Field theory in a wavelet basis

W. Polyzou University of Iowa Iowa State 2010

10 December 2010

What are wavelets?

- They are orthonormal basis functions that are used in data compression algorithms.
- JPEG digital images are tables of expansion coefficients in a wavelet basis.
- FBI fingerprint files are stored as expansion coefficients in a wavelet basis.

Wavelets in field theory?

- Complete set of local observables: orthonormal basis functions with compact support.
- Natural long and short wavelength cutoffs.
- Basis functions are fixed points of a linear renormalization group transform.
- Have more smoothness than block spins.
- Natural separation of scales.
- Exact multi-scale representation of field operators.

Operators

$$\underbrace{(Df)(x) = \sqrt{2}f(2x)}_{\text{scale change}} \qquad \underbrace{(Tf)(x) = f(x-1)}_{\text{translation}}.$$

Scaling equation

$$\phi(x) = D(\sum_{l=0}^{2K-1} h_l T^l \phi(x)) \qquad \int \phi(x) dx = 1$$

 $\phi(x) :=$ Scaling function

Renormalization group transformation

$$f'(x) = D\left(\sum_{l=0}^{2N-1} h_l T^l f(x)(x)\right)$$
block average
rescaling

 $\phi(x)$ is a fixed point of the Renormalization group transformation!

h_n constant coefficients satisfying

$$\sum_{n=0}^{2K-1} h_n = \sqrt{2}$$

$$\sum_{n=0}^{2K-1} h_n h_{n-2m} = \delta_{m0}$$

$$g_n := (-I)^n h_{2K-1-n}$$
 $\sum_{n=0}^{2K-1} n^m g_n = 0$ $m < K$

Equations fix h_n up to reflection, $h_n \to h'_n = h_{2K-1-n}$

Daubechies' scaling coefficients, K = 1, 2, 3

h _l	K=1	K=2	K=3
h ₀	$1/\sqrt{2}$	$(1+\sqrt{3})/4\sqrt{2}$	$(1+\sqrt{10}+\sqrt{5+2\sqrt{10}})/16\sqrt{2}$
h_1	$1/\sqrt{2}$	$(3+\sqrt{3})/4\sqrt{2}$	$(5+\sqrt{10}+3\sqrt{5+2\sqrt{10}})/16\sqrt{2}$
h ₂	0	$(3-\sqrt{3})/4\sqrt{2}$	$(10-2\sqrt{10}+2\sqrt{5+2\sqrt{10}})/16\sqrt{2}$
<i>h</i> ₃	0	$(1-\sqrt{3})/4\sqrt{2}$	$(10-2\sqrt{10}-2\sqrt{5+2\sqrt{10}})/16\sqrt{2}$
h ₄	0	0	$(5+\sqrt{10}-3\sqrt{5+2\sqrt{10}})/16\sqrt{2}$
h ₅	0	0	$(1+\sqrt{10}-\sqrt{5+2\sqrt{10}})/16\sqrt{2}$

Properties of scaling function $\phi(x)$

1. Reality

$$\phi(x) = \phi^*(x)$$

2. Partition of unity

$$1 = \sum_{n = -\infty}^{\infty} \phi(x - n) = \sum_{n = -\infty}^{\infty} (T^n \phi)(x)$$

3. Compact support

$$support[\phi(x)] = [0, 2K - 1]$$

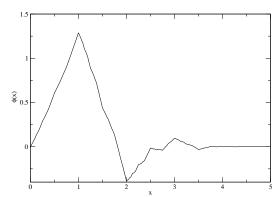
5. Differentiability (K>2)

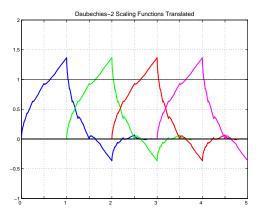
$$\frac{d\phi(x)}{dx}$$
 exists $C^1(\mathbb{R})$ for $K \geq 3$

6. Orthonormality

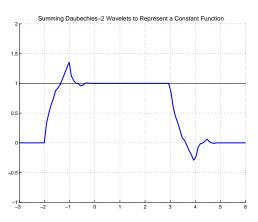
$$(T^m \phi, T^n \phi) = \delta_{mn}.$$

Daubechies' K=3 scaling function





Partition of unity



Scaling properties

$$\phi_n^k(x) := (D^k T^n \phi)(x) = \sqrt{2^k} \phi(2^k (x - n/2^k))$$

Resolution $1/2^k$ subspace

$$\mathcal{V}_k := \{ f(x) | f(x) = \sum_{n=-\infty}^{\infty} c_n \phi_n^k(x) \qquad \sum_{n=-\infty}^{\infty} |c_n|^2 < \infty \}$$

Subspaces of different resolution related by

$$L^2(\mathbb{R}) \supset \cdots \supset \mathcal{V}_{k+1} \supset \mathcal{V}_k \supset \mathcal{V}_{k-1} \supset \cdots$$

Properties of $\phi_n^k(x)$

1. Reality:

$$\phi_n^k(x) = \phi_n^{k*}(x)$$

2. Partition of unity:

$$\frac{1}{\sqrt{2^k}}\sum_{n=-\infty}^{\infty}\phi_n^k(x)=\sum_{n=-\infty}^{\infty}\phi(2^kx-n)=1$$

3. Compact support:

$$support[\phi_n^k(x)] = \left[\frac{n}{2^k}, \frac{n+2K-1}{2^k}\right]$$

4. Differentiability (continuous for $k \ge 3$):

$$\frac{d\phi_n^k(x)}{dx} = 2^k D^k T^n \frac{d\phi}{dx}$$

$$\frac{d}{dx}D = 2D\frac{d}{dx} \qquad \frac{d}{dx}T = T\frac{d}{dx}$$

5. Orthonormality:

$$(\phi_m^k, \phi_n^k) = \delta_{mn}$$

6. Approximation:

$$\lim_{k\to\infty}\mathcal{V}_k=L^2(\mathbb{R})$$

7. Normalization (scale fixing):

$$\int \phi_n^k(x) dx = \frac{1}{\sqrt{2^k}}$$

Multi-scale decomposition of $L^2(\mathbb{R})$

$$m > n \implies \mathcal{V}_m \supset \mathcal{V}_n$$

$$L^2(\mathbb{R}) \supset \cdots \supset \mathcal{V}_{n+1} \supset \mathcal{V}_n \supset \mathcal{V}_{n-1} \supset \cdots \supset \emptyset$$

$$\mathcal{V}_{n+1} = \mathcal{V}_n \oplus \mathcal{W}_n$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\mathcal{V}_n = \mathcal{W}_{n-1} \oplus \mathcal{W}_{n-2} \oplus \cdots \oplus \mathcal{W}_{n-m} \oplus \mathcal{V}_{n-m}$$

$$\mathbf{Theorem: } \lim_{n \to \infty} \mathcal{V}_n = L^2(\mathbb{R})$$

$$L^2(\mathbb{R}) = \bigoplus_{n=0}^{\infty} \mathcal{W}_n = \mathcal{V}_m \oplus \left(\bigoplus_{n=0}^{\infty} \mathcal{W}_n\right)$$

Wavelets

\mathcal{W}_n are wavelet spaces

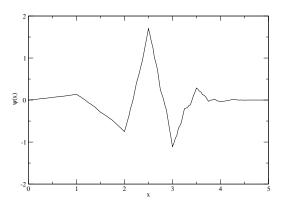
$$\psi(x) = D(\sum_{l=0}^{2K-1} (-)^l h_{2K-l-1} T^l \phi(x))$$

$\psi(x)$ is called the "Mother" wavelet

$$\psi_I^n(x) := D^n T^I \psi(x)$$

 $\{\psi_l^n\}_l$ orthonormal basis for \mathcal{W}_n

Daubechies' K = 3 mother wavelet



support $[\psi(x)] = \text{support } [\phi(x)]$

 h_l are determined up to space reflection by the requirements

$$(\psi, x^n) = 0, \quad n = 0, \dots, K - 1 \qquad (\phi, T^m \phi) = \delta_{m0}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \sum_{m} m^n (-)^m h_{l-m} = 0 \qquad \sum_{l=0}^{2K-1} h_{l-2m} h_l = \delta_{m0}$$

$$\sum_{m=0}^{2K-1} h_l = \sqrt{2}$$

Change of scale (expression coarse-scale functions in terms of fine-scale scaling functions):

$$\mathcal{V}_k = \mathcal{W}_{k-1} \oplus \mathcal{V}_{k-1}$$

$$\phi_n^{k-1}(x) = \sum_{l=0}^{2K-1} h_l \phi_{2n+l}^k(x)$$

wavelet block-spin average

$$\psi_n^{k-1}(x) = \sum_{l=0}^{2K-1} g_l \phi_{2n+l}^k(x)$$

lost high-frequency information

$$g_I = (-)^I h_{2K-1-I}$$

Inverse relations

Reconstruct fine resolution from coarse resolution plus wavelets

$$\phi_n^k = \sum_m h_{n-2m} \phi_m^{k-1} + \sum_m g_{n-2m} \psi_m^{k-1}$$

Wavelet localized fields (scale k)

$$\Phi(x,t), \qquad \Pi(x,t)$$

$$\mathbf{\Phi}^k(n,t) := \int \phi_n^k(x) \mathbf{\Phi}(x,t) dx$$

$$\tilde{\mathbf{\Phi}}^k(n,t) := \int \psi_n^k(x) \mathbf{\Phi}(x,t) dx$$

$$\mathbf{\Pi}^k(n,t) := \int \phi_n^k(x) \mathbf{\Pi}(x,t) dx$$

$$\tilde{\Pi}^k(n,t) := \int \psi_n^k(x) \Pi(x,t) dx$$

• Two-kinds of fields: scaling function fields, $\Phi^k(n,t)$, and wavelet fields, $\tilde{\Phi}^k(n,t)$.

• Wavelet fields encode fine scale physics $(\frac{1}{2^k})$.

• k gives a short-distance cutoff.

• Limits $-N \le n \le N$ give volume cutoff.

Commutation relations (fixed scale k): follow from

$$[\phi(\mathbf{x},t),\pi(\mathbf{y},t)] = i\delta(\mathbf{x}-\mathbf{y})$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$[\mathbf{\Phi}^k(m,t),\mathbf{\Phi}^k(n,t)] = 0 \qquad [\mathbf{\Pi}^k(m,t),\mathbf{\Pi}^k(n,t)] = 0$$

$$[\mathbf{\Phi}^k(m,t),\mathbf{\Pi}^k(n,t)] = i\delta_{mn}$$

$$[\tilde{\mathbf{\Phi}}^k(m,t),\tilde{\mathbf{\Phi}}^k(n,t)] = 0 \qquad [\tilde{\mathbf{\Pi}}^k(m,t),\tilde{\mathbf{\Pi}}^k(n,t)] = 0$$

$$[\tilde{\mathbf{\Phi}}^k(m,t),\tilde{\mathbf{\Pi}}^k(n,t)] = i\delta_{mn}$$

$$[\tilde{\mathbf{\Phi}}^k(m,t),\mathbf{\Phi}^k(n,t)] = 0 \qquad [\tilde{\mathbf{\Pi}}^k(m,t),\mathbf{\Pi}^k(n,t)] = 0$$

$$[\tilde{\mathbf{\Phi}}^k(m,t),\mathbf{\Pi}^k(n,t)] = 0$$

Resolution $1/2^k$ field operators

$$\mathbf{\Phi}^{k}(x,t) = \sum_{n=-\infty}^{\infty} \mathbf{\Phi}^{k}(n,t) \phi_{n}^{k}(x)$$

$$\tilde{\boldsymbol{\Phi}}^{k}(x,t) = \sum_{n=-\infty}^{\infty} \tilde{\boldsymbol{\Phi}}^{k}(n,t) \psi_{n}^{k}(x)$$

$$\Pi^k(x,t) = \sum_{n=-\infty}^{\infty} \Pi^k(n,t) \phi_n^k(x)$$

$$\tilde{\Pi}^{k}(x,t) = \sum_{n=1}^{\infty} \tilde{\Pi}^{k}(n,t)\psi_{n}^{k}(x)$$

Multiscale representation

Expansion of the exact field in terms of finite resolution parts

(k arbitrary but fixed coarse scale)

$$\mathbf{\Phi}(x,t) = \mathbf{\Phi}^k(x,t) + \sum_{m=k+1}^{\infty} \tilde{\mathbf{\Phi}^m}(x,t)$$

$$\Pi(x,t) = \Pi^k(x,t) + \sum_{m=k+1}^{\infty} \tilde{\Pi}^m(x,t)$$

Space-time creation and annihilation operators

$$\mathbf{a}^k(n,t) := \frac{1}{\sqrt{2}}(\mathbf{\Phi}^k(n,t) + i\mathbf{\Pi}^k(n,t))$$

$$(\mathbf{a}^k(n,t))^\dagger := rac{1}{\sqrt{2}}(\mathbf{\Phi}^k(n,t) - i\mathbf{\Pi}^k(n,t))$$

$$\tilde{\mathbf{a}}^k(n,t) := \frac{1}{\sqrt{2}} (\tilde{\mathbf{\Phi}}^k(n,t) + i \tilde{\mathbf{\Pi}}^k(n,t))$$

$$(\tilde{\mathbf{a}}^k(n,t))^{\dagger} := \frac{1}{\sqrt{2}} (\tilde{\mathbf{\Phi}}^k(n,t) - i\tilde{\mathbf{\Pi}}^k(n,t))$$

$$[\mathbf{a}^k(m,t),(\mathbf{a}^k(n,t))^{\dagger}]=\delta_{mn}$$

$$[\tilde{\mathbf{a}}^s(m,t),(\tilde{\mathbf{a}}^t(m,t))^{\dagger}]=\delta_{st}\delta_{mn}$$

All other commutators vanish

Can we use this algebra to describe an interacting field theory

Algebra can be given in terms of fields restricted to a light-front $^{\times}=0$.

States on the algebra are represented by discrete sequences.

$$e^{-Sa^{\dagger}}He^{Sa^{\dagger}}|0\rangle$$
?

Interactions are almost local - ISU code?.

- Only the very large m wavelet fields Ψ^m are sensitive to short distance physics.
- $\Phi^k(x,t)$ and $\Pi^k(x,t)$ are Fock space operators not operator-valued distributions!

•
$$[\Phi^k(x,t),\Phi^k(y,t)] = 0$$
 for $|x-y| > \frac{2K-1}{2^k} \cdots$

• Truncating the *n* sum gives a volume cutoff.

• Truncating the *m* sum gives a UV cutoff.

Questions

- Field equations, Hamiltonians, require local operator products?
- Field equations, Hamiltonians, require derivatives of operators?
- How do we approximately realize the Poincare Lie algebra?
- How do we implement local gauge invariance?
- Reflection positivity?
- Momentum space?

Local products of fields

$$\begin{split} \boldsymbol{\Phi}^k(x,t) \boldsymbol{\Phi}^k(x,t) &= \sum_{mn} \boldsymbol{\Phi}^k(m,t) \boldsymbol{\Phi}^k(n,t) \phi_m^k(x) \phi_n^k(x) \approx \\ &\sum_{mnk} \boldsymbol{\Phi}^k(m,t) \boldsymbol{\Phi}^k(n,t) \Gamma_{mnl}^k \phi_l^k(x) \end{split}$$

where

$$\Gamma_{mnl}^{k} = \int \phi_{m}^{k}(x,t)\phi_{n}^{k}(x,t)\phi_{l}^{k}(x,t)dx$$

can be computed exactly using scaling equation!

vanishes for
$$|n - m|$$
, $|n - l|$, $|m - l| > 2K - 1$

Products become slightly non-local

Spatial derivatives of fields

$$\frac{d\mathbf{\Phi}^k}{dx}(x,t) = \sum_{mn} \mathbf{\Phi}^k(m,t) \frac{d\phi_m^k}{dx}(x) \approx$$

$$\sum_{mn} \mathbf{\Phi}^k(m,t) D_{mn}^k \phi_n^k(x)$$

where

$$D_{mn}^{k} = \int \frac{d\phi_{m}^{k}}{dx}(x,t)\phi_{n}^{k}(x,t)dx$$

can be computed exactly using scaling equation!

vanishes for |n-m| > 2K-1

Properties of $\Gamma^k_{n_1,\dots,n_m}$ and $D^k_{m,n}$

$$\Gamma^k_{n_1,\cdots,n_m} = \Gamma^k_{n_{\sigma(1)},\cdots,n_{\sigma(m)}}$$

for any permutation of m objects σ .

$$\sum_{n_1} \Gamma^k_{n_1, \dots, n_m} = \sqrt{2^k} \Gamma^k_{n_2, \dots, n_m}$$

$$\Gamma^k_{n_1, \dots, n_m} = 2^{k(\frac{n-2}{2})} \Gamma^0_{n_1, \dots, n_m}$$

$$D^k_{m,n} = -D^k_{n,m}$$

$$\sum_{n} D_{mn} = -\sum_{n} D_{nm} = 0$$

$$D^k_{m,n} = 2^k D^0_{m,n}.$$

Exact local products

$$\begin{aligned} \boldsymbol{\Phi}(x,t)\boldsymbol{\Phi}(x,t) &= \sum \boldsymbol{\Phi}^{k}(n,t)\boldsymbol{\Phi}^{k}(m,t)(\Gamma_{nmr}^{kkk}\phi_{r}^{k}(x) + \sum \Gamma_{nmr}^{kkl}\psi_{r}^{l}(x)) \\ &+ \sum \tilde{\boldsymbol{\Phi}}^{l}(n,t)\boldsymbol{\Phi}^{k}(m,t)(\sum \Gamma_{nmr}^{ikk}\phi_{r}^{k}(x) + \sum \Gamma_{nmr}^{ikl'}\psi_{r}^{l'}(x)) \\ &+ \sum \boldsymbol{\Phi}^{k}(n,t)\tilde{\boldsymbol{\Phi}}^{l}(m,t)(\sum \Gamma_{nmr}^{kik}\phi_{r}^{k}(x) + \sum \Gamma_{nmr}^{kil'}\psi_{r}^{l'}(x)) \\ &+ \sum \tilde{\boldsymbol{\Phi}}^{l}(n,t)\tilde{\boldsymbol{\Phi}}^{s}(m,t)(\sum \Gamma_{nmr}^{isk}\phi_{r}^{k}(x) + \sum \Gamma_{nmr}^{isi'}\psi_{r}^{l'}(x)) \end{aligned}$$

Exact local derivatives

$$\frac{d\mathbf{\Phi}(x,t)}{dx} = \sum \mathbf{\Phi}^k(n)(D_{nm}^{kk}\phi_m^k(x) + \sum D_{nm}^{kl}\psi_m^l(x))$$

Local products constructed out of infinite sets of non-local products

$$\Gamma_{n_1\cdots n_m}^{k_1\cdots k_m} = \int \phi_{n_1}^{k_1}(x)\phi_{n_2}^{k_2}\cdots(x)\phi_{n_m}^{k_n}(x)dx$$

$$\Gamma_{n_1\cdots n_m}^{k_1\cdots k_m} = \int \psi_{n_1}^{k_1}(x)\cdots\phi_{n_m}^{k_m}(x)dx$$

:

$$D_{n_{1}n_{2}}^{k_{1}k_{2}} = \int \frac{d\psi_{n_{1}}^{k_{1}}}{dx}(x) \cdots \phi_{n_{m}}^{k_{m}}(x) dx$$
:

Can all be computed exactly using the scaling equation

Renormalization group properties of fields

$$\mathbf{\Phi}^{k}(n,t) = \sum_{m} h_{n-2m} \mathbf{\Phi}^{k-1}(m,t) + \sum_{m} g_{n-2m} \tilde{\mathbf{\Phi}}^{k-1}(m,t) =$$

$$D\mathbf{\Phi}^{k}(n,t) := (\phi_{n}^{k}, D\mathbf{\Phi}) = (D^{-1}\phi_{n}^{k}, \mathbf{\Phi}) = \Phi^{k-1}(n,t)$$

$$\mathbf{\Phi}^{k}(n,t) = D(\sum_{m} h_{n-2m} \mathbf{\Phi}^{k}(m,t) + \sum_{m} g_{n-2m} \tilde{\mathbf{\Phi}}^{k}(m,t))$$

Symmetries

$$[O^{a}(x), O^{b}(y)] = i\delta(x - y)f^{abc}O^{c}(y)$$

$$1 = (2^{-k/2} \sum_n \phi_n^k(x))(2^{-k/2} \sum_m \phi_m^k(y))$$

$$1 = (2^{-k/2} \sum_{n} \phi_{n}^{k}(x))$$

$$O_n^{ak} := 2^{k/2} \int O^a(x) \phi_n^k(x) dx$$

$$[\sum_{n} O_{n}^{ak}, \sum_{m} O_{m}^{bk}] = if^{abc} \sum_{l} O_{l}^{ck}$$

$$O^a o \sum_n O_n^{ak}$$

Gives local generators - the symmetry is broken when products of discrete files are use to construct O_n^{ak} .

Gauge transformations

$$\mathbf{\Phi}_n^k \to \mathbf{\Phi}_n^{\prime k} = V_n \mathbf{\Phi}_n^k$$

Must preserve both operator products and derivatives

$$\sum_{mnl} \int \mathbf{\Psi}_{n}^{k\prime\dagger} \mathbf{\Psi}_{m}^{k\prime} \Gamma_{nml}^{k} \phi_{l}^{k}(x) dx =$$

$$\sum_{mn} \mathbf{\Psi}_{n}^{k\prime\dagger} \mathbf{\Psi}_{m}^{k\prime} 2^{-k} \delta_{nm} 2^{k} =$$

$$\sum_{n} \mathbf{\Psi}_{n}^{k\prime\dagger} \mathbf{\Psi}_{n}^{k\prime} =$$

$$\sum_{n} \mathbf{\Psi}_{n}^{k\prime\dagger} V^{\dagger}(n) V(n) \mathbf{\Psi}_{n}^{k} =$$

$$\sum_{n} \mathbf{\Psi}_{n}^{k\dagger} \mathbf{\Psi}_{n}^{k}$$

$$-i\int \mathbf{\Psi}^{\dagger}(x)\frac{d}{dx}\mathbf{\Psi}(x)dx$$

The Discrete version of this is

$$-i\sum \mathbf{\Psi}_{n}^{\dagger k}\mathbf{\Psi}_{m}^{k}D_{ml}^{k}\Gamma_{nlr}^{k}\int\phi_{r}^{k}(x)$$

Using $(D_{mn}^k = -D_{nm}^k)$ this becomes

$$-i\sum \mathbf{\Psi}_{n}^{\dagger k}\mathbf{\Psi}_{m}^{k}D_{mn}^{k}=\sum \mathbf{\Psi}_{n}^{\dagger k}(iD_{nm}^{k})\mathbf{\Psi}_{m}^{k}$$

Under Gauge transformations

$$\sum_{nm} \mathbf{\Psi}_n^{\dagger k} (iD_{nm}^k) \mathbf{\Psi}_m^k D_{mn}^k \rightarrow$$

$$\sum_{nm} \mathbf{\Psi}_n^{\dagger k\prime} (iD_{nm}^k) \mathbf{\Psi}_m^{k\prime} =$$

$$\sum_{nm} \mathbf{\Psi}_n^{\dagger k} V^{\dagger}(n) (iD_{nm}^k) V(m) \mathbf{\Psi}_m^k$$

$$\sum_{nm} \mathbf{\Psi}_n^{\dagger k} (iD_{nm}^k) \mathbf{\Psi}_m^k$$

Introduce a vector potential

$$\sum_{nm} \mathbf{\Psi}_n^{\dagger k} (iD_{nm}^k - e\mathbf{A}_{mn}^k) \mathbf{\Psi}_m^k$$

Gauge invariance requires

$$\sum_{nm} \mathbf{\Psi}_n^{\dagger k\prime} (i D_{nm}^k - e \mathbf{A}_{mn}^{k\prime}) \mathbf{\Psi}_m^{k\prime} =$$

$$\sum_{nm} \mathbf{\Psi}_n^{\dagger k} V^{\dagger}(n) (iD_{nm}^k - e\mathbf{A}_{nm}^k) V(m) \mathbf{\Psi}_m^k$$

Gauge covariant derivative

$$(iD_{nm}^k - e\mathbf{A}_{mn}^{k\prime})$$

Gauge transformation of A_{mn}^k

$$\mathbf{A}_{nm}^{k\prime} = iD_{nm}^k - iV^{\dagger}(n)D_{nm}^kV(m) + V^{\dagger}(n)\mathbf{A}_{nm}^{k\prime}V^{\dagger}(m)$$

Outlook

- Different discrete approach to field theory.
- Renormalization group and block spin transformations natural.
- Has structural features to treat Gauge theories and symmetries.
- Replaces all operator distributions with almost local operators with support on all scales.
- Infinities due infinite sums.
- Space-time creation and annihilation operators.

Discussion: Useful applications ?

Thanks James!