R(z) = (z −H)−1 R0(z) = (z −H0)
−1. (143)

Using (142) in (141) gives

T (z) = V +V (R0(z)+R0(z)V R(z))V = V +V R0(z)[V +V R(z)V ] = (144)

T (z) = V + V R0(z)T (z). (145)

This equation is called the Lippmann-Schwinger equation. I have it ex-
pressed as an operator equation. If this is put in a basis it becomes an
integral equation. It can be expressed in either configuration space or mo-
mentum space. These equations are

〈~pi|T (z)|~pf 〉 = 〈~pi|V |~pf〉+
∫

d3p〈~pi|V |~p〉
1

z − p2/2m+ i0+
〈~p|T (z)|~pf〉 (146)

or

〈~ri|T (z)|~rf〉 = 〈~ri|V |~rf〉+
∫

d3rd3r′〈~ri|V |~r〉〈~r|R0(z)|~r′〉〈~r′|T (z)|~rf〉. (147)

Both of these equations are integral equations. I will discuss solution methods
shortly.

7 Relation between T (z) and Ω±

Recall that the interacting and non-interacting solutions of the Schrödinger
equation are related in the scattering asymptotic condition by

|ψ±(t)〉 = Ω±|ψ0(t)〉.

For t = 0 this becomes

|ψ±〉 = Ω±|~p〉d3p〈~p|ψ0〉 =
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[I + i

∫ ±∞

0

eiHtV e−iH0tdt]|~p〉d3p〈~p|ψ0〉 =

[|~p〉+ i

∫ ±∞

0

ei(H−p2/2m)tV dt]|~p〉]d3p〈~p|ψ0〉

As before, the momentum integral must be done before the time integral;
however if the momentum integral is done first nothing changes if I write
this as

[|~p〉+ i lim
λ→0+

∫ ±∞

0

ei(H−p2/2m)t∓λtV dt]|~p〉]d3p〈~p|ψ0〉 (148)

With the λ in the equation I can change the order of integration and obtain:

[|~p〉+ i lim
λ→0+

−1

i(H − p2/2m± iλ)
V |~p〉]d3p〈~p|ψ0〉 =

[|~p〉+ 1

p2/2m∓ i0+ −HV |~p〉]d3p〈~p|ψ0〉 =

[|~p〉+R(p2/2m∓ i0+)V |~p〉]d3p〈~p|ψ0〉 (149)

To relate this to the transition operator I use the second resolvent identity
again to get

R(p2/2m∓ i0+)V =

[R0(p
2/2m∓ i0+) +R0(p

2/2m∓ i0+)V R(p2/2m∓ i0+)]V =

R0(p
2/2m∓ i0+)[V + V R(p2/2m∓ i0+)V ] =

R0(p
2/2m∓ i0+)T (p2/2m∓ i0+). (150)

Using (150) in (149) gives

|ψ±〉 = Ω±|~p〉d3p〈~p|ψ0〉 =

[|~p〉+R0(p
2/2m∓ i0+)T (p2/2m∓ i0+)|~p〉]d3p〈~p|ψ0〉 (151)

I write this is the following abbreviated notation

|~p±〉 = Ω±|~p〉 = [I +R0(p
2/2m∓ i0+)T (p2/2m∓ i0+)]|~p〉. (152)

This is the desired equation relating T (z) and Ω± The relations are compli-
cated because the z appearing in T (z) is an integration variable in the above
expression. It is also worth noting that the signs appearing in the ∓i0+ are
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opposite to the signs appearing in the related wave operator. Note that only
one sign appears in the expression for the scattering operator. It is the +i0+

sign; this is because it involves Ω− and Ω†
+ where the adjoint is responsible

for the sign change in the second term.
The quantity |~p±〉 is an eigenstate of the interacting Hamiltonian with

energy ~p · ~p/2m and momentum ~p. When it is integrated against a function
〈~p|ψ0〉 of the momentum it becomes the scattering state |ψ±〉 that satisfies
the asymptotic condition with respect to the non-interacting wave packet at
time t = 0:

∫

|~p〉d3p〈~p|ψ0〉

The generalized vector |~p±〉 is called the scattering wave function. It
satisfies the a Lippmann Schwinger equation which can be derived using the
Lippmann Schwinger equation for the transition operator:

|~p±〉 = [I +R0(p
2/2m∓ i0+)[V + V R0(p

2/2m∓ i0+)T (p2/2m∓ i0+)]]|~p〉 =

[I +R0(p
2/2m∓ i0+)V [I +R0(p

2/2m∓ i0+)T (p2/2m∓ i0+)]|~p〉 =

|~p〉+R0(p
2/2m∓ i0+)V |~p±〉

The resulting equation

|~p±〉 = |~p〉+R0(p
2/2m∓ i0+)V |~p±〉 (153)

is the Lippmann-Schwinger equation for the wave function.
Normally this equation is derived from the Schrödinger equation. That

derivation is not very satisfying because the underlying asymptotic condition
emerges as something that comes out of the equation rather than as physical
input. As in the case with the transition operator, matrix elements give
integral equations:

〈~p ′|~p±〉 = δ(~p− ~p ′) +

∫

d3p′′
1

p2/2m∓ i0+ − (p′)2/2m
〈~p ′|V |~p ′′〉〈~p ′′|~p±〉

(154)

〈~r|~p±〉 = (2π)−3/2 +

∫

d3r′d3r′′〈~r|R0(p
2/2m∓ i0+)|~r ′〉〈~r ′|V |~r ′′〉〈~r ′′|~p±〉

(155)
In many cases of interest the interaction is modeled by a local potential,

〈~r ′|V |~r 〉 = V (r)δ3(~r ′ − ~r). (156)

For a local potential one of the integrals in the radial integral equation dis-
appears when it is integrated against the delta function.
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8 K matrix

The non-interacting resolvent operator R0(
p2

2m∓i0+ ) has simple momentum
space matrix elements:

〈~p ′|R0(
p2

2m∓ i0+
)|~p ′′〉 = δ(~p ′ − ~p ′′)

2m

p2 − p′2 ∓ 2mi0+
.

Since 0+ represents a small positive terms that eventually goes to zero, I
replace 2mi0+ by i0+. (in general this must be done with care in the cases

where the small terms conspire to give something singular that leads to a

delta function).
When this is integrated against a nice function of p it can be expressed

in the form
∫

f(~p ′)
2m

p2 − p′2 ∓ i0+
p′2dp′dΩ(p̂ ′).

I define
∫

f(~p)dΩ(p̂) = f̃(p)

so the remaining integral becomes

∫ ∞

0

f̃(p′)
2m

p2 − p′2 ∓ i0+
p′2dp′.

To treat the singularity in a manner that allows me to take the limit that
the small quantity 0+ → 0 I write this as

∫ ∞

0

2m(p′2f̃(p′)− p2f̃(p))

p2 − p′2 ∓ i0+
dp′ + 2mp2f̃(p)

∫ ∞

0

1

p2 − p′2 ∓ i0+
dp′.

In the first term the integrand in not singular as p → p′ as long as f̂(p) is
differentiable at p. This term is continuous as 0+ → 0. As a practical matter
the first term contains 0/0 so some care is needed to compute it. The second
term can be computed using the residue theorem

2mp2f̃(p)

∫ ∞

0

1

p2 − p′2 ∓ i0+
dp′ =

mp2f̃(p)

∫ ∞

−∞

1

p2 − p′2 ∓ i0+
dp′ =
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−mp2f̃(p)

∫ ∞

−∞

1

(p′ − p± i0+)(p′ + p∓ i0+)
dp =

∓2πi(−m
2
p)f̃(p) = ±iπmpf̃ (p)

It is customary to write this as

1

p2 − p′2 ∓ i0+
=

P
1

p2 − p′2 ∓ i0+
± iδ(p2 − p′2)

where the P stands for the principal value. It is defined as follows

P

∫ b

a

f(x)

x− ydx = lim
ε→0

[

∫ y−ε

a

+

∫ b

y+ε

]
f(x)

x− y

To see that the first integral is equivalent to the principal value note that

P

∫ ∞

0

1

x2 − y2
dx = lim

ε→0
[

∫ y−ε

0

+

∫ ∞

y+ε

]
1

x2 − y2

To evaluate this let x = uy in the first integral and let x = y/v in the second
integral. With these substitutions

lim
ε→0

[

∫ y−ε

0

+

∫ ∞

y+ε

]
1

x2 − y2

1

y
lim
ε→0

∫ 1−ε/y

0

du

u2 − 1

1

y
lim
ε→0

∫ 0

1−ε/y+···

dv

12 − v2
]

1

y
lim
ε→0

∫ 1−ε/y

1−ε/y+···

du

u2 − 1
]

Expanding this out shows that it vanishes linearly in ε as ε→ 0.
This shows that subtracted term has 0 principal value. This means that

the first term is equal to the principal value of the original integral.
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There are a few things to observe. The delta function term changes sign
depending on the sign of i0+. This means that the transition operator T (z)
is discontinuous

lim
y→0

T (x+ iy) 6= lim
y→0

T (x− iy)

This discontinuity is an important element of scattering theory. The second
thing to note is that because of this discontinuity the integral equation for
the T matrix elements is a complex equation, even for real potentials.

It is easier to solve real integral or differential equations. To transform
the Lippmann-Schwinger equation to a real equation note that the above
implies

R0(E ± i0+) = PR0(E)∓ iπδ(E −H0)

which separates the real and imaginary parts of the non-interacting resolvent
operator. Using this in the Lippmann-Schwinger equation gives

T (E ± i0+) = V + V [PR0(E)∓ iπδ(E −H0)]T (E ± i0+)

It is an easy exercise to show that this is equivalent to the following pair of
equations

K(E) = V + V PR0(E)K(E)

T (E ± i0+) = K(E)∓ iπK(E)δ(E −H0)T (E ± i0+)

The operator K(E) is called the K operator and its matrix elements are K-
matrix elements. The equation for the K matrix has the advantage that the
integral equation is real. The equation to construct T from K is complex,
but the dimensionality of the integral is reduced by the delta function.

It is useful to relate the K operator directly to the S operator. Formally

S = I − 2πiδ(E − E ′)T (E + i0+)

T (E + i0+) =
1

1 + iπK(E)δ(E −H0)
K(E)

S = I − 2πi
1

1 + iπK(E)δ(E −H0)
K(E)δ(E − E ′) =

I − 2πi
1

1 + iπK(E)δ(E −H0)
K(E)δ(E −H)) =

1 + iπK(E)δ(E −H0)− 2πiK(E)δ(E −H0)

1 + iπK(E)δ(E −H0)
=
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1− iπK(E)δ(E −H0)

1 + iπK(E)δ(E −H0)

or

S =
1− iπK(E)δ(E −H0)

1 + iπK(E)δ(E −H0)
(157)

which shows that the scattering operator is a Cayley transform ofK(E)δ(E−
H0). This means that the scattering operator can be obtained directly from
the K matrix. In addition K is approximated, but is Hermitian, then the
corresponding approximate S matrix is unitary.

I comment that the K matrix defined in the text is defined with a − sign.
Both signs appear in the literature so it is important to check conventions.

Note that (157) shows that the Hermiticity of K implies the unitarity of
S. We can derive a similar unitarity condition for the transition operator.
We start by writing

〈pf |I|pi〉 = 〈pf |S†S|pi〉 =
∫

〈pf |S†|p〈d3p〉p|S|pi〉 =

〈pf |(I+2πiδ(Ef−Ep)[T (E+i0+)]†)|p〉d3p〈p|(I−2πiT (E+i0+)δ(Ep−Ei))|pi〉 =

〈pf |I|pi〉+
2πiδ(Ef − Ei)〈pf |(T (E − i0+)− T (E + i0+))|pi〉+ y

4π2δ(Ef − Ei)T (E − i0+)δ(Ei −H0)T (E + i0+)

Unitarity requires that the last line vanishes when E = Ei = Ef . If we factor
out the delta function we are left with

〈pf |(T (E − i0+)− T (E + i0+))|pi〉 = 2πi〈pf |T (E − i0+)δ(E −H0)T (E + i0+)|pi〉
(158)

This is called the generalized optical theorem. It can also be derived directly
from the definition of T using the second resolvent equations. In this deriva-
tion it is important to be careful about the i0+ factors. The generalized
optical theorem expresses the unitarity of the scattering operator in terms of
the transition operator.

For completeness I give the derivation below

T (E−i0+)−T (E+i0+) = T (E−i0+)R0(E−i0+)V −V R0(E−i0+)T (E+i0+)
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Next use the Lippmann Schwinger equation to write

V = T (E + i0+)− V R0(E + i0+)T (E + i0+)

and
V = T (E − i0+)− T (E − i0+)R0(E − i0+)V

and substitute in the above to get

T (E− i0+)−T (E+ i0+) = T (E− i0+)[R0(E− i0+)−R0(E+ i0+)]T (E+ i0+)

Finally we use

[R0(E − i0+)−R0(E + i0+)] =
−2iε

(E −H0)2 + ε2
→= 2πiδ(E −H0)

as ε→ 0 to get

T (E − i0+)− T (E + i0+) = 2πiT (E − i0+)δ(E −H0)T (E + i0+) (159)

This is a stronger version of our previous result because I have not used the
on-shell assumption in the above derivation.

9 Cross Sections

In this section I define the scattering cross section. This is the quantity that
is measured in laboratory scattering experiments. I begin by assuming that
a scattering experiment is repeated many times. The number of scattered
particles, Nsc is directly proportional to the number ninc of particles incident
per unit area in a direction perpendicular to the initial momentum. The
constant of proportionality has units of area and is called the cross section σ

Nsc = nincσ (160)

I can select the number of particles that are scattered in a cone of solid angle
∆Ω as

Nsc(∆Ω) = nincσ(∆Ω) (161)

I write this as an integral of a differential cross section over the solid angle

Nsc(∆Ω) = ninc

∫

∆Ω

dσ

dΩ
dΩ (162)
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where I have assumed a uniform density ninc over the size of the target.
For a given initial wave packet the probability of scattering into a cone

solid angle dΩ is
P (dΩ← ψ0−) =

dΩ

∫ ∞

0

p2dp|
∫

d3p′〈~p|S|~p ′〉〈~p ′|ψ0−〉|2 (163)

By integrating over p I am only concerned with the particles that eventually
hit the detector. I assume that every particle in the cone triggers the detector,
independent of momentum.

The total number of particles scattering into a given cone will be the sum
over the number of incident particles times the probability of scattering into
a given cone with solid angle dΩ:

Nsc(dΩ) =
∑

i

P (dΩ← ψi0−) (164)

In a real experiment the wave packets |ψi0−〉 will all be different. Typically
they will all have an average momentum approximately equal to the beam
momentum,

I treat this in two steps. I begin by assuming that the wave packets only
differ by impact parameter ~b, where~b is a two dimensional vector in the plane
perpendicular to the incident beam, which I call the 3-direction. An initial
state shifted by an amount ~b relative to a reference state 〈~p ′|ψ0−〉 is

〈~p ′|ψ~b0−〉 = ei
~b·~p ′〈~p ′|ψ0−〉. (165)

Next I assume that the impact parameters are uniformly distributed over the
cross sectional area subtended by the target with density ninc. The sum over
states can be replaced by a density ninc times an integral over impact area:

Nsc(dΩ) =

∫

d2bnincP (dΩ← ψ~b0−) (166)

The integral over impact area can be extended over the entire plane because
the probability of a scattering event is essentially zero for an event with a
sufficiently large impact parameter. The incident density ninc can be factored
out of the integral if it is uniform:

Nsc(dΩ) = nincdΩ

∫

d2bP (dΩ← ψ~b0−). (167)
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This gives the following expression for the cross section

σ(dΩ← ·) = dΩ

∫

d2bP (dΩ← ψ~b0−). (168)

Next I use the expression for the scattering operator. I assume that the
differential cone of interest does not include the beam direction, so S can be
replaced the transition operator term:

σ(dΩ← ·) =

∫

d2bP (dΩ← ψ~b0−)

σ(dΩ← ·) = dΩ

∫

d2bdΩ

∫ ∞

0

p2dp|
∫

d3p′〈~p|S|~p ′〉ei~b·~p ′〈~p ′|ψ0−〉|2 =

dΩ

∫

d2b

∫ ∞

0

p2dp|
∫

d3p′|(−2πiδ(E − E ′)〈~p|T (E + i0+)|~p ′〉ei~b·~p ′〈~p ′|ψ0−〉|2.
(169)

Expanding everything out gives:

dΩ

∫

d2b

∫ ∞

0

p2dp

∫

d3p′d3p′′

4π2δ(Ep′′ − E)δ(Ep′ − E)〈~p|T (E + i0+)|~p ′〉〈~p ′′|T (E − i0+)|~p〉×

ei
~b·(~p ′−~p ′′′)〈~p ′|ψ0−〉〈~p ′′|ψ0−〉 (170)

The integral over the impact parameters can be done with the result that

∫

d2be−i
~b·(~p ′−~p ′′) = 4π2δ(~p⊥

′ − ~p⊥ ′′)

The product of the energy delta functions

δ(Ep′′ − E)δ(Ep′ − E) = δ(Ep′′ − Ep′)δ(Ep′ − E) =

2mδ((p′′)2 − (p′)2)δ(Ep′ − E) (171)

When this is coupled with the constraint from the delta function that comes
from the integration over impact parameter, it becomes

2mδ((p′′3)
2 − (p′3)

2)δ(Ep′ − E) (172)

40



If the wave packet are sharply peaked about the beam momentum so only
one root survives. I get

m

p3
δ(p′′3 − p′3)δ(Ep′ − E) (173)

Combining this with the other delta function gives

m

p3

δ(~p′′ − ~p′)δ(Ep′ − E) (174)

Using these identities in the original expression for the cross section gives

dΩ

∫

p2dp

∫

d3p′

16π4δ(Ep′ − E)
m

p′3
|〈~p|T (E + i0+)|~p ′〉|2|〈~p ′|ψ0−〉|2 (175)

I can also evaluate
∫

p2dpδ(Ep′ − E) = 2m

∫

p2dpδ(p′2 − p2) = mp′ (176)

The last step is to assume that the transition matrix elements are approxi-

mately constant on the region where the momentum wave packets are non-
vanishing. This can always be achieved with sufficiently sharply peaked wave
packets. When this holds I can factor the T -matrix elements out of the inte-
gral and replace the initial momentum ~p by the average value.

dΩ

∫

16π4m′p′
m

p′3
|〈~p|T (E + i0+)|~p ′〉|2|〈~p ′|ψ0−〉|2d3p′ ≈

dΩ16π4m

p̄′3
|〈~p|T (E + i0+)|~p ′〉|2mp̄

∫

|〈~p ′|ψ0−〉|2d3p′ (177)

Using the normalization integral for the wave function gives

dΩ16π4m

p̄3

|〈~p|T (E + i0+)|~p ′〉|2m′p̄ (178)

or

dσ =
(2π)4

vinc
|〈~p|T (E + i0+)|~̄p ′〉|2p2 dp

dE
dΩ (179)
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where vinc := p̄3/m is the mean incident speed. This is the standard expres-
sion for the differential cross section in terms of the transition operator.

The key observation is that as long as the wave packet is sharply peaked,
this result is independent of the shape of the wave packet. This is impor-
tant because is would be very difficult to repeat experiments that were very
sensitive to the structure of the initial wave packets. I also note that this
derivation assumes that the beam and target densities are sufficiently low
that a given beam particle has a very small probability of scattering from
more than one target particle.

The differential cross section is a useful quantity because its ratio in two
different cones is equal to the ratio of the number of particles detected in
each cone for a large enough set of scattering experiments.

Unlike standard textbook derivations that rely heavily on a wave inter-
pretation of quantum mechanics, this derivation emphasizes the particle in-
terpretation of quantum mechanics.

I also note that the assumption that the beam is in the 3-direction and
the energy conservation enforced by the delta functions means

1 =
p̄

p̄3
. (180)

This allows me to write the cross section as

dσ

dΩ
= |(2π)2m〈~p|T (E + i0+)|~̄p ′〉|2 = |f |2 (181)

where the scattering amplitude f is defined by

f := −4π2m〈~p|T (E + i0+)|~̄p ′〉 (182)

The − arises when this quantity is derived by looking at asymptotic proper-
ties of scattering wave functions.

10 Two-Body Scattering

So far I have only considered scattering of an incoming projectile from a fixed
source, which was represented by a potential. This is an idealized setting.
Normally a projectile of mass m1 scatters off of a target particle of mass m2.
In this case the projectile scatters and the target recoils.
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Two-particle scattering normally means two isolated particles. For iso-
lated the dynamics is Galilean invariant. This means that result of any
experiment is invariant with respect to rotations. translations, time transla-
tions and Galilean boosts (changes in the overall velocity of the system).

Using these principles I discuss the general form of the Hamiltonian. I
start with two free particles. The kinetic energy is

H0 =
~p1 · ~p1

2m1
+
~p2 · ~p2

2m2
. (183)

The total momentum is defined by

~P = ~p1 + ~p2 (184)

The momentum of particle 1 in the center of momentum frame is obtained
by applying a the Galilean boost that takes ~P to zero, to the momentum of
particle 1:

~k1 = ~p1 −m1~v = ~p1 −
m1

m1 +m2
(~p1 + ~p2) =

m2~p1 −m1~p2

m1 +m2.

Note that this operator is defined in any frame, but its eigenvalue represents
the value of the momentum of particle 1 if it was boosted to the zero mo-
mentum frame. The operator ~k1 is constructed to be invariant with respect
to Galilean boosts.

These relations can be inverted to obtain

~p1 = ~k1 +
m1

m1 +m2

~P (185)

~p2 = −~k1 +
m2

m1 +m2

~P . (186)

Using these equations in the expression for the kinetic energy gives

H0 =
~k1 · ~k1

2m1

+
m1

2(m1 +m2)2
~P · ~P +

~k1 · ~k1

2m2

+
m2

2(m1 +m2)2
~P · ~P =

H0 =
1

2
(

1

m1
+

1

m2
)~k1 · ~k1 +

1

2(m1 +m2)
~P · ~P . (187)
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I define the total mass m and the reduced mass µ by

m = m1 +m2

1

µ
=

1

m1
+

1

m2
µ =

m1m2

m
. (188)

The kinetic energy can be expressed as

H0 =
~k1 · ~k1

2µ
+
~P · ~P
2m

. (189)

At this stage it does not look like anything has been accomplished. The new
free Hamiltonian has the same form as the initial Hamiltonian.

This transformed form becomes interesting because of the symmetries of
the potential. If I write

V (~k1 , ~P ; ~k1
′, ~P ′, t) := 〈~k1 , ~p |V (t)|~k1

′, ~P ′〉 (190)

Galilean invariance of the interaction requires

V (~k1 , ~P ; ~k1
′, ~P ′, t) (191)

ei(
~P−~P ′)·~cV (R~k1 , R ~P +m~v ;R~k1

′, R ~P ′ +m~v, t+ t0)

for any ~c, ~v, t0 or rotation R. Independence on ~c means that the potential
matrix elements vanishes unless ~P− ~P ′ = 0. Independence on ~v (for ~P = ~P ′)

means that the matrix element is independent of ~P . Independence on t0
means that the potential matrix element is independent of t. What remains
is a rotationally invariant function of ~k1 and ~k1

′ or

V (~k1 , ~P ;~k1
′, ~P ′, t) := 〈~k1 , ~P |V (t)|~k1

′, ~P ′〉 =

δ(~P − ~P ′)v(~k1 · ~k1, ~k
′
1 · ~k′1, ·~k1 · ~k1

′). (192)

It is clear that Galilean invariance puts strong constraints on the interactions.
The Hamiltonian takes on the form

H =
~P · ~P
2m

+ h

h =
~k1 · ~k1

2µ
+ v
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The Galilean invariant Hamiltonian h looks just the Hamiltonian for a single
particle scattering off of a fixed source, except the mass is replaced by the
reduced mass. The total kinetic energy separates from the problem. The
eigenvalue of h represents the total energy of the system in the zero momen-
tum frame of the system.

To treat two particle scattering the first step is to realize that the starting
point for treating scattering is the formulation of the asymptotic condition.
The only change is that the initial wave packet depends on both ~p1 and ~p2

or ~P and ~k.
The Møller wave operators become

Ω±(H,H0) = s− lim
t→±∞

eiHte−iH0t = s− lim
t→±∞

ei
~P ·~Pt
2m

+ihte−i
~P ·~Pt
2m

−ih0t =

s− lim
t→±∞

eihte−ih0t = IP ⊗ Ω±(h, h0) (193)

where IP is the identity on the space of square integrable functions of ~P .

This holds because
~P ·~P
2m

commutes with both h and h0. Matrix elements of
the wave operators have the form

〈~P ′, ~k1
′|Ω±(H,H0)|~P ,~k1〉 = δ3(~P − ~P ′)〈~k1

′|Ω±(h, h0)|~k1〉.

This can also be expressed in terms of single particle variables, but the ex-
pression is more complicated.

Similarly, the scattering matrix elements are

〈~P ′, ~k1
′|S(H,H0)|~P ,~k1〉 = δ3(~P − ~P ′)〈~k1

′|S(h, h0)|~k1〉 (194)

The relation between the scattering operator and the transition operator
becomes

〈~P ′, ~k1
′|S(H,H0)|~P ,~k1〉 =

δ3(~P − ~P ′)[δ3(~k1 − ~k1
′)− 2πi〈~k1

′|[v + v
1

~k1·~k1
2µ
− h0 − +i0+

v]|~k1〉]. (195)

Similar remarks apply to the K matrix. In general replace the one-body
expression by the corresponding center of momentum expression, multiplied
by a three dimensional momentum conserving delta function.

This is also true when I construct the scattering cross section. The new
features are
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a. The initial wave packet 〈~p|ψ0−〉 is replaced by 〈~P ,~k, |ψ0−〉

b. There are three-dimensional delta functions multiplying in the total
momentum connecting the initial and final momenta in each appear-
ance of S. There are also accompanying integrations over the initial
momenta.

c. The cone is associated with final momenta in a volume d3P, d3k. If we
are only measuring the center of momentum angles of particle 1, then
is it necessary to integrate over k2dkd3P .

These modifications lead to the following expression for the differential
cross section:

dσ

dΩ
= |(2π)2m〈~k1|T (

~k1
′ · ~k1

′

2µ
+ i0+)|~k1

′〉|2

Since the total cross section is a ratio of numbers, it is obviously invariant.
When I consider the differential cross section some additional care is needed.

A more useful form of the expression for the cross section is

dσ =
(2π)4

k′1/µ
|〈~k1|T (

~k1
′ · ~k1

′

2µ
+ i0+)|~k1

′〉|2d3k1d
3Pδ3(P − P ′)δ(E −E ′) (196)

The previous expression is recovered by integrating over all of the unmeasured
variables, k2dkd3P .

This expression is more general than the previous one because I can choose
to measure an observable other than dΩ(k). For example I could replace
d3k1d

3P = d3p1d
3p1. If I wanted to measure the angular distribution of

particle 1 in the lab frame it is enough to integrate over the 3-momentum of
particle two and the magnitude of the momentum of particle 1.

Here vinc is always
~k·ẑ
µ

where ẑ is a unit vector in the beam direction.
The text and the article by Brenig and Haag give a direct derivation of the

two-body cross section that does not utilize the equivalent one-body center
of momentum solution. The results are identical to the above.

11 Spin

A structureless point particle is characterized by its mass, spin, linear mo-
mentum, and magnetic quantum number. Spin plays an important role in
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scattering experiments. It is an additional degree of freedom that can be
measured and is relevant for understanding the spin dependence of the in-
teractions.

I assume that you have studied spin in quantum mechanics. The spin is
a triple of hermitian operators ~j that satisfy the commutation relations

[ji, jj] = iεijkj
k.

In addition, for particles with spin, the spin vector commutes with all com-
ponents of the linear momentum

[pi, jk] = 0.

Since the different components of the spin do not commute, only one com-
ponent can be taken as a commuting observable. If is customary to include
the 3-component of the spin as a commuting observable that describes the
state of a particle.

A single particle wave functions is

〈(m, j)~p, µ〉|ψ〉 (197)

where m and j are fixed invariant quantum numbers, and µ runs from −j to
j in integer steps.

When the state of the target of beam is prepared it can be in an eigenstate
of j3 or in a superposition of eigenstates.

The simplest theoretical situation is when all of initial and final states
are prepared or measured to be in specific spin states. I use the notation

|~p1, µ1, ~p2, µ2〉 =

|~P ,~k1, µ1, µ2〉 (198)

to denote the initial and final plane wave states.
With these variables the transition matrix elements for Galilean invariant

interaction have the form

〈~P ,~k1, µ1, µ2|T (E+)|~P ′, ~k1
′, µ′

1, µ
′
2〉 = δ3(~P−~P ′)〈~k1, µ1, µ2|t(E+)|, ~k1

′, µ′
1, µ

′
2〉

(199)

where 〈~k1, µ1, µ2|t(E+)|, ~k1
′, µ′

1, µ
′
2〉 is the solution to the Lippmann-Schwinger

equation

〈~k, µ1, µ2|t(E+)|, ~k ′, µ′
1, µ

′
2〉 = 〈~k, µ1, µ2|v|, ~k ′, µ′

1, µ
′
2〉+

∫

d3k′′
∑

µ′′1 ,µ
′′
2
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〈~k, µ1, µ2|v|, ~k ′′, µ′′
1, µ

′′
2〉

k′2

2µ
− k′′2

2µ
+ i0+

〈~k ′′, µ′′
1, µ

′′
2|t(E+)|, ~k ′, µ′

1, µ
′
2〉. (200)

This differs form the previous version of the Lippmann-Schwinger equation by
the spin sums. The operator form is identical to the previous case. Note that
while there are two magnetic quantum numbers, only the relative momentum
is needed in the dynamical equation.

Building on the derivation in the previous section the differential cross
sections becomes

dσ =

(2π)4

k′1/µ
|〈~k1, µ1, µ2|T (

~k1
′ · ~k1

′

2µ
+ i0+)|~k1

′, µ′
1, µ

′
2〉|2d3k1d

3Pδ3(P − P ′)δ(E −E ′)

(201)
The opposite extreme is to make the experiment as simple as possible.

This corresponds to the situation where the beam and target are unpolarized
and the final spins are not measured.

By unpolarized we mean that any measurement of the z component of
spin will have identical probabilities for measuring each eigenvalue. For the
beam there are 2j1+1 possible eigenvalues and for the target there are 2j2+1
possible eigenstates.

It follows that the incoming scattering asymptote have Ni = (2j1 +
1)(2j2 + 1) possible polarization states. Each one appears in the initial state
with probability 1/Ni. For spin 1/2 there are four, with two spin states for
the beam and two spins states for the target.

In the cross section I treat this by considering an ensemble of initial states
where the continuous wave function is localized and each system is in one of
the Ni possible states of initial polarization. I assume that each polarization
occurs in the initial state with probability 1/N .

In this case the differential cross section is computed by averaging over
the initial polarizations

dσ =
1

Ni

∑

µ′1,µ
′
2

(2π)4

k′1/µ
|〈~k1, µ1, µ2|T (

~k1
′ · ~k1

′

2µ
+ i0+)|~k1

′, µ′
1, µ

′
2〉|2×

d3k1d
3Pδ3(P − P ′)δ(E − E ′) (202)

If I do not measure the polarization of the scattered particle or the re-
coiling target, then it is appropriate to sum over all Nf = Ni polarizations.
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It follows that

dσunpolarized =
1

Ni

∑

µ′1,µ
′
2

∑

µ1 ,µ2

(2π)4

k′1/µ
|〈~k1, µ1, µ2|T (

~k1
′ · ~k1

′

2µ
+ i0+)|~k1

′, µ′
1, µ

′
2〉|2×

d3k1d
3Pδ3(P − P ′)δ(E − E ′) (203)

Thus the prescription for unpolarized scattering is to average over initial
polarizations and sum over final polarizations.

In most experiments what is measured falls between these two extremes.
The most natural way to treat the general setting is to use a density matrix
formulation. I begin by considering the description partially polarized beam.
Even if one tries to make a perfectly polarized beam the result is normally
partially polarized. This can be due to collisions in the beam or thermal
effect.

I begin by assuming that the beam contains states with N different polar-
izations, {λi}Ni=1. The different states do not have to be orthogonal, one could
correspond to spin up in the z direction and another could be spin down in
the y direction. I assume that polarization λi occurs with probability pi in
the beam so it follows that

N
∑

i=1

pi = 1 (204)

The density matrix for this beam is the operator

ρ :=

N
∑

i=1

|λi〉pi〈λi| (205)

where the states λi are normalized to unity. General properties of the density
matrix follow from this definition. The important properties are

ρ = ρ† (206)

ρ ≥ 0 (207)

Trρ = 1 (208)

Trρ2 ≤ 1. (209)

The first of these results is obvious. The second follows because

〈ψ|ρ|ψ〉 =

N
∑

i=1

|〈ψ|λi〉|2pi ≥ 0.

49



The third follows because

Tr(ρ) =

N
∑

i=1

pi = 1.

The last condition is most easily proved by multiplying both sides of ρ by an
expansion of the identity in terms of orthonormal states, and then evaluating
the trace. Since ρ is a positive hermitian matrix it has a complete set of
non-negative eigenvalues p̄j and orthonormal eigenvectors |λ̄j〉. It can be
expressed as

ρ :=
M

∑

i=1

|λ̄i〉p̄i〈λ̄i|

where M does not have to equal N and the states 〈λ̄i| are orthonormal.
Since the trace is invariant it follows that

Trρ =

N
∑

i=1

pi =

M
∑

i=1

p̄i = 1

In the new representation I can compute

Trρ2 =
M

∑

i=1

p̄2
i (210)

Since each of the p̄i are between 0 and 1 I always have

p̄2
i ≤ p̄i (211)

and these are only equal when p̄i is zero or one. It follows that

Trρ2 ≤ Trρ = 1. (212)

These are equal only if one of the λ̄i is one and the others are zero. In this
case ρ has the form

ρ = |λ1〉〈λ1| (213)

where the ensemble has only one state.
It is customary to call an ensemble described by a density matrix a

“state”. When Tr(ρ2) = 1 the state is called a pure state.
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The experimental determination that beam is in a given state requires
some measurements. The expectation value of an observable described by a
Hermitian operator A is

〈A〉 = Tr(Aρ) =

N
∑

i=1

pi〈λi|A|λi〉 (214)

which is the weighted average of the expectation value of A in the states |λi〉.
By making enough independent measurements on the beam it is possible to
uniquely determine the state.

I first use abstract considerations. Abstractly ρ is an N × N Hermitian
matrix. It is a simple matter to construct N 2 independent Hermitian ma-
trices, Qi with the first one being the identity. The trace defines a scalar
product on these matrices

(Oi, Oj) := Tr(OiOj). (215)

Note that independence requires (Oi, Oi) > 0. This is because the trace is the
sum of the eigenvalues, and this is a matrix with non-negative eigenvalues.
If the trace were zero all eigenvalues would be zero and the operator would
be zero.

Starting with O1 = I/
√
N I can use the Gram-Schmidt method to con-

struct linear combinations of these matrices, Ōi with real coefficients that
satisfy

(Ōi, Ōj) := Tr(ŌiŌj) = δij. (216)

Note that because Ō1 = O1 = I/
√
N all of the Ōi with i > 1 are traceless.

The operators Ōi are independent spin observables that need to be mea-
sured to determine the density matrix. Note that in general, ρ is Hermitian

ρ =
N2
∑

i=1

ρiŌi (217)

The expectation values of each of the observables Ōj is

〈Ōj〉 = Tr(ρŌj) =

N2
∑

i=1

ρiTr(ŌiŌj) = ρj (218)
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This leads to the representation

ρ =
N2
∑

i=1

〈Ōj〉Ōi (219)

Note that

〈Ō1〉 =
1√
N

Trρ =
1√
N

which gives the alternate expression

1

N
[I +

N2
∑

i=2

√
N

Trρ
〈Oi〉Oi]

To illustrate this consider the example of a spin 1/2 particle. The par-
ticle has two spin states. The density matrix is a 2 × 2 Hermitian matrix.
Orthonormal Hermitian matrices with respect to the trace norm can taken
to be the 2× 2 identity and the three Pauli spin matrices:

σ1 =

(

0 1
1 0

)

σ2 =

(

0 −i
i 0

)

σ3 =

(

1 0
0 −1

)

(220)

The density matrix for a spin 1
2

beam has the form

ρ =
1

2
(I + ~π · ~σ) (221)

The quantity ~π is called the polarization vector of the beam. Note

πi = Tr(ρσi) = 2Tr(ρji) (222)

Thus we can determine the polarization of the beam measuring the expecta-
tion value of each component of the spin in the beam.

Note that if all of the spin expectation values vanish then ρ is propor-
tional to the identity. This corresponds to an unpolarized beam. Clearly
the identity is the only one four matrices that is invariant with respect to
rotations. This implies that if the beam is unpolarized, this condition is
rotationally invariant, as it should be.

In order to treat scattering involving polarization I assume an initial
density matrix ρi describing an ensemble of beam and target polarizations.
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The differential cross section for a beam described by density matrix ρ beam
is

dσ =
(2π)4

k′1/µ
〈~k1, µ1, µ2|T (

~k1
′ · ~k1

′

2µ
+ i0+)|~k1

′, µ′
1, µ

′
2〉ρµ′1µ′2;µ′′1µ

′′
1
×

〈~k′1, µ′′
1, µ

′′
2|T (

~k1
′ · ~k1

′

2µ
− i0+)|~k1 , µ1, µ2〉×

d3k1d
3Pδ3(P − P ′)δ(E − E ′) (223)

It is customary to put this in the form spin scattering amplitude F which
is defined by

F = −4π2µ〈k1, µ1, µ2|T (
k2

1

2µ
+ i0+)|k′1, µ′

1, µ
′
2〉

This gives
dσ

dΩ
= FρiF

† (224)

If the polarizations of the final states are not measured then I sum over
all of the final polarizations. This is equivalent to

dσ

dΩ
= Tr(FρiF

†) (225)

where the trace is over spin quantum numbers.
To calculate the expectation value of a spin observable Ōj in the final

state it is enough to compute

〈Ōj〉 =
Tr(ŌiFρiF

†)

Tr(FρiF †)
(226)

The general picture is that I start with an initial density matrix ρi that
describes the state of the beam and target. Using this density matrix I
compute a density matrix for the outgoing scattering asymptotes

ρf :=
FρiF

†

Tr(FρiF †)
(227)

Given this matrix it is possible to compute any final sate spin observable.
A case of importance is the scattering of two spin 1/2 particles. In this

case the matrices
On = σ(1)

µ1
⊗ σ(2)

µ2
(228)
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where µi ∈ {0, 1, 2, 3} with σ0 = I, satisfy the orthogonality relations

Tr(OnOm) = δmn (229)

The trace can be computed in any basis

Tr(OnOm) =
∑

αβ

〈α⊗ β|OnOm|α⊗ β〉 =

∑

αβ

〈α|σµ1σν1 |α〉〈β|σµ2σν2 |β〉. (230)

This calculation leads to the desired result. It follows that the polarization
state of the target and beam is determined by measuring the x, y, and z
components of the spin for the beam and target.

The most general observable for two nucleon scattering is

〈Ōn〉 =
Tr(ŌnFρiF

†)

Tr(F †ρiF )
(231)

At first glance there are 4× 4 parameters that define the polarization of
the initial state and 4× 4 that determine the polarization of the final state.
A complete measurement requires determining 256 parameters at each beam
energy and scattering angle.

Things are not this bad because F has symmetries. For example if F were
proportional to the identity in spin space 16 measurements in the initial state
completely characterize the final state.

To illustrate this I discuss the Wolfenstein parameterization of the scat-
tering amplitude in nucleon-nucleon scattering. This is used in many cal-
culations and provides a constructive illustration of the simplifications in F
that follow from dynamical assumptions.

In nuclear physics Heisenberg introduced the concept of isospin. The
basic assumption is that the proton and neutron behave like a spin up and
spin down state of a single spin one half particle called the nucleon. This
spin is not a real spin - it just mathematically looks like a spin and is called
isospin. If the neutron and proton were really different internal states of
the same particle,the would have the same mass. The neutron and proton
masses are very close and the difference is attributed to the fact the proton
has charge and interacts with its own electromagnetic field. Rotations is
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isospin space correspond to a relabeling of the states identifies as protons or
neutrons.

Heisenberg assumed that isospin is an exact symmetry of the strong in-
teraction. The neutron has isospin τz = −1/2 and the proton has isospin
τz = −1/2.

A two nucleon system can be described by its total isospin, which is
obtained by adding the single nucleon isospins in the same way that one
adds angular momenta. When two spin 1/2 particle are coupled the result
is either a spin-1 (spin triplet) or spin-zero (spin singlet) particle.

A similar thing happens with isospin. The two nucleon system can be in
a total isospin 1 states (iso-triplet) or a total isospin zero (iso singlet) state.
These states can be constructed from products of single nucleon states using
Clebsch-Gordan coefficients

|τ, τz〉 =
∑

τ1z ,τ2z

|1
2
, τ1z〉 ⊗ |

1

2
, τ2z〉〈

1

2
, τ2z,

1

2
, τ1z|τ, τz〉 (232)

The |1, 1〉 state corresponds to two neutrons, the |1,−1〉 state corresponds to
two protons, and the |1, 0〉 and |0, 0〉 states are symmetric and antisymmetric
combinations of one neutron and one proton.

Conservation of τz is equivalent to charge conservation so it must be re-
spected in any interaction. Conservation of τ 2 is and assumed property of
the strong interaction (isospin invariance). This interaction is charge inde-
pendent if the interaction is independent of τz.

Since identical nucleons are fermions the overall wave function must be
antisymmetric. The wave functions has an orbital part, a spin part, and an
isospin part. Only the overall wave function needs to be antisymmetric with
respect to particle exchange.

The scattering amplitude has the general structure

F = −(2π)2µ〈~k, µ1, µ2, τ, τz|T (
~k · ~k
2µ

+ i0+)|~k′, µ′
1, µ

′
2, τ

′, τ ′z〉

Isospin and charge conservation require that this is proportional to

δτzτ ′zδττ ′

For fixed τ and τz I investigate the dependence on the following quantities

{~k,~k ′, µ1, µ2, µ
′
1, µ

′
2}
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I begin by defining orthogonal basis vectors in a right-handed coordinate
system:

K̂ :=
~k − ~k ′

|~k − ~k ′|

P̂ :=
~k + ~k ′

|~k + ~k ′|

N̂ :=
~k × ~k ′

|~k × ~k ′|
The vectors K̂ and P̂ span the scattering plane while N̂ is normal to the
scattering plane.

The operators On = σ
(1)
µ1 ⊗ σ(2)

µ2 are a basis for the Hermitian operators in
spin space. If the interaction is rotationally invariant it can be built up out
of scalars constructed out of

{K̂, P̂ , N̂ , ~σ(1), ~σ(2)}

with coefficients that depend on

k2 = ~k · ~k, k′2 = ~k ′ · ~k ′, cos(θ) =
~k · ~k ′

kk′

Since F is also rotationally invariant the same consideration apply to F ,
except because F is evaluated on-shell, k′ = k, so the coefficients only depend
on k and cos(θ).

The independent operators are the identity and the operators

~σ(i) · K̂, ~σ(i) · P̂ , ~σ(i) · N̂

(~σ(1) × ~σ(2)) · K̂, (~σ(1) × ~σ(2)) · P̂ , (~σ(1) × ~σ(2)) · P̂ ,
(~σ(1) · N̂) · (~σ(2) · N̂) (~σ(1) · P̂ ) · (~σ(2) · P̂ ) (~σ(1) · K̂) · (~σ(2) · K̂)

(~σ(1) · N̂) · (~σ(2) · P̂ ) (~σ(1) · P̂ ) · (~σ(2) · N̂) (~σ(1) · N̂) · (~σ(2) · K̂)

(~σ(1) · K̂) · (~σ(2) · N̂) (~σ(1) · P̂ ) · (~σ(2) · K̂) (~σ(1) · K̂) · (~σ(2) · P̂ )

Under space reflection invariance

K̂ → −K̂ P̂ → −P̂ N̂ → −N̂ ~σ(i) → ~σ(i)
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If the interaction is space reflection invariant only scalar combinations of
these quantities that do not change sign under parity are allowed. This
eliminates terms of the form

~σ(i) · K̂, ~σ(i) · P̂ , (~σ(1) × ~σ(2)) · K̂, (~σ(1) × ~σ(2)) · P̂

(~σ(i) · K̂) · (~σ(j) · N̂) (~σ(i) · P̂ ) · (~σ(j) · N̂)

Next I consider invariance with respect to time reversal. Recall that time
reversal, Θ, is an antiunitary operator. I also recall

Θ|~kµ1µ2〉 = (−)1−µ1−µ2 | − ~k − µ1 − µ2〉

where the phase is one of several possible conventions. Applying Θ to the
scattering amplitude I get

F = −(2π)2µ〈~k, µ1, µ2, τ, τz|T (
~k · ~k
2µ

+ i0+)|~k′, µ′
1, µ

′
2, τ

′, τ ′z〉 =

−(2π)2µ〈Θ(~k, µ1, µ2, τ, τz)|Θ(T (
~k · ~k
2µ

+ i0+)|~k′, µ′
1, µ

′
2, τ

′, τ ′z)〉∗ =

−(−)2−µ1−µ2−µ′1−µ
′
2(2π)2µ〈−~k′,−µ′

1,−µ′
2, τ, τz|T (

~k · ~k
2µ

+i0+)|−~k,−µ1,−µ2, τ, τz〉

Since the amplitude is expanded in terms of Pauli matrices it is useful to
express the above transformation properties in terms of the spin matrices:

(−)1−µ1−µ′1〈−µ′
1|~σ(1)| − µ1〉 =

〈Θ(µ′
1)|~σ(1)|Θ(µ1)〉 =

−〈Θ(µ′
1)|Θ~σ(1)|(µ1)〉 =

−〈µ1|~σ(1)|µ′
1〉

which corresponds to changing the sign of the ~σ(i). Since ~k → −~k′ and
~k′ → −~k I also have

K̂ → K̂ P̂ → −P̂ N̂ → −N̂

Time reversal eliminates the terms the change sign under time reversal:
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~σ(i) · K̂, (~σ(1) × ~σ(2)) · N̂ (~σ(1) × ~σ(2)) · P̂
(~σ(i) · K̂) · (~σ(j) · N̂) (~σ(i) · K̂) · (~σ(j) · P̂ )

The surviving term after requiring rotational invariance, time reversal invari-
ance, and parity are

~σ(i) · N̂ (~σ(1) · N̂) · (~σ(2) · N̂) (~σ(1) · P̂ ) · (~σ(2) · P̂ ) (~σ(1) · K̂) · (~σ(2) · K̂)

It follows that the most general F consistent with rotational invariance,
parity and time reversal has the general structure:

F = aI + b(~σ(1) − ~σ(2)) · N̂ + c(~σ(1) + ~σ(2)) · N̂m(~σ(1) · N̂) · (~σ(2) · N̂)+

(g + h)(~σ(1) · P̂ ) · (~σ(2) · P̂ ) + (g − h)(~σ(1) · K̂) · (~σ(2) · K̂) (233)

where {a, b, c,m, g, h} are functions of k2 and cos(θ). These parameters are
called the Wolfenstein parameters.

There is one additional simplification that follows from isospin invariance
if the system is also invariant with respect to parity.

Parity changes the sign of ~k. In an eigenstate of parity the parity of the
space part of the wave function has a definite parity and thus symmetry with
respect to exchange of identical particles. Since the two particle system is a
Fermion the spin and isospin parts of the wave function must be symmetric or
antisymmetric depending on the parity. The parity plus the isospin fixed the
total spin (single or triplet) which must be preserved if isospin is preserved.
The term (~σ(1) − ~σ(2)) changes the spin symmetry (exchanging triplet and
singlets) which is not allowed if there is isospin conservation. This eliminates
the b parameter giving the general form of the scattering amplitude

F = aI + c(~σ(1) + ~σ(2)) · N̂ +m(~σ(1) · N̂) · (~σ(2) · N̂)+

(g + h)(~σ(1) · P̂ ) · (~σ(2) · P̂ ) + (g − h)(~σ(1) · K̂) · (~σ(2) · K̂) (234)

The goal of a theorist is then to compute the Wolfenstein parameters.
This leads to a useful form of the scattering amplitude to extract spin ob-
servables.

The following relations are useful:

Tr(~σ · ~A) = Tr(~σ) · ~A = 0 (235)
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Tr((~σ · ~A)(~σ · ~B)) = 4 ~A · ~B (236)

Tr((~σ · ~A)(~σ · ~B)(~σ · ~C)) = 4i( ~A× ~B) · ~C (237)

In addition, the trace of a tensor product of operators is the product of the
traces:

Tr(A⊗B) =
∑

mn

〈m|⊗〈n|A⊗B|n〉⊗|m〉 =
∑

n

〈n|B|n〉〈m|A|m〉 = Tr(A)Tr(B)

Applying this last relation to the expression for F in terms of the Wolfen-
stein parameters gives the following expressions for the parameters in terms
of the scattering amplitude:

a =
1

4
Tr(F )

c =
1

4
Tr(F~σ(1) · N̂) =

1

4
Tr(F~σ(2) · N̂) =

1

8
Tr(F (~σ(1) + ~σ(2)) · N̂)

m =
1

4
Tr(F (~σ(1) · N̂)(~σ(2) · N̂))

(g + h) =
1

4
Tr(F (~σ(1) · P̂ )(~σ(2) · P̂ ))

(g − h) =
1

4
Tr(F (~σ(1) · K̂)(~σ(2) · K̂))

I give an example that utilizes the Wolfenstein parameterization.
I consider the case the incident beam has a polarization ~π. The initial

density matrix is (assuming that beam is labeled by 1)

ρi =
1

4
(σ

(1)
0 + ~π · ~σ(1))⊗ σ(2)

0 (238)

This gives the following expression for the final density matrix

ρf := FρiF
† (239)

The trace of this gives the differential cross section the where the beam
has polarization ~π and the target is not polarized and final spins are not
measured:

dσ

dΩ
= Tr(FρiF

†) =
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Tr[(aI + c(~σ(1) + ~σ(2)) · N̂ +m(~σ(1) · N̂) · (~σ(2) · N̂)+

(g + h)(~σ(1) · P̂ ) · (~σ(2) · P̂ ) + (g − h)(~σ(1) · K̂) · (~σ(2) · K̂))×

(
1

4
(σ

(1)
0 + ~π · ~σ(1))⊗ σ(2)

0 )×

(a∗I + c∗(~σ(1) + ~σ(2)) · N̂ +m∗(~σ(1) · N̂) · (~σ(2) · N̂)+

(g + h)∗(~σ(1) · P̂ ) · (~σ(2) · P̂ ) + (g − h)∗(~σ(1) · K̂) · (~σ(2) · K̂))]

Here it is enough to have the patience to compute the traces. This calculation
can be easily automated by computer. The result is a sum of products of
traces on the particle 1 and 2 Hilbert spaces.

For the manual computation I first compute the identity contribution: I
get

aa∗ + 2cc∗ +mm∗ + 2gg∗ + 2hh∗.

For the polarization term the surviving pairings involve ca∗, a∗c, cm∗, c∗m
which leads to the following expression:

~π · N̂ × (ca∗ + c∗a + cm∗ + c∗m) = 2~π · N̂ ×Re(c∗(a+m))

The entire cross section becomes

dσ

dΩ
= a ∗ a + 2c ∗ c+m ∗m + 2g ∗ g + 2h ∗ h + 2~π · N̂ ×Re(c∗(a+m))

which shows an enhancement of the cross section if the beam is polarized in
the direction N̂ perpendicular to the scattering plane.

These same ideas can be used to compute more complex spin observables.
Clearly there are 5 non-trivial Wolfenstein parameters. Ten independent
experiments are needed to extract the real and imaginary parts of these
coefficients in the lab. The full set of experiments has to be performed for
many momenta and scattering angles.

12 The Lippmann Schwinger Equation

In this section I discuss methods for solving the Lippmann Schwinger equa-
tion. Much of what I plan to discuss follows because the kernel of the Lipp-
mann Schwinger equation is a compact operator. Since compact operators
are also important in the many-body problem, I discuss compact operators
first.
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The Lippmann Schwinger equation has the formal structure

T = D +KT

where the driving term D = V and the kernel K = V 1
z−H0

. The norm of an
operator A is defined by

‖A‖ = sup
|ψ〉6=0

‖A|ψ〉‖
‖|ψ〉‖

where sup is the least upper bound. It follows from this definition that

‖A|ψ〉‖ ≤ ‖A‖‖|ψ〉‖

for any vector |ψ〉.
An operator A is bounded (equivalently strongly continuous) if ‖A‖ <

∞.
An operator A is called contractive if ‖A‖ < 1. Contractive operators

reduce the norm of any vector. Any bounded operator can be made contrac-
tive by multiplication by a sufficiently small constant. For example if A is
bounded then B := A/(2‖A‖) is contractive.

If the Lippmann Schwinger kernel is contractive then the series

T = D +
∞

∑

n=1

KnD (240)

converges in norm

‖T‖ < 1

1− ‖K‖‖D‖ <∞

and satisfies the Lippmann Schwinger equation. This means that the Lipp-
mann Schwinger equation can be solved by convergent perturbation theory.
The series defined in (??) is called the Born series; the first term D = V is
called the first Born approximation to T

A bounded operator is compact if it can be approximated in operator
norm by a finite rank operator F . Specifically for any ε > 0 there is a F of
the form

F =
N

∑

n=1

|φn〉λn〈ψn|
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with the property that
‖A− F‖ < ε

Here {|φ〉n} and {|ψ〉n} are separately orthonormal, and λn > 0, and N is
finite. As ε is reduced the number of terms in F will generally increase,
however N is finite for any non-zero ε.

Compactness is a restrictive condition. The identity is clearly a bounded
operator, but it is not compact. Likewise 1

2
I is contractive, but it is not

compact.
One important property of a compact operator is that the product of a

compact operator and a bounded operator is a compact operator. To see this
let B be bounded and A be compact. It follows that

‖BA−BF‖ < ‖B‖ε = ε′

Clearly if F is finite rank, so is BF . Also, because ‖B‖ is a positive con-
stant, ε′ and be made as small as desired by choosing ε sufficiently small. A
similar argument can be used to show that right multiplication by a bounded
operator is also compact (i.e. AB).

Note there are many more mathematical characterizations of compact op-
erators. The one I use emphasizes the most important property for scattering
theory. All of the characterization are equivalent.

The simplest kind of compact operator is a positive Hermitian com-
pact operator. These operators have complete sets of eigenvectors and non-
negative eigenvalues. If the dimension of the subspace spanned by the eigen-
values with value greater than a given ε > 0 is not finite, then the operator
cannot be compact. It follows that either there are a finite number of non-
zero eigenvalues or the eigenvalues have an accumulation point at zero. This
means that that the operator can be expressed in the form

A =

N
∑

n=1

|ψn〉λn〈ψn|

where either N is finite or limn→∞ λn → 0 and |ψn〉 are orthonormal. It is
also clear that any operator of this form is a compact, positive, Hermitian
operator.

If A is an arbitrary compact operator A† is bounded and A†A is a positive,
Hermitian compact operator which has the form

A†A =
N

∑

n=1

|ψn〉λ2
n〈ψn|
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Define
|φn〉 = A|ψn〉λ−1

n

for λn 6= 0. By definition

〈φn|φm〉 = 〈ψn|A†Aψm〉/(λmλn) =

δnm
λ2
n

λ2
n

= δmn

Define
A′ =

∑

|φn〉λn〈ψn|

If this is applied to any for the eigenstates of A†A I get

A′|ψm〉 =

N
∑

n=1

|φn〉λn〈ψn|ψm〉 =

N
∑

n=1

A|ψn〉δnm.

This is zero if m > N , and is A|ψm〉 otherwise. If m > N I get

‖A|ψm〉‖2 = 〈ψm|A†A|ψm〉 = 0.

It follows that A′ and A agree on an orthonormal basis and are consequently
equal. The recovers the formula that was initially used to define the compact
operator:

A =
N

∑

n=1

|φn〉λn〈ψn|

In this expression all of the quantities are defined in terms of A
To understand the value of having a compact kernel in an integral equa-

tion let
T = D +KT

and write
K = F + C
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where F is finite rank and C is contractive. Then I can write the equation

T = D + (F + C)T

(I − C)T = D + FT.

Since C is contractive (I −C)−1 exists and is given by the convergent power
series

(I − C)−1 = I +

∞
∑

n=1

Cn.

The integral equation can be replaced by

T = (I − C)−1D + (I − C)−1FT.

Since
F ′ := (I − C)−1F

is finite rank this equation becomes

T = D′ + F ′T

with
D′ := (I − C)−1D

which can be solved by finite matrix algebra.
It can happen that the finite dimensional equation does of have a solution.

This will happen when
(I − F ′)|ψ〉 = 0

has a not trivial solution. Using the definitions

(I −F ′)−1 := (I − (I −C)−1F ) = (I −C)−1(I −C − F ) = (I −C)−1(I −K)

Since (I − C) has a bounded inverse the condition that the matrix equation
cannot be solved is

(I −K)|ψ〉 = 0

or the homogeneous form of the equation has a non-trivial solution. Thus I
have that either a solution to the problem or a solution to the homogeneous
equation. This is called the Fredholm Alternative.

What I have shown is that if the kernel is compact it is possible to write
the kernel as the sum of a contractive and finite dimensional term. The
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contractive part can be solved by convergent perturbation theory. The re-
mainder of the problem is reduced to algebra.

What is most impressive is the the convergence is in operator norm, which
means that the errors are independent of the initial state.

There are several tests to see if an linear operators is compact. Sufficient
conditions for an operator A to be compact are that A is a trace class or a
Hilbert Schmidt operator. A linear operator is trace class if

Tr(|A|) <=∞

where
|A|2 := A†A.

The operator is Hilbert Schmidt if

Tr(|A|2) <=∞.

It is worth noting that what is meant by compact depends on the choice of
operator norm. The finite rank operator is made up out of vectors and linear
functionals on the associated normed linear space. Weinberg showed that the
kernel is Hilbert Schmidt for z not strictly on the real line. Normally a slight
change in norm is needed to allow one the take the limit that z approached
the real line. What is necessary that the norm excludes functions that make
the principal value integral badly behaved. There are many such spaces, and
the implication is the final solution is in this space. These are not a concern
in practical applications.

A formal method for performing this decomposition is due to Weinberg,
and is called the quasi-particle method. Weinberg begins by defining “quasi-
particles” as solutions of the eigenvalue problem:

R0(z)V |ηn(z)〉 = ηn(z)|ηn(z)〉

Note that these are eigenstates of the adjoint of the kernel of the Lippmann
Schwinger equation. The eigenvalues ηn(z) are in general complex and accu-
mulate at zero. It follows that

V R0(z)[V |ηn(z)〉] = ηn(z)[V |ηn(z)〉]

which shows
|ξn(z)〉 := V |ηn(z)〉
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is an eigenvector of the kernel with the same eigenvalue.
The eigenvectors satisfy the following orthogonality conditions

〈ηn(z∗)|V |ηm ∗ (z)〉 = 0 if ηm(z) 6= ηn(z)

This follows by taking adjoints and replacing z → z∗:

〈ηn(z)|V R0(z
∗) = ηn(z∗)〈ηn(z)|

〈ηn(z∗)|V R0(z) = ηn(z)〈ηn(z∗)|
It is clear that if the largest eigenvalue η(z) is less than one in magnitude,

then the kernel is contractive; conversely if one of the eigenvalues lies outside
the unit circle the Born series will diverge.

If I define the reduced kernel:

V̄ (z)R0(z) := V R0(z)−
N

∑

n=1

V |ηn(z)〉〈ηn(z∗)|V R0(z)

〈ηn(z∗)|V |ηn(z)〉

where is sum is over a finite number of quasi-particle states
If this kernel is applied to any of the |ξn〉 I get

V̄ (z)R0(z)|ξn〉 = 0

by the orthogonality condition, assuming all of the quasi-particle states have
different eigenvalues. It follows that by subtracting the quasi-particle states
from the original kernel a new kernel is obtained that has smaller eigenvalues.

Weinberg’s approach to this problem is to find the solution to the Lipp-
mann Schwinger equation in two steps. I give a slight modification of his
procedure. First I define the reduced potential

Vc = V −
N

∑

n=1

V |ηn(z)〉〈ηn(z∗)|V
〈ηn(z∗)|V |ηn(z)〉

where the subtracted term contains enough quasi-particle states so the kernel

Kc(z) = Vc(z)R0(z)

is contractive. This can alway be done if the original kernel is compact. The
exact potential has the form

V = Vc + Vf
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where Vf is finite rank.
The equation

T (z) = (Vc(z) + Vf(z)) + (Vc(z) + Vf(z))R0(z)T (z)

can be put in the form

(I − Vc(z)R0(z))T (z) = (Vc(z) + Vf (z)) + Vf (z)R0(z)T (z).

I define
Tc(z) = Vc(z) + Vc(z)R0(z)Tc(z)

and
T2(z) = Vf(z) + Vc(z)R0(z)Tf (z).

Because these equations have the same contractive kernel the series solution
converges

Tc(z) = Ωc(z)Vc; T2(z) = Ωc(z)Vf

where

Ωc(z) = I +
∞

∑

n=1

[Vc(z)R0(z)]
n

Given Tc(z) and T2(z) the solution for T (z) becomes

T (z) = Tc(z) + T2(z) + T2(z)R0(z)T (z).

The important feature of the equation for T (z) is that the kernel T2(z)R0(z)
is finite rank, so the solution of this equation is algebraically equivalent to
solving equations for a finite linear system.

What I have shown you is that if the kernel is compact then the solution of
the Lippmann Schwinger equation can be reduced to convergent perturbation
theory and finite algebra.

While the quasi-particle method is powerful, it still requires solving com-
plex eigenvalue problems at each energy. In practice one does not have to be
that systematic.

While two-body problems can be solved directly with with modest com-
putational effort, the Lippmann Schwinger equation provides a simple labo-
ratory to test methods that are useful for large problems.

A large class of these methods utilize a basis generated by applying pow-
ers of the kernel to a random vector. For compact operators this works
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because powers of the kernel tend to emphasize quasi-particle states with
the largest eigenvalues. This class of methods usually lead to very efficient
approximations.

I give one method that illustrates these ideas. I begin by writing the
Lippmann Schwinger equation in the form

T = D +KT.

Normally the potential is applied to a plane wave state,

|φ̄1〉 := D|~ki〉.

If the potential has finite range this state can be normalized to unity. I define

|φ1〉 := |φ̄1〉(〈φ̄1|φ̄1〉)−1/2

〈φ′
1| = 〈φi|.

The next step is to generate a bi-orthogonal set of vectors: I defined

|φ2〉 = α|φ1〉+ βK|φ1〉

and
〈φ′

2| = γ〈φ′
1〉+ η〈φ′

1|K.
The coefficients are determined by the requirements

〈φ′
2|φ2〉 = 1

〈φ′
2|φ1〉 = 〈φ′

1|φ2〉 = 0

and β = η. These conditions uniquely fix all coefficients.
This can be repeated recursively to generate

{|φn〉} and {〈φ′
n|}

with the properties
〈φ′

m|φn〉 = δmm′

and
〈φ′

m|K|φn〉 = 0 unless |m− n| ≤ 1.
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This second condition is because by construction K|φm〉 is a linear combi-
nation of the |φm〉 with m ≤ n + 1, which are orthogonal to the 〈φ′

m| with
m > n + 1. An identical argument holds if K is applied on the left of 〈φ′

n|
To solve the Lippmann Schwinger equation

T |~k〉 = |φ1〉+KT |~k〉

assume that the solution can be expressed in the form

T |~k〉 =
∞

∑

n=1

|φn〉tn.

At this stage I do not know if the states |φn〉 form a basis, I simply process
as if that is the case. Using this in the equation gives

∑

n

|φn〉tn = |φ1〉+
∑

n

K|φn〉tn.

Taking overlaps with the dual basis gives the algebraic equations for the
expansion coefficients tm:

tm = δm1 + 〈φ′
m|K|φm−1〉tm−1 + 〈φ′

m|K|φm〉tm + 〈φ′
m|K|φm+1〉tm+1

Which are a simple tridiagonal set of equations for the coefficients tm. The
only input is the first state and the matrix elements 〈φ′

m|K|φn〉 for |m−n| ≤
1.

If I define the matrix elements

κmn = 〈φ′
m|K|φn〉

and truncate the series at N the solution is a continued fraction generated
by

t1 =
1

1− κ11 − κ12
t2
t1

t2
t1

=
κ21

1− κ22 − κ23
t3
t2

t3
t2

=
κ32

1− κ33 − κ34
t4
t3

...

69



tN
tN−1

=
κN,N−1

1− κN−1,N−1 − κN−1,N
tN
tN−1

tN
tN−1

=
κN,N−1

1− κNN
This system can be written as one large continued fraction. The required
input are the non-zero matrix elements of the kernel in the biorthogonal
basis.

This leads to a fairly efficient method for solving the Lippmann Schwinger
equation. In practice this method and related methods are more useful in
three body problems which involve larger matrices. Direct methods are nor-
mally employed for solving the two-body Lippmann-Schwinger equation.

13 Partial Waves

Direct numerical computation of the solution of the Lippmann Schwinger
equation can be done most efficiently by exploiting symmetries. One im-
portant symmetries is rotational invariance. If the interaction is rotationally
invariant it commutes with the total angular momentum operator. When the
Lippmann Schwinger equation is expressed in a basis of angular momentum
eigenstates, it decouples into an infinite set of uncoupled equations. The
uncoupled equations involve a one dimensional integration while the origi-
nal equation involves a three dimensional integral. For finite range potentials
with fixed beam momentum only a finite number of angular momentum chan-
nels are relevant. Classically, the maximum angular momentum resulting in
a collision in the lab frame is pbR were pb is the beam momentum and R is
the range of the interaction.

The total angular momentum of the two body system is the sum

~J = ~L +~l + ~S1 + ~S2

~L is the orbital angular momentum associated with the center of mass coor-
dinate and momentum. It is conserved independent of ~J . The total intrinsic
angular momentum

~j = ~J − ~L = ~l + ~S1 + ~S2

is also conserved. Eigenstates of ~j are constructed using the usual rules of
angular momentum addition in quantum mechanics. Starting with the plane
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wave states |~k, µ1, µ2〉 I define

|k, j, µj; l1, s, s1, s2〉 =

∫

∑

|~k, µ1, µ2〉dΩ(k̂)〈k̂|l, ml〉〈s1, µ2, s2, µ2|s, µs〉〈l, ml, s, µs|j, µj〉

where the sum is over all repeated magnetic quantum numbers and

〈k̂|l, ml〉 = Ylml
(k̂)

is a standard spherical harmonic.
In this basis a Galilean invariant potential has the form

〈~P , k, j, µj; l, s, s1, s2|V |~P ′, k′, j ′, µ′
j; l

′, s′, s′1, s
′
2〉 =

δ(~P − ~P ′)δjj′δµjµ′j
〈k, l, s, s1, s2|V j|k′, l′, s′, s′1, s′2〉

The transition matrix elements can be expressed in terms of a reduced tran-
sition operator

〈~P , k, j, µj; l, s, s1, s2|T (z)|~P ′, k′, j ′, µ′
j; l

′, s′, s′1, s
′
2〉 =

δ(~P − ~P ′)δjj′δµjµ′j
〈k, l, s, s1, s2|T j(z)|k′, l′, s′, s′1, s′2〉

The Lippmann Schwinger equation takes on the form

〈k, l, s, s1, s2|T j(z)|k′, l′, s′, s1, s2〉 = 〈k, l, s, s1, s2|V j|k′, l′, s′, s1, s2〉+
∫ ∞

0

∑

s′′,l′′

〈k, l, s, s1, s2|V j|k′′, l′′, s′′, s1, s2〉
k′′2dk′′

z − k′′2/2µ×

〈k′′, l′′, s′′, s1, s2|T j(z)|k′, l′, s′, s1, s2〉
This notation can be simplified by observing that the final variables remain
unchanged. Defining

tj(k, l, s) := 〈k, l, s, s1, s2|T j(z)|k′, l′, s′, s1, s2〉 =

vj(k, l, s; k′, l′, s′) := 〈k, l, s, s1, s2|V j|k′, l′, s′, s1, s2〉+

z =
k′2

2µ
+ i0+
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this equation takes on the form

tj(k, l, s) = vj(k, l, s; k′, l′, s′)+

∫ ∞

0

|s1+s2|
∑

s=|s1−s2|

|j+l|
∑

l=|j−s|

vj(k, l, s; k′′, l′′, s′′)
2µk′′2dk′′

k′2 − k′′2 + i0+
tj(k, l, s)

The methods discussed in the previous section can be used to solve this
equation, however this is a simple enough equation that normally direct
methods can be employed. The part that needs to be done with the most
care is the integration over the singularity. This is also true in methods
discussed in the last section. Also, this is generally a complex equations
which can be simplified using the K-matrix.

The K matrix method breaks this up into two equations; one for the
partial wave K-matrix:

kj(k, l, s; k′, l′, s′) = vj(k, l, s; k′, l′, s′)+

P

∫ ∞

0

|s1+s2|
∑

s=|s1−s2|

|j+l|
∑

l=|j−s|

vj(k, l, s; k′′, l′′, s′′)
2µk′′2dk′′

k′2 − k′′2 k
j(k′′, l′′, s′′, k′l′s′)

and one that expresses the partial wave transition matrix elements in terms
of the k matrix

tj(k, l, s) = kj(k, l, s; k′, l′, s′)

−2µπik′
|s1+s2|
∑

s=|s1−s2|

|j+l|
∑

l=|j−s|

kj(k, l, s; k′, l′′, s′′)tj(k′, l, s). (241)

To solve the last equation set k = k′ to obtain a finite linear system for
tj(k′, l, s):

tj(k′, l, s) = kj(k′, l, s; k′, l′, s′)

−2µπik′
|s1+s2|
∑

s=|s1−s2|

|j+l|
∑

l=|j−s|

kj(k′, l, s; k′, l′′, s′′)tj(k′, l, s)

Once this algebraic equation is solved it can be substituted in the right hand
side of (241) to get an expression for the partial wave transition matrix
elements.

72



This is all very elementary. The next step is solve for the partial wave
k matrix. This is a real, singular integral equation. In order to make the
equation non singular it is useful to use

P

∫ ∞

0

dk′

k2 − k′2 = 0.

I proved this result earlier. This allows me to replace the singular k-matrix
equation by the regular equation

kj(k, l, s; k′, l′, s′) = vj(k, l, s; k′, l′, s′)+

2µ

∫ ∞

0

k′′2dk′′
|s1+s2|
∑

s=|s1−s2|

|j+l|
∑

l=|j−s|

×

vj(k, l, s; k′′, l′′, s′′)kj(k′′, l′′, s′′, k′l′s′)− vj(k, l, s; k′, l′′, s′′)kj(k′, l′′, s′′, k′l′s′)
k′2 − k′′2

This equation is normally solved by direct integration or expansion meth-
ods. Expansion methods express the k-matrix elements as linear combina-
tions of know orthonormal basis functions φn(k) with unknown coefficients:

kj(k, l, s; k′, l′, s′) =
∑

n

cn,l,sφn(k)

The equations become

∑

n

cn,l,sφn(k) = vj(k, l, s; k′, l′, s′)+

2µ

∫ ∞

0

k′′2dk′′
∑

n

|s1+s2|
∑

s=|s1−s2|

|j+l|
∑

l=|j−s|

vj(k, l, s; k′′, l′′, s′′)φn(k
′′)− vj(k, l, s; k′, l′′, s′′)φn(k′)
k′2 − k′′2 cn,l′′,s′′

If I approximate the solution by truncating after a finite number of basis
functions (N), there are two methods to solve the resulting equations.

The Galerkin methods multiplies the above by φm(k)k2dk and integrates
using the orthonormality. This gives the following linear equations for the
coefficients

cm,l,s =

∫ ∞

0

k2φm(k)vj(k, l, s; k′, l′, s′)+
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2µ

∫ ∞

0

k2k′′2dkdk′′
∑

n

|s1+s2|
∑

s=|s1−s2|

|j+l|
∑

l=|j−s|

×

φm(k)
vj(k, l, s; k′′, l′′, s′′)φn(k

′′)− vj(k, l, s; k′, l′′, s′′)φn(k′)
k′2 − k′′2 cn,l′′,s′′

The price paid for doing this is that an integration over k is required.
This integration can be avoided using the collocation method; which sim-

ply demands that the equation hold exactly at N points, {km}. this gives
the alternative equation:

∑

n

cn,l,sφn(km) = vj(km, l, s; k
′, l′, s′)+

2µ

∫ ∞

0

k′′2dk′′
∑

n

|s1+s2|
∑

s=|s1−s2|

|j+l|
∑

l=|j−s|

×

vj(km, l, s; k
′′, l′′, s′′)φn(k

′′)− vj(km, l, s; k′, l′′, s′′)φn(k′)
k′2 − k′′2 cn,l′′,s′′

With either method, after the coefficients are obtained an improved so-
lution is obtained by interpolation:

kj(k, l, s; k′, l′, s′) = vj(k, l, s; k′, l′, s′)+

2µ
∑

n

∫ ∞

0

k′′2dk′′
|s1+s2|
∑

s=|s1−s2|

|j+l|
∑

l=|j−s|

×

vj(k, l, s; k′′, l′′, s′′)φn(k
′′)− vj(k, l, s; k′, l′′, s′′)φn(k′)
k′2 − k′′2 cn,l′′,s′′ (242)

An alternative to the expansion methods is direct integration. in this
case the integration is replaced by an approximate sum with weights

∫ ∞

0

f(k)dk =
∑

f(ki)∆i.

The kn are chosen to not include the singular point (usually symmetrically
around the singular point)

kj(k, l, s; k′, l′, s′) = vj(k, l, s; k′, l′, s′)+
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∑

n

2µ

∫ ∞

0

k′′2dk′′
|s1+s2|
∑

s=|s1−s2|

|j+l|
∑

l=|j−s|

×

vj(k, l, s; kn, l
′′, s′′)kj(kN, l′′, s′′, k′l′s′)− vj(k, l, s; k′, l′′, s′′)kj(k′, l′′, s′′, k′l′s′)

k′2 − k2
n

∆n

This equation can also be solved by collocation, but one additional equation
is needed where k → k′, since kj(k′, l′, s′; k′, l′, s′) appears on the right side
of the equation. This done by using the on shell point as an additional
collocation point. The integrals are often transformed to a finite interval by
a variable change to facilitate the solution of the equations. A transformation
like

y = tanh(k)

maps [0,∞] to [0, 1] is commonly used in nuclear physics problems. Once the
k-matrix elements are known at the quadrature points and the on shell point
(k′) an interpolation like (242) can be used to get the solution a arbitrary
points.

The partial wave k-matrix is used to construct the partial wave transition
matrix. This is used to construct the exact transition matrix, and the cross
section or Wolfenstein parameters.

14 Phase Shifts

In this section I consider scattering of spinless particles with a rotationally
invariant interaction. In the interest of simplicity I consider the case of
spinless particles.

A plane wave basis of eigenstates can be expressed as a linear combination
of simultaneous eigenstates of the relative energy, angular momentum, and
magnetic quantum number

|~k〉 =

∞
∑

l=0

l
∑

m=−l

|E, l,m〉| ∂E
k2∂k

|1/2Ylm(k̂)

where

| ∂E
k2∂k

|1/2 =

√

1

kµ
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fixes the normalization

〈E, l,m|E ′, l′, m′〉 = δ(E − E ′)δmm′δjj′

assuming that the momentum eigenstates have delta function normalization.
In this basis the scattering matrix elements have the form

〈E, l,m|S|E ′, l′, m′〉 = δ(E − E ′)δll′δmm′(1− 2πi〈E, l,m|t(E + i0+)|E, l,m〉)

The rotational invariance of the interaction means that

〈E, l,m|t(E + i0+)|E, l′, m′〉 = δll′δmm′〈E|tl(E + i0+)|E〉 := δll′δmm′tl(E)

This gives

〈E, l,m|S|E ′, l′, m′〉 = δ(E − E ′)δll′δmm′(1− 2πitl(E)) (243)

Unitarily of the scattering operator means that it can be expressed as

〈E, l,m|S|E ′, l′, m′〉 = δ(E − E ′)δll′δmm′e2iδl(E) (244)

where the quantity δl(E) is a real function of E called the phase shift in the
l-th partial wave. The factor of two is included because with this definition
the phase shift corresponds to a shift in the phase of the scattered wave. I
will show this later.

It follows from (243) and (244) that the phase shift is related to tl(E) by

e2iδl(E) = 1− 2πitl(E) (245)

or equivalently

tl(E) = − 1

π
eiδl(E) sin(δk(E)). (246)

In this expression tl(E) is the on shell transition matrix element in the energy-
angular momentum basis.

I can write this in terms of a momentum-angular momentum basis using
the Jacobian factor to get

〈k|tl(E)|k〉 = − 1

kµπ
eiδl(E) sin(δk(E)).
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I can also use this to get an expression in terms of the partial wave K matrix
which was shown in the last section (restricting to the spinless case)

〈k|tl(E)|k〉 =
〈k|kl(E)|k〉

1 + i2πµk〈k|kl(E)|k〉

It is most common to relate the scattering amplitude to the phase shift.
Beginning with the definition

f = −(2π)2µ〈~k ′|t|~k〉 =

−(2π)2µ
∑

lm

Y ∗
lm(k̂ ′)〈k|tl|k〉Ylm(k̂)

Since 〈k|tl|k〉 is independent of m the m sum can be done using the addition
theorem for spherical harmonics

l
∑

m=−l

Y ∗
lm(k̂ ′)Ylm(k̂) =

2l + 1

4π
Pl(k̂

′ · k̂)

giving
f = −(2π)2µ〈~k ′|t|~k〉 =

−πµ
∑

l

(2l + 1)〈k|tl|k〉Pl(k̂ ′ · k̂)

The quantity

fl(k) := −πµ〈k|tl|k〉 = −π
k
tl(E) (247)

is called the partial wave scattering amplitude. It is related to the phase
shift by

fl(k) :=
1

k
eiδl(E) sin(δk(E))

Since the total cross section is

σ =

∫

dσ

dΩ
dΩ =

∫

|f |2dΩ =

∫

dudφ
∑

l,l′

(2l + 1)(2l′ + 1)f ∗
l fl′Pl(u)P

′
l (u) =
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2π
∑

l,l′

2

2l + 1
(2l + 1)(2l′ + 1)f ∗

l fl′δll′ =

4π
∑

l

(2l + 1)|fl|2 =
4π

k2

∑

l

(2l + 1) sin2 δl

This shows that the total cross section can be expressed in terms of a real

phase shift and that the maximum contribution of any partial wave to the
total cross section is

4π

k2
(2l + 1).

This is called the unitarity bound because it is a consequence of the param-
eterization of the scattering matrix in terms of a real phase shift.

In order to obtain additional insight into the phase shift and scattering
amplitude consider the free Schrödinger equation for the partial wave radial
wave function in configuration space.

For plane waves this equation is

− 1

2µ
[
1

r2

d

dr
r2 d

dr
− L2

2µr2
]wl(r) =

k2

2µ
wl(r)

The solutions that are finite at the origin are the spherical Bessel functions:

wl(r) = jl(kr).

It will be important to understand the relation of these solution to the usual
plane wave states. To see this expand

ei
~k·~x = eikr cos(θ) =

∞
∑

l=0

alPl(cos(θ))

The coefficients can be determined by multiplying by Pl′(cos(θ)) and inte-
grating over sin(θ)dθ which gives

al =
2l + 1

2

∫ 1

−1

Pl(u)e
ikrudu

The integral is proportional to an integral representation of a spherical Bessel
function

jl(kr) = (i)−l
1

2

∫ 1

−1

Pl(u)e
ikrudu
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which gives

ei
~k·~r =

∞
∑

l=0

(2l + 1)iljl(kr)Pl(k̂ · r̂) =

∞
∑

l=0

l
∑

m=−l

4πiljl(kr)Ylm(k̂)Y ∗
lm(r̂)

For normalized plane wave states I get

δ(~k − ~k ′) =
1

(2π)3/2
ei
~k·~r =

∞
∑

l=0

2l + 1

(2π)3/2
iljl(kr)Pl(k̂ · r̂) =

∞
∑

l=0

l
∑

m=−l

√

2

π
iljl(kr)Ylm(k̂)Y ∗

lm(r̂)

Finally I calculate the normalization for the spherical Bessel functions using

δ(k − k′)
k2

∞
∑

l=0

l
∑

m=−l

Ylm(k̂)Y ∗
lm(k̂ ′) =

〈~k|~r〉d3r〈~r|~k ′〉 =

∞
∑

l=0

l
∑

m=−l

2

π

∫ ∞

0

r2drjl(kr)jl(k
′r)Ylm(k̂)Y ∗

lm(k̂ ′)

From which I get
∫ ∞

0

r2drjl(kr)jl(k
′r) =

π

2

δ(k − k′)
k2

This can be summarized by writing

〈r|k〉 = il
√

2

π
jl(kr)

− 1

2µ
[
1

r2

d

dr
r2 d

dr
− L2

2µr2
+ 2µVl(r)]vkl(r) =

k2

2µ
vkl(r)

The corresponding scattering eigenstates satisfy

[
d2

dr2
+ k2 − l(l + 1)

r2
− 2µV (r)]vkl(r)
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These can be normalized just like the spherical Bessel functions
∫ ∞

0

r2drvkl(r)vk′l(r) =
π

2

δ(k′ − k)
k2

As r gets large the potential becomes unimportant and vkl(r) looks like a free
particle solution, but it does not have to satisfy the same boundary condition
at the origin as the free particle solution.

The simplest way to construct vkl(r) this is to use the Lippmann Schwinger
equation:

vkl(r) = jl(kr) +

∫ ∞

0

R0lk(r, r
′)U l(r′)vkl(r

′)r′2dr′

where
〈r, l,m|R0(k

2 + i0+)|r′, l′, m′〉 := δll′δmm′R0lk(r, r
′)

and the 2µ is absorbed in the potential term. This can be computed

〈r, l,m|R0(k
2 + i0+)|r′, l′, m′〉 =

2

π

∫

jl(kr)jl(kr
′)

k2
0 − k2 + i0+

k2dkδll′δmm′

This is an even function so the integral can be extended to the real line. The
integral can be done by contour integrals. It requires knowing that

jl(kr) =
h+
l (kr)− (h+

l (kr))∗

2i

where for large r, h+
l (kr) behaves like (i)−leikr/kr for large kr and like

(kr)−l−1 near the origin. The trick to doing the integral is to note that
for r′ > r that

k2jl(kr)jl(kr
′) =

k2

2i
(eikr

′

jl(kr)− e−ikr
′

jl(kr))

Both terms on the right are entire functions and the first term has no contri-
bution from the boundary at infinity if the k integral is closed in the upper
half plane, while the second term give no contribution if it close in the lower
half plane. Both terms are regular at the origin. This means that I only pick
up pole contributions from the energy denominator:

2

π

∫

jl(kr)jl(kr
′)

k2
0 − k2 + i0+

k2dk =
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−kjl(kr)hl(kr′)θ(r′ − r)− kjl(kr′)hl(kr)θ(r − r′).
With this integral the Lippmann-Schwinger equation takes on the form

vl(r) = jl(r)− 2µk

∫ ∞

0

jl(kr<)hl(kr>)V l(r′)vl(r
′)r′2dr′. (248)

For r larger than the range of the potential this becomes

vl(r)→ jl(r)− hl(kr)2µk
∫ ∞

0

jl(kr
′)V l(r′)vl(r

′)r′2dr′. (249)

In this expression hl(kr) behaves like a outgoing spherical wave, while jl(kr)
is the plane wave part of this expression. To relate this to the scattering
amplitude I use (??) in the full expansion of the solution in partial waves

∑

l

∑

m

√

2

π
iljl(kr)Ylm(r̂)Y ∗

lm(k̂)+

−
∑

l

∑

m

2µkhl(kr)

∫

jl(kr
′)r′2dr′〈r′|Vl|k+〉Ylm(r̂)Y ∗

lm(k̂)

Using

〈k|r〉 = jl(kr)(−i)l
√

2

π

in the above expression gives

∑

l

∑

m

√

2

π
iljl(kr)Ylm(r̂)Y ∗

lm(k̂)−

∑

l

∑

m

2µkhl(kr)

∫

√

2

π
iljl(kr

′)jl(k
′′r′)r′2dr′k′′2dk′′〈k′′|Vl|k+〉Ylm(r̂)Y ∗

lm(k̂) =

Using the normlization integral for the spherical Bessel functions gives The
last terms can be expressed as

−
∑

l

∑

m

2µkhl(kr)

∫
√

π

2
il
π

2

δ(k − k′′)
k2

k′′2dk′′〈k′′|tl|k〉Ylm(r̂)Y ∗
lm(k̂) =
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The last terms can be expressed as

−
∑

l

∑

m

2µkhl(kr)

√

2

π
il〈k|tl|k〉Ylm(r̂)Y ∗

lm(k̂)

Factoring out

∑

l

∑

m

√

2

π
2ilYlm(r̂)Y ∗

lm(k̂)[−2µkhl(kr)〈k|tl|k〉

The entire expression can be put in the form

∑

l

∑

m

√

2

π
2ilYlm(r̂)Y ∗

lm(k̂)[vl(r)− jl(kr) + πµkhl(kr)〈k|tl|k〉

Doing the integral gives

∑

l

(2l + 1)il
√

2

π
Pl(u)[jl(kr)−

2πµk

2
hl(kr)〈k|tl|k〉]. (250)

Comparing (249) with (250) gives

−hl(kr)2µk
∫ ∞

0

jl(kr
′)V l(r′)vl(r

′)r′2dr′ = −2πµk

2
hl(kr)〈k|tl|k〉

Finally I use 〈k|t|l〉 = −fl/πµ to get the asymptotic form of vkl(r)

[jl(kr) +
2πµk

2
hl(kr)

fl(k)

πµ
]

or
[jl(kr) + khl(kr)fl(k)]

and

fl = −2µ

∫

jl(kr)Vl(r)vl(r)r
2dr

Asymptotically this becomes

[
sin(kr − π

2
l)

kr
+ (i)−l

eikr

r
fl(k)]
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Using the expression for the scattering amplitude in terms of the phase shift
gives

[
sin(kr − π

2
l)

kr
+ (i)−l

eikr

r

eiδl sin(δl)

k
] =

1

kr
[sin(kr − π

2
l) + eirk−l

π
2 eiδl sin(δl)]

Writing everything out I get

1

2ikr
[ei(kr−

π
2
l) − e−i(kr−π

2
l) + eirk−il

π
2 (e2iδl − 1)] =

1

2ikr
[ei(kr−

π
2
l)(1 + e2iδl − 1)− e−i(kr−π

2
l) =

eiδl

kr
sin(kr − lπ

2
+ δl)

which shows that the phases shift in the l-th partial wave corresponds to a
shift in the phase of the asymptotic wave function in the l-th partial wave.

15 Analytic Properties of Partial Waves

The integral equation for the scattering solution has the form

vl(r) = jl(kr)− 2µk

∫ ∞

0

jl(kr<)hl(kr>)V l(r′)vl(r
′)r′2dr′

This is a solution of the Schrödinger equation that has boundary conditions
at zero and infinity. The solution is complex.

Since the differential equation is a second order equation I can also find
a solution that looks like a spherical Bessel function at the origin. This
function satisfies

φl(r) = jl(kr) + 2µk

∫ r

0

[jl(kr)nl(kr
′)− nl(kr)jl(kr′)]V l(r′)φl(r

′)r′2dr.

I check that this satisfies the differential equation. If I write the differential
equation as

(L+ 2µV )φl = 0

where L is a linear differential opeartor satisfying

Ljl(kr) = 0
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then it follows that

Lφl = 2µk2(− 1

r2

d

dr
r2)

∫ r

0

[j ′l(kr)nl(kr
′)− n′

l(kr)jl(kr
′)]V l(r′)φl(r

′)r′2.

When the second r derivative comes inside the integral I get Bessel’s equation
which gives zero. The only surviving terms is the one were the argument of
the integral is differentiated. Then j ′l(kr)nl(kr) − n′

l(kr)jl(kr) becomes the
Wronskian, which is 1/(kr)2. This gives

Lφl(r) = 2µk2(− 1

r2
)r2 1

k2r2
V l(r)φl(r)r

2 =

−2µV l(r)φl(r)

or
(L + 2µV l(r))φl(r) = 0

which is exactly the differential equation. The solution to this equation has
to be proportional to the solution to the scattering equation. The most
elementary way to see this is to work with the reduced wave function, ul =
rφl(r) which must vanish at the at the origin. It is a soution of the reduced
equation that is fixed by its value and the value of its derivative at the origin.
Since the value vanishes, the derivative necessarily fixes the normalization.

There are two nice properties of the integral equation for the regular
solution. First the solution is real. Second is that the region of integration
is finite. As long a the potential is a bounded operator this equation can be
solved by iteration.

It is not a hard exercise to show that this series converges for every value
of r and any potential strength. The l = 0 case is a simple example, In this
case the equation is

φ0(r)−
sin(kr)

kr
=

2µ

kr

∫ r

0

[sin(kr) cos(kr′)−cos(kr) sin(kr′)]V 0(r′)φ0(r
′)r′dr =

2µ

kr

∫ r

0

sin(k(r − r′))V 0(r′)φ0(r
′)r′dr′

If I consider iterates of the kernel I get

2µ

k2r

∫ r

0

sin(k(r − r′))V 0(r′) sin(kr′)dr′
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2µ

knr

∫ r

0

sin(k(r − r′))V 0(r′)

∫ r′′

0

sin(k(r′ − r′′))V 0(r′′)dr′dr′′

...

It is possible to show for complex z (homework) that

| sin(z)| < c
|z|

1 + |z|e
|Im(z)|

With some more work this can be show to be analytic in k with reasonable
assumptions on the potential.

For large r this must look like a free particle solution. I can write

φl(kr)→
i

2
[Jl(k)h

∗
l (kr)− J∗

l (k)hl(kr)]

which is written in a manner that makes it manifestly real. (This is beacuse
both the kernel and driving term of the equation are real).The coefficient
function Jl(k) is called the Jost function.

To see the significance of the Jost function recall that

vl(r)→ jl(kr) + kflhl(kr) = [
1

2i
+ kfl]hl(kr)−

1

2i
h∗l (kr)

for large r. I express this in terms of the partial wave scattering matrix

sl = 1− 2πikµ〈k|tl|k〉 = 1 + 2ikfl

kfl =
sl − 1

2i

which gives the asymptotic form

vl(r)→ jl(kr) + kflhl(kr) =
1

2i
(hl(kr)− h∗l (kr) + (sl − 1)hl(kr)) =

1

2i
(hl(kr)− h∗l (kr) + (sl − 1)hl(kr)) =

i

2
(h∗l (kr)− slhl(kr))
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Comparing the asymptotic forms of this solution and the regular solution
I get the following relation between the scattering matrix elements and the
Jost function:

φl(r)→
i

2
[Jl(k)[h

∗
l (kr)−

J∗
l (k)

Jl(k)
hl(kr)]

which means
φl(kr) = Jl(k)vl(r)

and

sl(k) =
J∗
l (k)

Jl(k)

These equation show that the Jost function is closely related to the scattering
operator.

The Jost function can be calculated in terms of the regular solution as
follows. Note for large r the regular function becomes

φl(r)→ jl(kr) + 2µkjl(kr)

∫ ∞

0

[nl(kr
′)V l(r′)φl(r

′)r′2dr

−2µknl(kr)

∫ ∞

0

jl(kr
′)V l(r′)φl(r

′)r′2dr

the coefficient of h∗l (kr) in this expression is

φl(r)→ −
1

2i
−2µk

1

2i

∫ ∞

0

nl(kr
′)V l(r′)φl(r

′)r′2dr−2µk
1

2

∫ ∞

0

jl(kr
′)V l(r′)φl(r

′)r′2dr =

i

2
[1 + 2µk

∫ ∞

0

(nl(kr
′) + ijl(kr

′))V l(r′)φl(r
′)r′2]dr =

i

2
[1 + 2µk

∫ ∞

0

hl(kr
′)V l(r′)φl(r

′)r′2dr′]

which gives an expression for the Jost function in terms of the regular solu-
tion:

Jl(k) = 1 + 2µk

∫ ∞

0

hl(kr
′)V l(r′)φl(r

′)r′2dr′

Although φl(r) is analytic in k, the Jost function Jl(k) is not because
of the presence of hl(kr

′) in the integral representation. By inspection it is
apparent that Jl(k) is only analytic for Im(k) > 0. It is also continuous as
Im(k)→ 0.
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Note that for real k

J∗
l (k) = 1 + 2µk

∫ ∞

0

h∗l (kr
′)V l(r′)φl(r

′)r′2dr′ =

1 + 2µk

∫ ∞

0

(−)lhl(−kr′)V l(r′)(−)lφl,−k(r
′)r′2dr′ =

Jl(−k)
which shows that

16 Relativistic Scattering

When the underlying quantum theory is relativistically invariant changes
to the scattering theory are minimal. A quantum theory is relativistically
invariant if the Hilbert space has a unitary representation of the Poincaré
group.

This ensures that quantum probabilities

P = |〈ψ|φ〉|2 (251)

have the same value in all reference frames related by Lorentz transforma-
tions and/or space time translations. These unitary transformations U relate
states associated with different inertial coordinate systems of special relativ-
ity:

|φ′〉 = U |φ〉 |ψ′〉 = U |ψ〉 (252)

which ensure the invariance condition

P = |〈ψ|φ〉|2 = |〈′ψ|φ′〉|2 = P ′. (253)

This clearly implies that experimental measurements on an isolated system
cannot make an absolute determination of an inertial coordinate system.

The Poincaré group is the group of coordinate transformations that pre-
serve the proper distance between space-time events. Coordinates of theses
events are given by four vectors:

xµ = (ctx, ~x) = (x0, ~x) yµ = (cty, ~y) = (y0, ~y)

The invariance condition is

(x−y)2 = ηµν(x
µ−yµ)(xν−yν) = ηµν(x

′µ−y′µ)(x′ν−y′ν) = (x′−y′)2 (254)
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where

ηµµ =









−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









is the Minkowski metric tensor. In the above expression and in what follows
repeated Greek indices are assumed to summed from 0 to 3.

The most general transformation satisfying (??) has the form

xµ → x′µ = Λµ
νx

ν + aµ (255)

where the constant matrix Λν
β satisfies

ηµν = Λµ
αΛ

ν
βη

αβ (256)

and aµ is a constant four vector. This is a generalization of the classical
mechanics theorem that rigid body motions are generated by translations
and rotations. Here the four dimensional Minkowski metric replaces the
three dimensional Euclidean metric.

Successive Poincaré transformations can be expressed as a single Poincaré
transformation:

(Λ, a) = (Λ2, a2)(Λ1, a1)

where
Λµ

ν = Λµ
2αΛ

α
1 ν aµ = Λµ

2 νa
ν
1 + aµ2 .

It is useful to express these equations in the index free notation

Λ = Λ2Λ1 a = Λ2a1 + a2

A unitary representation U(Λ, a) of the Poincaré group is a set of unitary
operators labeled by elements of the Poincaré group. These operators satisfy
the group representation property:

U(Λ2, a2)U(Λ1, a1) = U((Λ2, a2)(Λ1, a1)).

The operator U(Λ, a) contains time evolution, which involves the interaction.
The new feature in relativistic quantum mechanics is that it is possible to
transform the time using transformations other than time translation. This
means that U(Λ, a) must have a more complex interaction dependence than
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one has in Galilean invariant quantum mechanics. The interaction depen-
dence ensures that all independent paths to the future lead to the same
result.

This can be understood by considering a rotationaless Lorentz transfor-
mation about the z axis:

Λ(ω) =









cosh(ω) 0 0 sinh(ω)
0 1 0 0
0 0 1 0

sinh(ω) 0 0 cosh(ω)









Matrix multiplication plus hyperbolic trigonomety gives the following

Λ(ω1)Λ(ω2) = Λ(ω1 + ω2)

The quantity ω is called the rapidity of the Lorentz transformation. It be-
haves like an angle of rotation.

If I start with an initial four vector,

xµ =









0
0
0
z









The Lorentz transforamtion Λ(ω)x gives

xµ1 =









z sinh(ω)
0
0

z cosh(ω)









Space translation in the z direction by −z cosh(ω) gives

xµ2 =









z sinh(ω)
0
0
0









Applying the inverse Lorentz transformation Λ(ω)−1 gives

xµ3 =









z cosh(ω) sinh(ω)
0
0

0− z sinh2(ω)
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A second translation in the z direction by z(1 + sinh2(ω)) = z cosh2(ω) gives

xµ4 =









z cosh(ω) sinh(ω)
0
0

0z









This show that the effect of this combination of translations in the z direction
and rotationless boosts in the z direction is equivalent to time evolution by
an amount

∆t = z cosh(ω) sinh(ω)

Since time evolution involves the dynamics, consistency requires that the
combination of spatial translations and rotatinless Lorentz transformation
should also involve the dynamcis.

The the transformation properties imply that

U(Λ(ω), 0) = eiωKz

form some Hermetian operator Kz. This is called the infinitesimal generator
of rotationless Lorentz transformations.

The formulation of a relativistic scattering theory starts by assuming the
existence of two unitary representations of the Poincare group, U(Λ, a) and
U0(Λ, a), where U0(Λ, a) is associated with the non-interacting system.

The asymptotic condition is formulated in exactly the same way that it
is formulated in the non-relativistic case

lim
t→±∞

‖U(I, t)|ψ±〉 − U0(I, t)|φ〉‖ = 0

This can be expressed in terms of Møller wave operators

|ψ±〉 = Ω±|φ〉

where
Ω± := s− lim

t→±∞
U(I, (−t,~0))U0(I, (t,~0)).

The Scattering operator has the same relation to the wave operators

S := Ω†
+Ω−
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that it has in the non-relativistic case. As in the non-relativistic case the
square of the scattering matrix elements,

|〈φf |S|φi〉|2 = |〈ψ+
f |ψ−

i 〉|2

are quantum probabilities. In a relativistic theory they must be invariant.
Clearly while

|ψ+′〉 = U(Λ, a)|ψ+〉 |ψ−′〉 = U(Λ, a)|ψ−〉

implies
|〈ψ+′|ψ−′〉|2 = |〈ψ+|ψ−〉|2.

In the preparation of the scattering experiment the initial state is determined
when the particles are isolated beyond the range of the interactions. Like-
wise, the final states are determined by measuring the states of the asymptot-
ically separated scattered particles. A reasonable scattering operator should
also be invariant with respect to kinematic Poincaré transformations of the
asymptotic initial and final scattering asymptotes.

This requires
U †

0(Λ, a)SU0(Λ, a) = S

which is an invariance with respect to the asymptotic labels of the initial
and final states. A sufficient condition for this to hold is that wave operators
satisfy the relativistic intertwining conditions

Ω±U0(Λ, a) = U(Λ, a)Ω±

This condition automatically holds for the Hamiltonian using the ordinary
intertwining condition that was derived in the non-relativistic case. In ad-
dition, it holds for any kinematic Poincaré transformations; i.e. transforma-
tions (Λ, a) that satisfy

U0(Λ, a)U
†(Λ, a) = I

Unfortunately, there can be at most a seven parameter group of kinematic
transformations, and a one parameter group of time translations. This does
not exhaust the full ten parameter group of Poincaré transformation. The
invariance requirement is a non-trivial condition on the remaining dynamical
transformations.
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For example, it is possible to formulate quantum models where rotations
and spatial translations are kinematic. This generates a six parameter kine-
matic subgroup. In this example, the rotationless Lorentz transformations
cannot be kinematic and must satisfy the non-trivial intertwining relations

Ω±U0(Λ, 0) = U(Λ, 0)Ω±.

This is an additional condition on the interaction operators that appear in
the rotationless Lorentz transforms.

In order to discuss the invariance it is useful to begin by assuming the
existence of the following wave operators

Ω±(M,M0) := lim
τ→±∞

eiMτe−iM0τ

The mass operator, M =
√

H2 − ~P · ~P , is the analog of the non-relativistic
center of momentum Hamiltonian. In the non-relativistic case the Hamil-
tonian has the form H = ~P · ~P/2mt + h, H0 = ~P · ~P/2mt + h0 where ~P
commutes with H, h, H0, and h0. This implies

Ω±(H,H0) = Ω±(h, h0).

Let g = (Λ, a) denote an arbitrary but fixed Poincaré transformation.
The operator Ω±(M,M0) is invariant if

U(g)Ω±(M,M0) = Ω±(M,M0)U0(g).

It follows from the definitions that this will hold if and only if

lim
τ→±∞

[I − U †(g)U0(g)]e
−iM0τ = 0

for all Poincaré transforms g.
To prove this note that this condition is equivalent to

lim
τ→±∞

[U(g)− U0(g)]e
−iM0τ = 0

which is equivalent to

lim
τ→±∞

eiMτ [U(g)− U0(g)]e
−iM0τ = 0
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and finally

lim
τ→±∞

[U(g)eiMτe−iM0τ − eiMτe−iM0τU0(g)] = 0.

which is the invariance condition for Ω(M,M0).
This condition means that A = U †(g)U0(g) is a scattering equivalence.
Next I consider the relation between Ω±(M,M0) and Ω±(H,H0) assuming

both operators exist and satisfy the invariance condition.
The spatial translations are generated by the linear momentum

U(I,~a) = ei~a·
~P

Taking partial derivatives with respect to the components of ~a and then
setting ~a = 0 in the invariance condition gives

〈~P |~PΩ±(M,M0)|~P0〉 = 〈~P |Ω±(M,M0)~P0|~P0〉

or equivalently
0 = (~P − ~P0)〈~P |Ω±(M,M0)|~P0〉.

Similarly
0 = (~P − ~P0)〈~P |Ω±(H,H0)|~P0〉.

This means that the matrix elements in the mixed representation are pro-
portional to delta functions

〈~P |Ω±(M,M0)|~P0〉δ(~P − ~P0)Ω̂±(~P ,M,M0)

and
〈~P |Ω±(H,H0)|~P0〉δ(~P − ~P0)Ω̂±(~P ,H,H0).

In these expression the mass (respectively the energy) is also conserved by
the intertwining relations.

If Λ is the Lorentz transformation that maps (
√

M2 + ~P · ~P , ~P to its zero
momentum value then the invariance condition implies

δ(~P − ~P0)Ω̂±(~P ,M,M0) =

〈~P |Ω±(M,M0)|~P0〉 =

〈~P |U †(Λ, 0)Ω±(M,M0)|U †(Λ, 0)~P0〉 =
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√

M

E

√

M0

E0
〈~Pr|Ω±(M,M0)|~P0r〉 =

√

M

E
δ(~Pr − ~Pr0)Ω̂±(~0,M,M0)

δ(~P − ~P0)Ω̂±(~0,M,M0)

from which I identify

Ω̂±(~0,M,M0) = Ω̂±(~P ,M,M0)

Similarly
Ω̂±(~P ,H,H0) = Ω̂±(~0, H,H0) = Ω̂±(~0,M,M0)

The final identification is because H( ~P = ~0) = M .
This shows that if both operators exist and satisfy the invariance condi-

tion that
Ω±(H,H0) = Ω±(M,M0)

Thus, even thought the ~P is not necessarily a kinematic operator, the
invariance condition means that the scattering can formulated using the mass
operator rather than the Hamiltonian. Note that M is the analog of the
center of mass Hamiltonian that is used in non-relativistic scattering theory.

It is easy to construct a large class of models having all of the desired
properties.

The next step it show how to define scattering cross sections in relativistic
quantum mechanics. Rather than follow non-relativistic derivation, which
began by generalizing the case of an infinitely massive target, the derivation
I give for the relativistic case follows closely one given by Brenig and Haag.

I begin by considering a two-body scattering reaction. The target and
projectile are described by wave packets in momentum space that are sharply
peaked around the beam momentum, p̄b and the target momentum p̄t

The probability for measuring the scattered beam particle to be within
d3p1 of and ~p1 and the scattered target particle to be within d3p2 of ~p2 is
given by

dP := |〈~p1~p2|φ〉|d3p1d
3p2

where
〈~p1~p2|φ〉 =

−2πiδ(Ef − Ei)
∫

d3pbd
3pt〈~p1, ~p2|T (E + i0+)|~pb, ~pt〉d3pbd

3ptφb(~pb)φt(~pt).
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This assumes that the final states are not along the beam line. The previous
assumption about sharply peaked momentum distributions are important
here.

The invariance of the wave operators with respect to the linear momentum
means that the scattering operator is diagonal in the free linear momentum.
I can take advantage of this by factoring out the momentum conserving delta
function in the expression above to obtain

〈~p1, ~p2|φ〉 =

−2πiδ(Ef−Ei)δ3(pb+pt−p1−p2)〈~p1, ~p2‖T (E+i0+)‖~pb~pt〉d3pbd
3ptφb(~pb)φt(~pt).

Writing out the probability density explicitly gives

|〈~p1, ~p2|φ〉|2 =

4π2δ(Ef − Ei)δ3(pb + pt − p1 − p2)δ(Ef − E ′
i)δ

3(p′b + p′t − p′1 − p2)×
〈~p1, ~p2‖T (E + i0+)‖~pb~pt〉〈~p′b, ~p′t‖T (E − i0+)‖~p1, ~p2〉×

d3pbd
3ptφb(~pb)φt(~pt)d

3p′bd
3p′tφb(~p

′
b)φt(~p

′
t)

The delta functions can be expressed in a Fourier representation

δ(Ef − Ei)δ3(pb + pt − p1 − p2)δ(Ei − E ′
i)δ

3(p′b + p′t − pb − pt) =

δ(Ef − Ei)δ3(pb + pt − p1 − p2)(2π)−4

∫

ei(pb+pt−p′b−p
′
t)·xei(E

′
i−Ei)·td3xdt

Assume that the transition matrix elements are essentially constant on the
support of the initial wave packets. Under this assumption the arguments
of the transition operators can he replaced by their peak values. With this
replacement it becomes possible to do the momentum integrals over the beam
and target momenta, which gives

|〈~p1, ~p2|φ〉|2 =

(2π)2−4+6δ(Ef − Ēi)δ3(p̄b + p̄t − p1 − p2)|〈~p1, ~p2‖T (E + i0+)‖p̄b, p̄t〉|2×
∫

|φb(~x, t)φt(~x, t)|2d3xdt

This expresses the probability density of a scattering with final momenta ~p1

and ~p2 on terms of the the probability density of finding a target and beam
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particle at the point ~x and time t. It is clear proportional to the product
of these densities, and there is only a contribution to the total probability
when both probability densities are non-zero at the same point and time.
There is a contribution for all times when the particles have an appreciable
probability for being found at the same point. The total contribution can be
found by integrating over time.

With the factorization assumption, it is clear that all of the dependence
on the shape of the target or beam wave function this through this last term.
If I remove the space and time integrals I get a differential probability per
unit volume per unit time (or equivalently a transition rate per unit volume).

The total number of particles that scatter is obviously Lorentz invari-
ant. Similarly the 4-volume, d3ddt is an invariant volume (note that the
determinant of the Lorentz transformation is 1).

We divide this by a Lorentz invariant quantity that is equal to the target
density multiplied by the beam density times the relative speed of the target
and beam in the center of momentum frame. To find the desired invariant
quantity consider

F =
ρb
ωb

ρt
ωt

√

1

2
(pµb p

ν
t − pµb pνt )(pbµptν − pbµptν)

which is manifestly Lorentz invariant. In the center of momentum frame this
becomes

ρcm−b

ωb

ρcm−t

ωt

√

(ωb + ωt)2k2 =

ρcm−bρcm−t|
k

ωb
− −k

ωt
|

which reduces to the desired quantity. Dividing the transition rate per unity
volume by this invariant quantity gives Møller’s invariant differential cross
section

dσ = (2π)4|〈~p1, ~p2‖T (E + i0+)‖p̄bp̄t〉|2×

δ(Ef − Ei)δ3(p̄b + p̄t − p1 − p2)
d3p1d

3p2EpEb
B

In this the energies and momenta are related to each other by kinematic
relativistic dispersion relations.

It is customary to write the above in the form

dσ = |Mfi|2dL
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where

Mfi := (2π)4|〈~p1, ~p2‖T (E + i0+)‖p̄bp̄t〉|2 ×
E1E2EpEb

B

and

dL := δ(Ef − Ei)δ3(p̄b + p̄t − p1 − p2)
d3p1d

3p2

E1E2

The quantity M is called the invariant transition amplitude and L is called
the Lorentz invariant phase space.

In this form the differential cross section is manifestly invariant.
While we did not talk about the relation between the scattering operator

and the transition operator, the previously derived formulas give

T (z) = (M −M0) + (M −M0)
1

z −M0

T (z)

along with the standard relation

Sfi = 〈f |i〉 − 2πiδ(Ef − Ei)〈f |T (z)|i〉

There is an interesting question concerning the relationship between rel-
ativistic and non-relativistic quantum mechanics. In many instances inter-
actions are designed by a fitting procedure.

Normally the way that this works is that the laboratory cross section is
measured. The angular distributions and asymptotic spin observables are
transformed to the center of momentum frame using relativistic transforma-
tion laws. The result is that center of momentum cross section given as a
function of either relative energy or relative momentum.

The cross section is computed by solving the non-relativistic Lippmann
Schwinger equation. The potential is adjusted until the non-relativistic center
of mass cross section agrees with the “measured” cross section as a function
of the relative momentum. (this could alternatively be fit as a function of the
relative energy). Of course the relation between energy and momentum in
the relativistic and non-relativistic theories is different, so these two possible
fitting procedures are not equivalent.

One thing is apparent is that the notion of a non-relativistic limit does not
make sense when the interaction is determined in this manner. Specifically
the non-relativistic, relativistic, and experimental cross sections all agree
(by definition) in zero momentum frame as functions of relative momentum.
Differences in the two formalisms are only relevant in other frames.

97



17 Multiparticle Scattering

For systems of more than two particles the possible outcomes of a scatter-
ing experiment are complex. Both the target and projectile can be bound
states of constituent particles. In addition, the reaction products can involve
rearrangements of the constituent particles, or the target and projectile can
break up into different fragments, or emerge in excited states.

I begin by assuming an N-particle Hamiltonian of the form

H =
N

∑

i=1

p2
i

2mi
+

∑

i<j

Vij +
∑

i<j<k

Vijk + · · · (257)

where Vij are two-body interactions between particles i and j and Vijk are
three-body interactions. The formulation of multiparticle scattering is similar
to two-body scattering.

In order to keep book keeping simple I introduce the following short hand
notation. I let a denote a partition of the N particles into na disjoint subsets
or equivalence classes. I let P(N) denote the set of all partitions of the N
particles. For example

P(3) = {(1)(2)(3), (12)(3), (23)(1), (31)(2), (123)}. (258)

The partition a = (12)(3) is a two-cluster partition (na = 2), while a =
(1)(2)(3) is a three cluster partition (na = 3).

For each partition a, I let Va denote the sum of all interactions between
particles in the same cluster of a. For example

V(13)(245) := V12 + V24 + V45 + V25 + V245. (259)

This includes both two and three-body interactions. Let

V a := V − Va (260)

denote the residual interaction. These are the interactions that should vanish
when the clusters of a are asymptotically separated. I also define

Ha = H0 + Va =

na
∑

i=1

Hai
(261)
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where Hai
is the subsystem Hamiltonian for the particles in the i− th cluster

of the partition a. It is an immediate consequence of the definitions that

H = Ha + V a (262)

for any partition a. This decomposition leads to resolvent relations of the
form

1

z −H −
1

z −Ha

=
1

z −Ha

V a 1

z −H =
1

z −HV a 1

z −Ha

. (263)

These equations hold for any partition a.
I use partitions to define scattering channels. Consider a partition a.

As an example I consider a = (1)(24)(3). There is a scattering channel αa
associated with the partition a if the subsystem Hamiltonian, Hai

, for each
cluster with more than one particle, has a bound state. For example, for
a = (1)(24)(3) there is a scattering channel associated with each bound state
of

H24 =
p2

2

2m2
+

p2
4

2m4
+ V24. (264)

If I assume that each Hai
is invariant with respect to rotations and transla-

tions it is possible to find simultaneous eigenstate of the form

|~pi, µi(ji, αi)〉 (265)

where αi labels the bound state of the particles in the ith cluster of a, ji and
µi are the spin and magnetic quantum number of the bound state, and ~pi
is the linear momentum of bound state. If the cluster has only one particle
these labels define the state of the particle.

A channel for the N particle system has an αi corresponding to each clus-
ter of the partition a. Channels are labels for the possible stable asymptotic
fragments of a scattering experiment, which looks like na bound fragments
moving with definite momenta and spins. The analog of the two-body plane-
wave state corresponding to a channel α is the tensor product state

|α〉 = ⊗na

i=1|~pi, µi(ji, αi)〉. (266)

This is an eigenstate of Ha and ~P with eigenvalues

Ea =

na
∑

i=1

Eαi
~p =

na
∑

i=1

~pai
= sumN

k=1~pk. (267)
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In this channel the interaction Va acts asymptotically, holding the bound
fragments together, while the residual interaction, V a, vanishes when the
fragments are asymptotically separated.

For each partition a there can many channels or no channels. It depends
entirely on the interaction. The states (??) behave like plane waves in the
momentum of each asymptotic cluster. In a real experiment these are re-
placed by wave packets with sharply peaked momenta. This replacement is
most easily accomplished by defining a channel Hilbert space which is the
na-fold tensor product of square integrable functions of the single cluster
spin and linear momentum variables. I denote this channel Hilbert space by
Hα which is spanned by products of square integrable the momentum wave
packets:

|φα〉 :=

na
∏

i=1

φi(~pi, µi). (268)

For scattering the wave packets are sharply peaked about a mean momentum
for each cluster of a. The space Hα is a space of na “particles = bound
clusters”. The internal structure of the “particles” does not appear in Hα.
The internal structure is introduced with mappings to the N -particle Hilbert
space.

The eigenstates (??) define a map Φα from the channel space Ha to the
N -particle Hilbert space

Φα|φα〉 := −
∑

ν1···µna

⊗na

i=1

∫

|~pi, νi(jiαi)〉
na
∏

j=1

φj(~pj, µj)d
3pj (269)

This is efficient notation for a normalizable N -particle state corresponding to
a set of na mutually non-interacting bound fragments. The channel Hilbert
space and injection operator provide a useful notation for separating the
internal structure from the asymptotic structure.

The time evolution operator of a scattering asymptote in channel α as-
sociated with partition a is

Ua(t) := e−iHat. (270)

It is also useful to define the corresponding Hamiltonian onHα which replaces
each Hai

by its kinetic energy plus binding energy:

Hα =

na
∑

i=1

(
p2
i

2mi
+ Eαi

). (271)
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This definition leads to the relation:

HaΦα = ΦαHα. (272)

If I Define
Uα(t) := e−iHαt (273)

on Hα I get the following identity

Ua(t)Φα = ΦαUα(t). (274)

I am now in a position to define the scattering asymptotic conditions
for multichannel scattering. This is the fundamental starting point of any
scattering theory. A scattering solution

|Ψ±(t)〉 = U(t)|Ψ±(0)〉 U(t) = e−iHt (275)

of the N -particle Schrödinger equation that asymptotically looks like na mu-
tually non-interacting clusters in channel α is defined by the Asymptotic
condition:

lim
t→±∞

‖U(t)|Ψ±(0)〉 − Ua(t)Φα|φα(0)〉‖ = 0 (276)

where the limit is a strong limit or strong abelian limit.
Using the unitarity of U(t) this state can be expressed in terms of two-

Hilbert space channel wave operators

|Ψ±〉 = Ω±|φα〉 (277)

where
Ωα± := lim

t→±∞
U(−t)Ua(t)Φα = lim

t→±∞
U(−t)ΦαUα(t). (278)

These wave operators are isometric mappings from Hα to H:

Ωα± : Hα → H ‖Ωα±|φα〉‖ = ‖|φα〉‖. (279)

The existence of the two-Hilbert space wave operators can be established
using a multichannel variant of the Cook condition. Following the steps of
the two-particle derivation leads to the sufficient condition for the existence
of the channel wave operator:

∫ ±∞

0

‖[HΦα − ΦαHα]Uα(t)|φα(0)〉‖ <∞ (280)
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which is the two-Hilbert space multichannel version of the Cook condition.
The quantity that replaces the interaction in the two-body case is

HΦα − ΦαHα = V aΦα. (281)

Multichannel scattering is interesting because it is possible to scatter from
an initial channel α to a final channel β. The probability amplitude for such
a reaction is given by the scattering matrix element

Sfiβiα = 〈Ψ+α(0)|Φ−β(0)〉 = 〈φβ(0)|Ω†
+βΩ−α|φα(0)〉. (282)

This can be expressed as a matrix element of a multichannel S-operator, Sβα,
that maps Hα to Hβ:

Sβα := Ω†
+βΩ−α (283)

It is useful to introduce a compact notation that treats all channels si-
multaneously. The first step is to define the asymptotic Hilbert space to be
the orthogonal direct sum of all of the channel spaces

Hf = ⊕αHα. (284)

It is useful to include the bound states in the channel sum. The correspond
to one cluster states. Vector in Hf can be considered as column vectors

|φf〉 =















|φα〉
|φβ〉
|φγ〉

...
|φζ〉















(285)

Two-Hilbert space wave operators are defined by

Ω± =
∑

α

Ω±αΠα (286)

where Πα is the orthogonal projection on the subspace Hα of Hf . In the
matrix notation Πβ is the matrix

Πβ =















0, 0, 0, · · ·0
0, I, 0, · · · , 0
0, 0, 0, · · ·0

...
0, 0, 0, · · ·0















. (287)
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Injection operators from Hf to H are defined by

Φ :=
∑

α

ΦαΠα, (288)

and the asymptotic Hamiltonian and time evolution operator are

Hf =
∑

α

HαΠα Uf (t) = e−iHf t. (289)

In this notation the multichannel scattering operator is linear operator on
Hf

S = Ω†
+Ω− (290)

with
Ω± = lim

t→±∞
U(−t)ΦfUf (t) (291)

While the formulation of the asymptotic conditions are important, it is
necessary to know how to compute the two-Hilbert space scattering matrix
elements. To illustrate this consider scattering from channel α to channel β.
I let

HaΦα = EαΦα HbΦβ = EβΦβ (292)

where the energy eigenvalues include the cluster kinetic energies. I treat the
cluster momenta as plane wave states. It follows that

〈β|S|α〉 =

= lim
t→∞

Φ†
βe

iHbte−2iHteiHatΦα

= Φ†
βΦα + lim

t→∞

∫ t

0

dt′
d

dt′
Φ†
βe

i(Eβ+Eα−2H)t′Φα

= Φ†
βΦα + lim

ε→0+
i

∫ ∞

0

dt′ Φ†
β

[

(Eβ −H)ei(Eβ+Eα−2H+iε)t′

+ ei(Eβ+Eα−2H+iε)t′(Eα −H)
]

Φα

= Φ†
βΦα + lim

ε→0+

1

2
Φ†
β

[

(H − Eβ)
1

Ē −H + iε
+

1

Ē −H + iε
(H − Eα)

]

Φα,

(293)
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where Ē := 1
2
(Eα +Eβ) is the average energy of the initial and final asymp-

totic states. Using (??) gives

Φ†
βΦα+ lim

ε→0+

1

2
Φ†
β

[

(H − Eb)
1

Ē −H + iε
+

1

Ē −H + iε
(H − Ea)

]

Φα, (294)

Next I recall that the resolvent R(z) := (z −H)−1, and Ra(z) := (z −Ha)
−1

of H and Ha satisfies the second resolvent relations

R(z)− Ra(z) = Ra(z)V
aR(z) = R(z)V aRa(z) Ra(z) :=

1

z −Ha

(295)

for any partition a. This leads to

Sβα =

= Φ†
βΦα + lim

ε→0+

1

2
Φ†
β

[

V b
(

1 +R(Ē + iε)V a
)

Ra(Ē + iε)

+ Rb(Ē + iε)
(

1 + V bR(Ē + iε)
)

V a
]

Φα

= Φ†
βΦα

[

1− lim
ε→0+

Eβ − Eα
Eβ − Eα + 2iε

]

+ lim
ε→0+

[

1

Eβ − Eα + 2iε
+

1

Eα − Eβ + 2iε

]

Φ†
β

(

V a + V bR(Ē + iε)V a
)

Φα

= Φ†
βΦα lim

ε→0+

[

2iε

Eβ − Eα + 2iε

]

+ lim
ε→0+

[ −4iε

(Eβ − Eα)2 + 4ε2

]

Φ†
β

(

V a + V bR(Ē + iε)V a
)

Φα. (296)

It is now possible to evaluate the limit as ε→ 0. It is important to remember
that this is the kernel of an integral operator that acts on subspaces of the
asymptotic Hilbert space.

The first term in square brackets is unity when the initial and final en-
ergies are identical, and zero otherwise; however, the limit in the bracket
is a Kronecker delta and not a Dirac delta function. For a 6= b, I expect
that 〈β(E ′)|α(E)〉 will be Lebesgue measurable in E ′ for fixed E (i.e there
is no delta function in E) , so there is no contribution from the first term
in Eq. (??). For the case that Hb = Ha, I have Φ†

β(E
′)Φα(E) ∝ δ(E ′ − E).

This vanishes by orthogonality unless Eβ = Eα, but then coefficient is unity.
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Thus, the first term is 〈β|α〉 if the initial and final channels are the same, but
zero otherwise. Note that the matrix elements vanish by orthogonality for
two different channels governed by the same asymptotic Hamiltonian with
the same energy. The first term in (??) is therefore a channel delta function.

For the second term, the quantity in square brackets becomes −2πiδ(Eβ−
Eα), which leads to the relation

Sβα = δβαI − 2πiδ(Eβ − Eα)Φ†
βT

ba(Ea + i0+)Φα, (297)

where
T ba(z) = V a + V bR(z)V a. (298)

This shows that the dynamics is contained in the transition operators T ab(z).
These have partition labels as superscripts.

In the special case that initial channel α is a two-cluster channel the
formula for the differential cross section for scattering into channel β becomes

dσ =
(2π)4µα
kα

|Φ†
βT

ba(Ea + i0+)Φα|2redδ(Eα − Eβ)δ(~pα − ~pβ)
nb
∏

i=1

d3pbi (299)

where the subscript red indicates that a three momentum delta has been
factored out of the transition matrix element:

|Φ†
βT

ba(Ea + i0+)Φα|red := |Φ†
βT

ba(Ea + i0+)Φα|δ(~pβ − ~pα). (300)

There is an additional statistical factor that arises if any the final asymptotes
are identical.

18 The Faddeev Equations

In the last section I showed that in many-body scattering problems the two-
body transition operator is replaced by the operators

T ba(z) = V a + V bR(z)V a. (301)

In this section I consider the simplest non-trivial case of three particles,
labeled 1, 2 and 3. There are five relevant partitions:

(123), (12)(3), (23)(1), (31)(2) and (1)(2)(3). (302)
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To illustrate the problem let b = (12)(3). The relevant transition operator
for elastic scattering of a bound state of the (12) system from particle (3) is

T bb(z) = V b + V bR(z)V b. (303)

Using the resolvent equation

R(z) = Rb(z) +Rb(z)V
bR(z) Rb(z) = (z −H0 − Vb)−1

in (??) leads to the Lippmann-Schwinger equation

T bb(z) = V b + V bRb(z)T
bb(z). (304)

This looks similar to the two-body Lippmann-Schwinger equation with V →
V b and R0(z)→ Rb(z), however there are fundamental difficulties if I repeat
what was done in the two particle case.

To see the problem with this equation in its most transparent form I
consider the corresponding equation for the scattering wave function. To
derive it I write the Schrödinger eigenvalue problem

H|ψ〉 = E|ψ〉 (305)

which I put in the form

(E −H0 − Vb)|ψ〉 = V b|ψ〉 (306)

I can invert (E −H0 − Vb) and write the above equation as

|ψ〉 = |φb〉+ (E ± i0+ −H0 − Vb)−1V b|ψ〉 (307)

where |φb〉 is a solution of

(E −H0 − Vb)|φb〉 = 0 (308)

and the ±i0+ fixes the asymptotic boundary condition on the scattering
eigenstate like it does in the two-body case. In this case Hb has eigenstates
where all three particles are asymptotically separated and solutions where
particles in the same cluster of b are bound. For example if b = (12)(3)
Hb might have eigenstates where particles 1 and 2 are bound. The three-
body eigenstate can still have any positive energy because the relative kinetic

106



energy between the (12) pair and the spectator particle 3 can take on any
positive value.

In addition to solutions that asymptotically look like three free particles
or bound 12 pairs, the Hamiltonian can also have eigenstates that asymptot-
ically look like bound states of particles 2 and 3 or 1 and 3. These states will
satisfy the homogeneous form of the Lippmann-Schwinger equation

|ψ〉 = (E ± i0+ −H0 − Vb)−1V b|ψ〉 (309)

If I let |χ〉 := V b|ψ〉 the above equation becomes

|χ〉 = V b(E ± i0+ −H0 − Vb)−1|χ〉 (310)

which shows that the Lippmann-Schwinger equation to T bb(z) also has non-
trivial solutions of the homogeneous form of the equations as z approached
the real axis.

The existence of these states means that Lippmann Schwinger equation
does not have a unique solution. The problem is that while integral equations
normally incorporate boundary conditions, the built-in boundary conditions
are not enough to ensure that the solution does not include ad-mixtures of
eigenstates where the (13) or (32) pairs are asymptotically bound.

The difference between the two and three body kernel of the Lippmann
Schwinger equation is that the two-body kernel is compact while the three
body kernel cannot be compact. This is because it contains a delta functions
in the relative momentum between particle 3 and particles 1 or 2.

If the kernel were compact the number of eigenstates of K with eigenval-
ues 1 is finite and each one is normalizable on the space where K is compact.
This is because the problems of finding eigenvalues is reduced to finite matrix
algebra in the compact case.

There are several ways to fix up the problem with the Lippmann Schwinger
equation. If I supplement the original equation with the additional equations

|ψ〉 = Rc(z)V
c|ψ〉 c = (23)(1), (31)(2) (311)

the solution becomes unique because the additional equations ensure that
eigenstates that asymptotically look like bound (23) or (31) states are ex-
cluded.

The same type of problems occur in the Lippmann Schwinger equation
for the transition operators. In that case kernels V bRb(z) are not compact.
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Faddeev was studying the completeness properties of the eigenstates of
the three-body problem. In order to get better control of the solutions he
generated a new set of coupled equations for the transition operators that
have a compact kernel.

The equations that I present are derived in the same spirit as the original
Faddeev equations, however they differ in structure.

I begin by considering the transition operators

T ab(z) := V b + V aR(z)V b (312)

and I note that
Va =

∑

c6=a

Vc (313)

where the sum is only over two-cluster partitions, c. For simplicity I consider
only two-body interactions. Using the decomposition of the interaction in
(??) gives

T ab(z) := V b +
∑

c6=a

VcR(z)Vb.

Next I use the resolvent identities

R(z) = Rc(z) +Rc(z)V
cR(z)

which gives

T ab(z) = V b +
∑

c6=a

Vc[Rc(z) +Rc(z)V
cR(z)]V b

or

T ab(z) = V b +
∑

c6=a

VcRc(z)T
cb(z). (314)

This is a coupled system of equation for the three amplitudes

T ab(z) (315)

for a = (ij)(k). Note that the three-body breakup transition matrix element,
T 0b(Z), 0 = (1)(2)(3):

T 0b = V b + V R(z)V b = V b +
∑

c

VcRc(z)T
cb(z) (316)
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can be obtained directly from these solutions.
The kernel of this equation also contains a delta function so it it does not

have a compact kernel. On the other hand if I iterate this equation once I
get the equivalent equation

T ab(z) = V b +
∑

c6=a

VcRc(z)V
b +

∑

c6=a

∑

d6=c

VcRc(z)VdRd(z)T
db(z) (317)

the iterated kernel
∑

d6=c

VcRc(z)VdRd(z) (318)

contains no delta functions and can be shown to be compact for complex z.
Faddeev found a space where the fifth iterate of a similar kernel is compact
on a normed space that contains nice functions. In his case he has to use a
special space to ensure that the singular integrals that appear in the equations
are well-behaved. General elements of the Hilbert space do not have this
property.

As a practical matter, onece the delta functions are eliminated from the
kernel, the equation is usually well-behaved provided the interaction are
short-ranged. Coulomb like force cannot be treated with these methods.

In order to understand what has been accomplished I consider an abstract
form of these equations

T (z) = D +K(z)T (z) (319)

which on n-iterations becomes

T (z) = D +K(z)D +K(z)2D +K(z)3D + · · ·+K(z)nT (z). (320)

This equation can be written as

(I −Kn(z))T (z) =
n−1
∑

m=0

Km(z)D. (321)

If Kn(z) is compact it can be expressed as a finite dimensional matrix KF (z)
plus a small matrix ∆(z) where if ∆(z) has norm less than 1

1

1−∆(z)
= I +

∞
∑

m=1

∆m(z) (322)
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converges in norm, which leads to the pair of equations

T (z) =

n−1
∑

m=0

X(z)Km(z)D +X(z)KF (z)T (z) (323)

X(z) = 1 + ∆(z)X(z) (324)

The X equation has a uniformly convergent power series solution while the
T (z) equation is reduced to finite matrix algebra.

This shows that it is sufficient that a finite iterate of the kernel is compact.
The system of equations () have a compact iterated kernel for short ranged
interactions. This is what I mean by the Faddeev equations, although these
are not the equations derived by Faddeev.

This is one of many equivalent forms of the three-body scattering equa-
tions. The driving term V b has the nice property that when the scattering is
initiated in the bound state of the interacting pair in partition b then V b|φb〉
is a localized function, which should improve numerical stability.

The actual solution of these equations is very complicated, especially
when they are used with realistic interactions.

19 Partial Waves

Partial Waves

The Faddeev equations to three particles, after removing the overall mo-
mentum conserving delta functions are integral equation is two vector vari-
ables. Numerical treatments of the integral equation lead to very large sys-
tems of linear equations.

In order to reduce the complexity of the Faddeev equations it is useful
to decompose them into uncoupled equations for different conserved angular
momentum channels.

In each arrangement the expansion of the plane wave states in partial
waves has the form:

|~qi, ~ki〉 =
∑

J,m,L,mL,l,ml

|q, k, L, l, J,m〉〈J,m|L,mL, l, ml〉〈L,mL|q̂〉〈l, ml|k̂〉 =

∑

J,m,L,mL,l,ml

|q, k, L, l, J,m〉〈J,m|L,mL, l, ml〉Y ∗
L,mL

(q̂)Y ∗
l,ml

(k̂) (325)
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In this separable s-wave model l = 0 and therefore J = L. I also note that
J is conserved by rotational invariance. I have suppressed the particle label
i in l and L.

Also, to keep the formulas simple I have assumed that the particles are
spinless. The method that I outline can be easily extended to particles with
spin.

The amplitudes of interest are

〈qa, ka, La, la, J,m|T ab(z)|qb, kb, Lb, lb, J,m〉 (326)

Because of the sum over c with c 6= a it is necessary to to evaluate matrix
elements of the form:

〈qi, ki, Li, li, J,m|qj, kj, Lj, lj, J,m〉. (327)

for i 6= j.
There are a few properties that help with the evaluation. First, under

rotations

U(R)|q, k, L, l, J,m〉 =
∑

m′

|q, k, L, l, J,m′〉DJ
m′m(R) (328)

transforms like spin J irreducible representation of the rotation group. In-
serting U †(R)U(R) between the initial and final matrix elements and using
the above gives

〈qi, ki, Li, li, J, n|qj, kj, Lj, lj, J ′, m〉 =

∑

n′m′

〈qi, ki, Li, li, J, n′|qj, kj, Lj, lj, J ′, m′〉DJ
n′n(R)DJ ′∗

m′m(R). (329)

Using the SU(2) identity[?]
∫

dRDJ
n′n(R)DJ ′∗

m′m(R) =
1

2J + 1
δn′m′δnmδJJ ′ (330)

where dR is the SU(2) Haar measure, I get

〈qi, ki, Li, li, J, n|qj, kj, Lj, lj, J ′, m〉 =

1

2J + 1

∑

n′

〈qi, ki, Li, li, J, n′|qj, kj, Lj, lj, J, n′〉δJJ ′δmn =
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RJ [qi, Li, ki, li, qj, Lj, kj, lj]δJJ ′δmn. (331)

Thus, the permutation matrix elements are diagonal in J and m and are
independent of m. Note, the Haar measure of a compact group is the unique
measure that is (1) invariant with respect to the group and (2) integrates to
1.

This reduces the problem of computing the overlap matrix element to the
problem of computing the rotationally invariant coefficients:

RJ [qi, Li, ki, li, qj, Lj, kj, lj] (332)

These are normally done using complicated analytical methods. I give a
simple method due to Balian and Brezin [?].

To compute this coefficient consider

RJ [qi, Li, ki, li, qj, Lj, kj, lj] =

1

2J + 1

∑

m

〈qi, ki, Li, li, J,m|qj, kj, Lj, lj, J,m〉 =

1

2J + 1

∑

m

∫

〈J,m|Li,Mi, li, mi〉〈J,m|Lj,Mj, lj, mj〉×

Y ∗
Li,Mi

(q̂i)Y
∗
li,mi

(k̂i)YLj ,Mj
(q̂j)Ylj ,mj

(k̂j)×

δ3(~qi − ~qi(~kj, ~qj))δ3(~ki − ~ki(~kj, ~qj))dΩ(k̂i)dΩ(k̂j)dΩ(q̂i)dΩ(q̂j). (333)

There are 6 delta functions and 8 angular integrals. One delta function
survives to give overall kinetic energy conservation. The sum over m makes
the remaining quantity invariant under rotations. Three of the integrals
paramarterize the rotational orientation of a coordinate system. This means
that three of the integrals just contribute a volume factor. What remains
are 5 non-trivial angle integrals and 5 delta functions. This means that all
of the angular integrals can be done explicitly.

To do this note that the integral over k̂i and q̂i eliminates the angular
parts of both delta functions. What remains is

∫

δ(ki −Gk(kj, qj, k̂j · q̂j))
k2
i

δ(qi −Gq(kj, qj, k̂j · q̂j))
q2
i

dΩ(k̂j)dΩ(q̂j) (334)

where

Gk =

√

1

4
k2 +

9

16
q2 ± 3

4
qk cos(θ) (335)
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Gq =

√

k2 +
1

4
q2 ∓ qk cos(θ). (336)

For k > 0 I have
δ(k − k′) = 2kδ(k2 − k′2). (337)

Using this in the above gives

4

∫

δ(k2
i − 1

4
k2
j − 9

16
q2
j ∓ 3

4
qjkk cos(θj))

ki
×

δ(q2
i − k2

j − 1
4
q2
j ± qjkj cos(θj))

qi
dφkj

d(cos(θj))dΩ(q̂j). (338)

The integral over u = cos(θj) can be performed by the delta function using

∫

δ(a− bu)du =
1

b
δ(u− a/b) (339)

What remains is

4

∫

δ(k2
i − 1

4
k2
j − 9

16
q2
j + 3

4
(q2
i − k2

j − 1
4
q2
j )

qiqjkikj
dφkj

dΩ(q̂j) =

4

∫

δ(k2
i + 3

4
q2
i − k2

j − 3
4
q2
j )

qiqjkikj
dφkj

dΩ(q̂j) (340)

Because of the m sum the remaining quantity is rotationally invariant. The
last two integrals contribute 2π × 4π = 8π2. This gives the final expression
for the recoupling coefficient

RJ [qi, Li, ki, li, qj, Lj, kj, lj] =

32π2

2J + 1

δ(k2
i + 3

4
q2
i − k2

j − 3
4
q2
j )

qiqjkikj
×

∑

n

〈J, n|Li,Mi, li, mi〉〈J, n|Lj,Mj, lj, mj〉×

Y ∗
Li,Mi

(q̂i)Y
∗
li,mi

(k̂i)YLj ,Mj
(q̂j)Ylj ,mj

(k̂j) (341)

where the spherical harmonics can be evaluated in any kinematically consis-
tent geometry, such as

qj = (0, 0, qj) (342)
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kj = (kj sin(θ), 0, kj cos(θ)) (343)

qi = (∓kj sin(θ), 0,∓kj cos(θ)− 1

2
qj) (344)

ki = (−1

2
kj sin(θ), 0,−1

2
kj cos(θ)± 3

4
qj) (345)

qi = (∓kj sin(θ), 0,∓kj cos(θ)− 1

2
qj). (346)

In this case the angle θ can be extracted from

q2
i = k2

j +
1

4
q2
j ∓ qjkj cos(θ) (347)

or

cos(θ) = ∓
4q2

i − 4k2
j − q2

j

4qjkj
. (348)

Thus I need to fix three kinematic scalars. Fourth is fixed by the energy
conserving delta function.

I define a reduced recoupliing coefficient

R̂J [qi, Li, ki, li, qj, Lj, kj, lj] (349)

by
RJ [qi, Li, ki, li, qj, Lj, kj, lj] =

R̂J [qi, Li, ki, li, qj, Lj, kj, lj]
δ(k2

i + 3
4
q2
i − k2

j − 3
4
q2
j )

qiqjkikj
. (350)

The partial wave equations are for the amplitudes

〈ka, la, qa, La|T abJ (z)|kb, lb, qb, Lb〉 (351)

where I have used rotational invariance to eliminate the magnetic quantum
numbers.

The equations have the form

〈ka, la, qa, La|T abJ (z)|kb, lb, qb, Lb〉 =

〈ka, la, qa, La|V b
J |kb, lb, qb, Lb〉+

∑

c6=a

∫

R̂J [qa, La, ka, la; q
′
c, L

′
c, k

′
c, l

′
c]
δ(k2

a + 3
4
q2
a − k′2c − 3

4
q′c2)

qaq′ckak
′
c

×
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tlc(k′c, k
′′
c , z − 3

4
q′2c )

z − k′′2c /m− 3q′2c /4m
k′2c dk

′
ck

′′2
c dk

′′
c q

′2
c dq

′
c×

〈k′′c , lc, q′c, Lc|T abJ (z)|kb, lb, qb, Lb〉 (352)

I can eliminate the delta function, and assume that that pair in the partition
is bound in a state φb. Thus, I replace kb, lb by φb and use

∫

δ(k2
a + 3

4
q2
a − k′2c − 3

4
q′2c )

qaq′ckak
′
c

k′2c dk
′
c =

1

2qaqcka
(353)

with the identification

k′2c = k2
a +

3

4
q2
a −

3

4
q′2c (354)

These changes give the equations

〈ka, la, qa, La|T abJ (z)|φb, qb, Lb〉 =

〈ka, la, qa, La|V b
J |φb, qb, Lb〉+

∑

c6=a

∫

R̂J [qa, La, ka, la; q
′
c, L

′
c, k

′
c, l

′
c]
k′′2c dk

′′
c q

′2
c dq

′
c

2qaq′cka
×

tlc(k′c, k
′′
c , z − 3

4
q′2c )

z − k′′2c /m− 3q′2c /4m
〈k′′c , lc, q′c, Lc|T abJ (z)|φb, qb, Lb〉 (355)

where it is understood that k′c = k′c(q
′
c)

To reduce this to a matrix equation I expand the solution in a complete
set of functions of ka and qa:

〈ka, la, qa, La|T abJ (z)|φb, qb, Lb〉 =
∑

mana

φma(ka)φna(qa)〈ma, la, na, La|T abJ (z)|φb, qb, Lb〉

(356)
This leads to

∑

mana

φma(ka)φna(qa)〈ma, la, na, La|T abJ (z)|φb, qb, Lb〉 =

〈ka, la, qa, La|V b
J |φb, qb, Lb〉+

∑

c6=a

∑

mcnc

∫

R̂J [qa, La, ka, la; q
′
c, L

′
c, k

′
c, l

′
c]
k′′2c dk

′′
c q

′2
c dq

′
c

2qaq′cka
×
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tlc(k′c, k
′′
c , z − 3

4
q′2c )

z − k′′2c /m− 3q′2c /4m
φmc(k

′′
c )φnc(q

′
c)〈mc, lc, na, La|T abJ (z)|φb, qb, Lb〉 (357)

Using orthogonality of the basis functions gives the following set of matrix
equations

〈ma, la, na, La|T abJ (z)|φb, qb, Lb〉 =

〈ma, la, na, La|V b
J |φb, qb, Lb〉+

∑

c6=a

∑

mcnc

∫

φma(ka)φna(qa)k
2
adkaq

2
adqaR̂

J [qa, La, ka, la; q
′
c, L

′
c, k

′
c, l

′
c]
k′′2c dk

′′
c q

′2
c dq

′
c

2qaq′cka
×

tlc(k′c, k
′′
c , z − 3

4
q′2c )

z − k′′2c /m− 3q′2c /4m
φmc(k

′′
c )φnc(q

′
c)〈mc, lc, na, La|T abJ (z)|φb, qb, Lb〉 (358)

where
〈ma, la, na, La|V b

J |φb, qb, Lb〉 =
∫

φma(ka)φna(qa)k
2
adkaq

2
adqa〈ka, la, qa, La|V b

J |φb, qb, Lb〉 (359)

and the kernel matrix is
Kmanamcnc(z) :=

∫

φma(ka)φna(qa)kadkaqadqaR̂
J [qa, La, ka, la; q

′
c, L

′
c, k

′
c, l

′
c]
k′′2c dk

′′
c q

′
cdq

′
c

2
×

tlc(k′c, k
′′
c , z − 3

4
q′2c )

z − k′′2c /m− 3q′2c /4m
φmc(k

′′
c )φnc(q

′
c) (360)

These equations are two-variable integral equations. In addition, for each
fixed J value there can be an infinite number of L and l values, so there is an
additional infinite sent of indices that need to be truncated to a finite set. In
these equations the matrices can get quite large. In addition, the integrals
needed to compute the matrix elements are singular as in the two-body case.
Unlike the two-body case, in the three-body problem the singularities move.

20 The Relation Between S and T

I begin with a discussion of multichannel scattering.
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The first step is to define a scattering channel. The simplest channel is
the one-particle channel corresponding an N -particle bound state. Simulta-
neous eigenstates of the Hamiltonian, linear momentum, spin, and magnetic
quantum number are labeled as below

|α〉 := |~p, ν (j, α)〉

To describe a multi-particle channel let a be a partition of the N particle
system into na disjoint subsystems. There is a scattering channel associated
with the partition a if each of the na subsystems has a bound state. A
channel corresponds to a possible state of the system long before or long
after a scattering event has taken place. The particles in each subsystem
remain bound, while the particles in different subsystems are mutually non-
interacting.

The state corresponding to a multi-fragment channel is the tensor product
of the subsystem bound states:

|αs〉 := ⊗na

i=1|~pi, νi(ji, αi)〉.

The channel states are eigenstates of the partition Hamiltonian, Ha, obtained
from theN -body HamiltonianH by turning-off interactions between particles
in different clusters of the partition a

There is a channel associated with each collection of bound states in a
given partition. Some partitions may have no scattering channels.

Channels are used to define scattering states. Consider a state at time
t = 0 of the form:

|φα〉 :=

∫

∑

⊗na

i=1|~pi, νi(ji, αi)〉
na
∏

i=1

φi(~pi, νi)d
3pi,

where t = 0 is the approximate time of collision. These states span the
channel subspace Hα. In the absence of interactions between different cluster
of a, at an earlier time −t, this state had the form

|φα(−t)〉 := eiHat|φα〉.

A scattering state |ψ−α(−t)〉 is a state that evolves under the influence of
the full Hamiltonian that looks like

|φα(−t)〉
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for sufficiently large t. This condition can be expressed as

lim
t→∞
‖|φα(−t)〉 − |ψ−α(−t)〉‖ = 0.

Using the unitarity of the time evolution operator we have the equivalent
form:

lim
t→∞
‖|ψ−α(0)〉 − e−iHteiHat|φα(0)〉‖ = 0

It is also possible to find solutions of the many-body Schrödinger equation
that look like a system of non-interacting subsystems in the asymptotic future

lim
t→∞
‖|φα(t)〉 − |ψ+α(t)〉‖ = 0

and the equivalent form:

lim
t→∞
‖|ψ+α(0)〉 − eiHte−iHat|φα(0)〉‖ = 0.

These equations are the asymptotic conditions of scattering theory. They
replace initial and final conditions.

Channel wave operators are defined by

Ω±α := lim
t→±∞

eiHte−iHatΠα (361)

where Πα is the projection on the channel subspace. The channel wave
operators can be used to express the scattering states in terms of the channel
states:

|ψ±α(0)〉 := Ω±α|φα(0)〉
The multichannel scattering operator is defined in terms of channel wave

operators as:
Sβα := Ω†

β+Ωα−. (362)

The operator S is a mapping on the orthogonal direct sum of the channel
subspaces,

Hs = ⊕α∈AHα

In equation (??), α denotes a channel in which the particles in each clus-
ter of the partition a are separately bound. Ha is the partition Hamiltonian,

which is obtained from the original Hamiltonian by turning off the interac-
tions between particles in different clusters of the partition a. The partition
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Hamiltonian is also the sum of the subsystem Hamiltonians for each cluster
in a:

Ha =
na
∑

i=1

Hai
. (363)

There is a scattering channel α associated with the partition a if each of
the Hai

has a bound state. Let |αi ~pi〉 denote a bound state of Hai
corre-

sponding to the channel α with total momentum ~pi. Now define the channel
projection operator:

Πα :=

∫ na
∏

i=1

d3pi|~p1 α1 · · · ~pna αna〉〈~p1 α1 · · · ~pna αna|. (364)

Channel states |ψα〉 are normalizable vectors satisfying:

|ψα〉 = Πα|ψα〉. (365)

Note that a given partition a may have none or many associated scattering
channels α.

To construct formulas for scattering matrix elements, let α and β denote
scattering channels associated with the asymptotic partition Hamiltonians
Ha and Hb, respectively. Let |α〉 and |β〉 denote sharp eigenstates of the
partition Hamiltonians:

Ha|α〉 = Eα|α〉; Hb|β〉 = Eβ|β〉. (366)

Using Eqs. (??,??) the S-matrix elements can be evaluated as follows:

〈β|Sba|α〉 =

= lim
t→∞
〈β|eiHbte−2iHteiHat|α〉

= 〈β|α〉+ lim
t→∞

∫ t

0

dt′
d

dt′
〈β|ei(Eβ+Eα−2H)t′ |α〉

= 〈β|α〉+ lim
ε→0+

i

∫ ∞

0

dt′ 〈β|
[

(Eβ −H)ei(Eβ+Eα−2H+iε)t′

+ ei(Eβ+Eα−2H+iε)t′(Eα −H)
]

|α〉
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= 〈β|α〉+ lim
ε→0+

1

2
〈β|

[

(H − Eβ)
1

Ē −H + iε
+

1

Ē −H + iε
(H − Eα)

]

|α〉,
(367)

where Ē := 1
2
(Eα +Eβ) is the average energy of the initial and final asymp-

totic states. Equation (??) is interpreted as the kernel of an integral oper-
ator. S-matrix elements are obtained by integrating the sharp eigenstates
in Eq. (??) over normalizable functions of the energy and any other contin-
uous variables. To simplify this expression, we introduce a more compact
notation. The residual interactions V a and V b are defined as follows:

V a := H −Ha; V b = H −Hb, (368)

where
V a|α〉 = (H − Eα)|α〉; V b|β〉 = (H − Eβ)|β〉. (369)

The resolvent operators of the Hamiltonian and the partition Hamiltonian
are:

R(z) :=
1

z −H Ra(z) :=
1

z −Ha

. (370)

These operators satisfy the second resolvent relations (Hi 57):

R(z)− Ra(z) = Ra(z)V
aR(z) = R(z)V aRa(z). (371)

Using these identities in Eq. (??) gives

〈β|S|α〉

= 〈β|α〉+ lim
ε→0+

1

2
〈β|

[

V b
(

1 +R(Ē + iε)V a
)

Ra(Ē + iε)

+ Rb(Ē + iε)
(

1 + V bR(Ē + iε)
)

V a
]

|α〉

= 〈β|α〉
[

1− lim
ε→0+

Eβ − Eα
Eβ − Eα + 2iε

]

+ lim
ε→0+

[

1

Eβ − Eα + 2iε
+

1

Eα − Eβ + 2iε

]

〈β|
(

V a + V bR(Ē + iε)V a
)

|α〉

= 〈β|α〉 lim
ε→0+

[

2iε

Eβ − Eα + 2iε

]

+ lim
ε→0+

[ −4iε

(Eβ − Eα)2 + 4ε2

]

〈β|
(

V a + V bR(Ē + iε)V a
)

|α〉. (372)
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It is now possible to evaluate the limit as ε→ 0. It is important to remember
that this is the kernel of an integral operator.

The first term in square brackets is unity when the initial and final ener-
gies are identical, and zero otherwise; however, the limit in the bracket is a
Kronecker delta and not a Dirac delta function. For a 6= b, we expect that
〈β(E ′)|α(E)〉 will be Lebesgue measurable in E ′ for fixed E, so there is no
contribution from the first term in Eq. (??). For the case that Hb = Ha,
we have 〈β(E ′)|α(E)〉 ∝ δ(E ′ − E). The matrix elements vanish by orthog-
onality unless Eβ = Eα, but then coefficient is unity. Thus, the first term is
〈β|α〉 if the initial and final channel are the same, but zero otherwise. Note
that the matrix elements vanish by orthogonality for two different channels
governed by the same asymptotic Hamiltonian with the same energy. The
first term in (??) is therefore a channel delta function.

For the second term, the quantity in square brackets becomes −2πiδ(Eβ−
Eα), which leads to the relation

〈β|S|α〉 = 〈a|b〉δβα − 2πiδ(Eβ − Eα)〈β|T ba(Ea + i0+)|α〉, (373)

where
T ba(z) = V a + V bR(z)V a. (374)

The operator T ab(z) is the channel transition operator and equation (??)
gives its explicit relation to the S matrix. This is the general expression for
the transition operator in a multichannel scattering theory. It applies both to
relativistic and to nonrelativistic applications. The multichannel transition
operator T ab(z) must be constructed in a dynamical model.

In models where the residual interactions and the resolvent commute with
the total linear momentum operator, and if the sharp channel states |α〉 and
|β〉 are simultaneous eigenstates of the appropriate partition Hamiltonian and
the linear momentum, then a three-momentum conserving delta function can
be factored out of the T -matrix element:

〈β|T ba(Ea + i0+)|α〉 = (2π)3δ3(pβ − pα)〈β|T ba(Ea + i0+)|α〉. (375)

If this is used in Eq.(??), then the S-matrix elements can be expressed in
terms of the reduced channel transition operators as follows:

〈β|S|α〉 = 〈a|b〉δβα − i(2π)4δ4(pβ − pα)〈β|T ba(Ea + i0+)|α〉 (376)

This expression has the advantage that the delta function is manifestly in-
variant under Poincaré transformations. The factor (2π)3 is included by
convention.
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21 Cross Sections

We now discuss the relation between the scattering matrix elements and scat-
tering cross sections The content of this section follows the classic references
of Möller (Mo 45) and Brenig and Haag (Br 59).

Plane-wave states will be used with the normalization

〈p′|p〉 = δ(p′ − p). (377)

which is simply a convention. With this choice, the square of the magnitude
of the wave functions, |〈p|φ〉|2, will have the interpretation of probability per
unit volume in momentum space. The Fourier transforms |〈r|φ〉|2 then have
the interpretation of probability per unit volume.

Consider a reaction initiated by the collision of a projectile and target
cluster. Assume that the target and projectile are described by normalizable
wave functions with very sharp momentum distributions centered about p̄t
and p̄p, respectively. With this choice of normalization, the probability den-
sity that the system prepared with this initial state will be found in a state
of N particles with momenta centered about p1 · · ·pN is given by

|〈p1 · · ·pN |φn〉|2, (378)

where

〈p1 · · ·pN |φn〉 :=

∫

d3pt

∫

d3pp 〈p1 · · ·pN |S|ptpp〉〈pt|φt〉〈pp|φp〉. (379)

If there are any identical particles in the final state, Eq. (??) must be mul-
tiplied by the square root of the statistical factor:

1

s
=

k
∏

i=1

1

ni!
, (380)

where there is a factor 1/ni! for each group of ni identical particles in the
final state. Note that for n identical particles, the resolution of the identity
is

I =
1

n!

∫

d3p1 · · ·
∫

d3pn|p1 · · ·pn〉〈p1 · · ·pn|, (381)

if the single particle states are normalized as in Eq. (??). In what follows, a
factor of 1/s will be included.
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This expression can be simplified by using the property that the initial

wave packets are sharply peaked, and the assumption that the transition ma-

trix elements are smooth functions of the momenta. If the scattering is not

elastic or, in the case of elastic scattering, the detector is not along the beam
line, then the scattering operator can be replaced by the transition operator
term alone:

〈p1 · · ·pN |φn〉

= −2πiδ(EN−Ei)
∫

d3pt

∫

d3pp 〈p1 · · ·pN |T ba
(

f(Ei) + i0+
)

|ptpp〉〈ptpp|φ〉

≈ −(2π)4i〈p1 · · ·pN |T ba
(

Ei + i0+
)

|p̄tp̄p〉

×
∫

d3pt

∫

d3pp 〈ptpp|φ〉δ(EN − Ei)δ(PN −Pt − pi). (382)

Using Eq. (??) in (??) , we get

|〈p1 · · ·pN |φn〉|2

=
4π2

s

∣

∣〈p1 · · ·pN‖T ba
(

Ei + i0+
)

|p̄tp̄p〉
∣

∣

2

×
∫

d3p′t

∫

d3p′p

∫

d3pt

∫

d3pp 〈p′
t|φt〉∗〈p′

p|φp〉∗〈pt|φt〉〈pp|φp〉

×δ(EN −E ′
t −E ′

p)δ(PN − p′
t − p′

p)δ(EN −Et −Ep)δ(PN − pt − pp). (383)

The integral can be expressed in terms of position-space wave functions as
follows:

∫

d3p′t

∫

d3p′p

∫

d3pt

∫

d3pp 〈pt|φp〉〈pp|φp〉〈p′
t|φp〉∗〈p′

p|φp〉∗

×δ(EN −Et −Ep)δ(PN − pt − pp)δ(Et +Ep−E ′
t −E ′

p)δ(pt + pp− p′
t − p′

p)

= (2π)−4

∫

d3r

∫

dt ei(pt+pp−p
′
t−p

′
p)·r−i(Et+Ep−E′

t−E
′
p)t

×
∫

d3p′t

∫

d3p′p

∫

d3pt

∫

d3pp 〈pt|φp〉〈pp|φp〉〈p′
t|φp〉∗〈p′

p|φp〉∗

= δ(EN − Ēt − Ēp)δ(PN − p̄t − ~̄pp)(2π)2

∫

d3r

∫

dt |〈(r, t)|φt〉〈(r, t)|φp〉|2 .
(384)

123



This leads to the following expression for the differential probability:

dW = 〈p1 · · ·pN |φn〉 =

(2π)4

s

∣

∣〈p1 · · ·pN |T ba
(

Ei + i0+
)

|p̄tp̄p〉
∣

∣

2

×
∫

d3r

∫

dt |〈r, t|φt〉〈r, t|φp〉|2 δ(EN − Ēt − Ēp)δ(PN − ~̄pt − ~̄pp)
N
∏

i=1

d3pi.

(385)
This expression is a distribution over all energies and momenta, and is inte-
grated over all space and time. The distribution with respect to total energy
and momenta (which are conserved) can be integrated out. To do this, we
introduce the phase space element dΦN as follows:

N
∏

i=1

d3pi = dEnd
3PNdΦN . (386)

Since

1 =

∫

dEnd
3Pδ4(P − P (p1 · · ·pN)), (387)

it is possible to write

dΦN =

∫ N
∏

i=1

d3piδ
4(P (~̄pt~̄pp)− P (p1 · · ·pN)), (388)

where the integral is over any four variables that eliminate the delta functions.
The remaining quantities are independent measurable quantities. After in-
tegrating out the total energy and momentum, the integrand with respect
to space and time represents the probability per unit time and volume that
a particle will be detected in the phase space element dΦN , independent of
the specific energy-momentum distribution of the initial state. This quantity
will be denoted by dw, and has been shown to be

dw =
(2π)4

s

∣

∣〈p1 · · ·pN |T ba
(

Ei + i0+
)

|~̄ptp̄p〉
∣

∣

2 |〈(r, t)|φt〉〈(r, t)|φp〉|2 dΦN .

(389)
The differential cross section is the ratio of the transition rate per unit volume
to the product of the incident probability current and the target density:

dσ :=
dw

vp−t|〈(r, t)|φt〉〈(r, t)|φp〉|2
dΦN
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=
(2π)4

svp−t
|〈p1 · · ·pN |T ba

(

Ei + i0+
)

|p̄tp̄p〉|2dΦN . (390)

This expression is valid both relativistically and nonrelativistically. In the
relativistic case, dσ is also relativistically invariant (Mo 45). To show this,
we redistribute the momentum dependent factors so that the phase space
factors, the transition matrix elements, and the velocity factors are sepa-
rately invariant. The first step is to change the single particle plane wave
normalization to a covariant normalization:

|pi〉 → |pi〉cov := Kpi
|pi〉. (391)

Covariance requires that

Kpi
= C ×

√

ωmi
(p2

i ); ωmi
(p2

i ) :=
√

m2
i + p2

i (392)

The constant C is arbitrary. We now define an invariant reduced transition
matrix element:

〈p1 · · ·pn|Mab|ptpp〉
:= cov〈p1 · · ·pN |T ba

(

Ei + i0+
)

|p̄tp̄p〉cov

:= 〈p1 · · ·pN |T ba
(

fEi + i0+
)

|p̄tp̄p〉(KtKp

N
∏

i=1

Kpi
). (393)

This entire quantity is invariant (ignoring spins) because S is invariant, the
basis in which S is evaluated is covariant, and the reduced transition oper-
ator is obtained from S by factoring out a four-momentum conserving delta
function. This definition introduces the factor (KtKp

∏N
i=1Kpi

)2 into the ex-
pression for the cross section. The factors associated with the final state can
be included in the phase space factor

dLN :=
dΦN

∏N
i=1K

2
pi

=
N
∏

i=1

d3pi
K2
pi

δ4(P − P (p1 · · ·pN)), (394)

which is invariant. What remains is the factor (vp−tK2
tK2

p)
−1. Direct evalua-

tion shows that (Mo 45)

vp−tωmt(p
2
t )ωmp(p

2
p) = vp−t

K2
t

C2

K2
p

C2
=

√

(pt · pp)2 −m2
tm

2
p. (395)
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Thus, (vp−tK2
tK2

p)
−1 is invariant, and we denote it by C4F , where C is defined

in Eq. ??eq:bu), and F is invariant. The differential cross section can now
be expressed as follows:

dσ :=
(2π)4

s

1

C4

|〈p1 · · ·pn|Mab|ptpp〉|2
F

dLN . (396)

I have not yet considered spin degrees of freedom. The suppressed spin
variables lead to the modification

dσ → (2π)4

s

1

C4

|〈p1, µ1 · · ·pn, µn|Mab|pt, νt,pp, νp〉|2
F

dLN . (397)

In general, the magnetic quantum numbers can be associated with any type
of spin. In applications, any type of spin can be used. However, when one
finally compares a calculation to experiment, one has to know how the given
spin is coupled to the device that separates different spin states. For electron
scattering, one measures invariant form factors, which can be used to extract
current matrix elements with different types of spins. The relation of the
current matrix element to the form factor will be different for each type of
spin.

The initial and final states are prepared from measured ensembles, which
are properly described by a density matrix in the spin degrees of freedom.
For the initial state, the target and projectile are described by the density
matrices ρt(νtν

′
t) and ρb(νbν

′
b), which are positive Hermitian matrices with

unit trace. The differential cross section becomes an unnormalized density
matrix in the final spins:

dρf :=
(2π)4

s

1

C4F
〈p1µ

′
1 · · ·pnµ′

n|Mab|ptν ′tppν ′p〉ρt(ν ′tνt)

×ρp(ν ′pνp)〈ptνtppνp|Mab†|p1µ1 · · ·pnµn〉dLN . (398)

The expectation value of a spin observable O in this ensemble is computed
by taking the trace with respect to the renormalized density matrix:

〈O〉 :=
Tr(Odρf)
Tr(dρf)

, (399)

where the trace is over the spins. The kinematic factors cancel in the compu-
tation of the renormalized density matrix. In general there are (2s+ 1)2 − 1
independent spin observables for a spin s final state. The total cross section
is the other one, corresponding to the trace of the identity.
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