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What are wavelets?

e They are orthonormal basis functions that are used in
data compression algorithms.

e JPEG digital images are tables of expansion coefficients
in a wavelet basis.

o FBI fingerprint files are stored as expansion coefficients
in a wavelet basis.



Wavelets in field theory?
Complete set of local observables: orthonormal basis
functions with compact support.
Natural long and short wavelength cutoffs.

Basis functions are fixed points of a linear
renormalization group transform.

Have more smoothness than block spins.
Natural separation of scales.

Exact multi-scale representation of field operators.



Operators

(Df)(x) = V2f(2x) (TF)(x) = f(x —1).

scale change translation

Scaling equation

2K-1

b(x) = (S hT'6(x) / H(x)dx = 1
/=0

¢(x) := Scaling function



Renormalization group transformation

2K-1

f'(x) =D (Y mT'f(x)(x))
1=0

block average

rescaling

¢(x) is a fixed point of the Renormalization group
transformation!



h, constant coefficients satisfying

2K-1

> =2
n=0

2K—-1
Z hnhnf2m = 6m0
n=0

2K-1

gn = (=1)"hak—1-n Z n"g,=0 m< K
n=0

Equations fix h, up to reflection, h, — h, = hox_1_,



Daubechies’ scaling coefficients, K =1,2,3

h | K=1 | K=2 K=3

ho | 1/v2 | (1++3)/4V2 | (1+V10+ V5 +2110)/16v2
hi | 1/vV2 | 3+ V3)/4v2 | (5+ V10 + 35 +21/10)/16v/2
hy | 0 (3—3)/4v2 | (10 — 210 +2V/5 +2V/10)/16v/2
h; | O (1—+/3)/4v2 | (10 —2V/10 — 2v/5 + 21/10)/16V/2
hy | O 0 (5+ v/10 — 3v/5 4+ 24/10) /16+/2
hs | 0 0 (1+ /10 — V/5 +2V10) /162




Properties of scaling function ¢(x)

. Reality
¢(x) = ¢*(x)
. Partition of unity
1= ox-nm= > (T"9)x)

. Compact support
support[6(x)] = [0, 2K — 1]
. Differentiability (K>2)

dﬁ(xx) exists CYR) for K>3

. Orthonormality
(ngb’ -,—n¢) = 5mn~



Daubechies’ K=3 scaling function

15 ‘
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Daubechies-2 Scaling Functions Translated

/|
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Partition of unity

Summing Daubechies-2 Wavelets to Represent a Constant Function

A




Scaling properties
Br(x) = (DKT"$)(x) = V2kg(2*(x — n/2%))

Resolution 1/2% subspace

o0

Vie= {f(If(x) = D andi(x) Y lenl* < oo}

n=—oo n=—0o0

Subspaces of different resolution related by

L2(R)D~--ka+1DVk3Vk,13"'



Properties of ¢X(x)

1. Reality:
(%) = &3 (x)

2. Partition of unity:

3. Compact support:

n n+2K -1
support[¢);(x)] = [27, T]

4. Differentiability (continuous for k > 3):

doR(x)  k nknd®
OnX) _ pkpknZ?
dx dx

d d

dp_pd  dy_s9

dx dx dx dx



5. Orthonormality:
(ém: E8) = Omn
6. Approximation:
lim Vi = L3(R)
k—00
7. Normalization (scale fixing):

K(x)dx =
/¢n(X)dX— \/27



Multi-scale decomposition of L?(R)

m>n = V,DOV,

PR)D - DVp1DVaD Va1 D---D0

Vi1 = Va © Wi
\
Vo =Wh1 @Who® - OWihem @ Vaem
Theorem: lim, .o V, = L?(R)

[*(R) = é Wp=Vn® (é Wn>

n=—0oo



Wavelets

W, are wavelet spaces

2K-1

Y(x) = DY () hok—1-1T'$(x))

1=0
1(x) is called the “Mother” wavelet

Y] (x) = D" T'y(x)

{1} orthonormal basis for W,



W(x)

Daubechies’ K = 3 mother wavelet




support [1(x)] = support [¢(x)]

h; are determined up to space reflection by the requirements

(’(/}7Xn):O7 HZO,"-,K—]. (¢7Tm¢):6m0
\

2K-1

Z m"(=)"h_m =0 Z hi—omh; = dmo
1=0

m

2K-1

> h=v2
=1



Change of scale (expression coarse-scale functions in terms
of fine-scale scaling functions):

Vi = Wik—1 ® Vi1

2K-1
A (X)) = > s, ()
=0
wavelet block-spin average
2K-1
n (X)) = > &@b54i(%)

1=0

lost high-frequency information

g = () hk_1



Inverse relations

Reconstruct fine resolution from coarse resolution plus
wavelets

¢ﬁ = Z hn—2m¢km71 + Z gn—2m¢r5771
m m



Wavelet localized fields (scale k)

d(x,t), N(x, t)



Two-kinds of fields: scaling function fields, ®“(n, t), and
. = k
wavelet fields, ® (n,t) .

Wavelet fields encode fine scale physics (2—1k)

k gives a short-distance cutoff.

Limits —N < n < N give volume cutoff.



Commutation relations (fixed scale k): follow from

[B(x, ), 7(y, )] = i5(x — y)
N3

[@%(m, 1), ®(n,t)] =0 [W*(m, t),M*(n,£)] =0
[dJk(m, t), I'I"(n, t)] = idmn

[6(m, 1), 8 (n, 1)) =0 [A"(m, 1), (A" (n, )] =0
(& (m, ), (1" (n, )] = i6mn

[ (m, 1), ®(n,t)] =0 [["(m,1),M*(n,1)] =0

[®"(m, t),N%(n, )] = 0



Resolution 1/2 field operators

o0

Oh(x,t) = 3 ®K(n, £)ek(x)

n=—oo

(i t)= > 8 (n 0)vk(x)

n=—oo

[e.9]

N“(x,t) = Z N*(n, t)¢n(x)

n=—00

At = S A0 )kx)

n=—0o0



Multiscale representation

Expansion of the exact field in terms of finite resolution parts

(k arbitrary but fixed coarse scale)

O(x,t) = OF(x, t) + Z d"(x, t)
m=k+1

N(x,t) = N*(x,t) + Z M7 (x, t)
m=k+1



Space-time creation and annihilation operators

ak(n, t) == —2(¢k(n t) + iM% (n, t))
kKin, Nt = i k n, in« n,
(@(n. 1)1 = —=(O%(n.) ~ M¥(n.1))
a(n, t) == 12(6k(n, t) + if“(n, 1))
(@ (n, 1) = = (@"(n 1) — ifi*(n. 1))



[@*(m. t), (@“(n, £))"] = 6mn

[a°(m, t), (&"(m. 1))"] = d5tOmn

All other commutators vanish



Can we use this algebra to describe an interacting field
theory

Algebra can be given in terms of fields restricted to a
light-front * = 0.

States on the algebra are represented by discrete sequences.

e 5" HeS' |0)?

Interactions are almost local - ISU code?.



Only the very large m wavelet fields W™ are sensitive to
short distance physics.

®*(x, t) and M*(x, t) are Fock space operators - not
operator-valued distributions!

[¢k(X7 t)7¢k(y7 t)] =0 for ’X_y’ > ng—l

Truncating the n sum gives a volume cutoff.

Truncating the m sum gives a UV cutoff.



Questions

Field equations, Hamiltonians, require local operator
products?

Field equations, Hamiltonians, require derivatives of
operators?

How do we approximately realize the Poincare Lie
algebra?

How do we implement local gauge invariance?
Reflection positivity?

Momentum space?



Local products of fields

O (x, )®K(x, 1) = > @K (m, t)®K(n, t)g5,(x)dk(x) =~

mn

Y O (m, )@ (n, 1)l (x)

mnk

where
= [ &l )o(x, 110t (x, )
can be computed exactly using scaling equation!

vanishes for |[n—m|, [n— 1|, [m—1| >2K —1

Products become slightly non-local



Spatial derivatives of fields

where

can be computed exactly using scaling equation!

vanishes for [n —m| > 2K —1



Properties of I'ﬁh__,’,,m and D,’;,’n
K _rk
rnlv"' Mm r”o(l)v"' N (m)

for any permutation of m objects o.

> Ty = V25T,
m

»nm
n—2
M = 2020,
k k
Dm,n = _Dn,m
> Dmn==3_ Dam =0
n n

k _ okp0
Dpn=2"Dp,



Exact local products
o (x =) K (n, t)dK(m, t)(Tkkx o¥ (x) +Zrﬁ,kn’, '
+Z&>(n, Yo (m, t)(Zr’kk,¢k Zr’nk,,',’r "(x)
+Z¢knt mt)zrﬁ#,(, ( +Zl—ﬁf,/,,, I
+3 &' (0, )" (m, )3 TEE () +Zr’ii;w,

Exact local derivatives
= Y OK(M)(DlM(x) + D Dl

Local products constructed out of infinite sets of non-local
products




il = [ o000t (00l (e

Fabo _ / B () - 8 (x)dx

. d¢51
Dists = [ S0 kz()x

Can all be computed exactly using the scaling equation



Renormalization group properties of fields

(Dk(na t) = Z hn72m¢k_1(m7 t) + Zgnf2m&)k 1(m¢ t) =
DO (n, t) := (¢5, D®) = (D™ ¢, ®) = & (n, 1)

®(n,t) = D(Y" ho2m® (m. ) + 3 gn2m®“(m, 1))



Symmetries

[07(x), 0°(y)] = id(x — y)F**<O(y)
1= (27923 o027 dn(v))

1= (27523 ¢h(x)



02k .— ok/2 / 0°(x)6k (x)dx
3 0 Y 081 - ey o
n m I

07— > O

Gives local generators - the symmetry is broken when
products of discrete files are use to construct OZ%.



Gauge transformations

O — & = V,0f

Must preserve both operator products and derivatives



S [ whwkirt, of () =
mnl

> wrtwkoks, 0k =

mn
LT

> WKV V(n)wk =

> wiwk

n



—i/lllT(x)CZ(\ll(X)dx

The Discrete version of this is

_IZwTkwk Dk nlr/¢k

Using (DX, = —Dk.) this becomes

—iy wikwkDk = Zw*k (iDX )



Under Gauge transformations

> Wjk(iDk,) W D

m=mn
nm

Zw“" (iD )W =

D WHVI(n)(iDgm) V(m) W,

nm



> Wi (D),

nm

Introduce a vector potential

Z w;gk(lDrl;m - eAfnn)wllsv
nm

Gauge invariance requires
E : Tk ik k? kr __

wn (anm - eAmn)wm -
nm

> WEVH(n)(iDgy, — eAR,)V(m) W,



Gauge covariant derivative

(IDrI:m - eAfrfn)

. k
Gauge transformation of A},

A = Dy — V(1) Dy V(m) + VI (n) ARG, VT (m)



Outlook

Different discrete approach to field theory.

Renormalization group and block spin transformations
natural.

Has structural features to treat Gauge theories and
symmetries.

Replaces all operator distributions with almost local
operators with support on all scales.

Infinities due infinite sums.

Space-time creation and annihilation operators.



Discussion: Useful applications ?

Thanks James!



