Few Body Currents Generated by Cluster Separability Constraints

Mark Tucker1 Brad Keister2 Wayne Polyzou1

1Department of Physics and Astronomy
The University of Iowa

2Division of Nuclear Physics
National Science Foundation

April 13, 2008
Outline

1. Poincaré Invariant Quantum Mechanics
 - Dynamics
 - Constraints

2. Clustering
 - Definition
 - Clustering Problems, Solutions

3. Testing the Effects
 - A Simple Model
 - Some Results

4. Conclusion
Poincaré invariant quantum theory:
- Unitary representation, $U(\Lambda, a)$, of the Poincaré group.
- Dynamics given by $U(\Lambda, a)$.
- Infinitesimal generators H, P, J, and K. Specifically,

Definition

$$H := i \left(\frac{\partial}{\partial a} U(I, a) \right) U^\dagger(I, a)$$

Definition

$$P := -i \left(\frac{\partial}{\partial a} U(I, a) \right) U^\dagger(I, a)$$
Dynamical constraints on current operators:

- Depend on representation of the Poincaré group, $U(\Lambda, a)$:

Definition

Current conservation: $[H, J^0(0)] - \sum_i [P^i, J^i(0)] = 0$

Definition

Current covariance: $U(\Lambda, a) J^\mu(x) U^\dagger(\Lambda, a) = (\Lambda^{-1})^\mu_\nu J^\nu(\Lambda x + a)$
U(Λ, a) is cluster separable if,

\[
\lim_{(a_i - a_j)^2 \to +\infty} \left\| [U(\Lambda, a) - \bigotimes U_i(\Lambda, a)] \prod U_i(I, a_i) |\psi\rangle \right\| = 0
\]

This ensures that the Poincaré invariance of the system also holds for isolated subsystems (large space-like separation).
In the clustering limit, the current should break up into a sum:

\[
\left[H, J^0(0)\right] - \sum_i \left[P^i, J^i(0)\right] = 0
\]

\[
\sum_a \left(\left[H_a, J_a^0(0)\right] - \sum_i \left[P^i_a, J^i_a(0)\right]\right) = 0
\]

\[
\left[H_a, J_a^0(0)\right] - \sum_i \left[P^i_a, J^i_a(0)\right] = 0 \quad \text{for each } a.
\]

Poincaré invariance, current covariance, and current conservation should all hold for isolated subsystems.
Construction of BT, TP Representations

Bakamjian-Thomas Construction

Bakamjian-Thomas, Coester, Sokolov:

- Add interactions to mass operator to construct $U(\Lambda, a)$.
- Kinematic spin; Does not satisfy cluster separability.

Tensor Product Construction

Derivative of BT constructed to satisfy cluster separability.

- Interaction-dependent spin.
- Difficult to add more than one two body interaction.
In the Bakamjian-Thomas construction,

- Systems with $N > 2$ fail to satisfy cluster properties.
- For $N = 3$, scattering equivalent to one that clusters.

 \implies there is a unitary operator A such that

 $$AU(\Lambda, a)A^\dagger = U'(\Lambda, a)$$

 where $U'(\Lambda, a)$ satisfies cluster properties.

- The operator, A, is called a packing operator.

- Essentially, A restores cluster properties for $N = 3$.
Electromagnetic observables can be calculated from current matrix elements ($|\psi_i\rangle$ and $|\psi_f\rangle$ are eigenstates of H):

$$\langle \psi_f | J^{\mu}(0) | \psi_i \rangle$$

Using A,

- $H \rightarrow H' = AH\mathcal{A}^\dagger$
- $|\psi_i\rangle \rightarrow |\psi'_i\rangle = \mathcal{A}|\psi_i\rangle$
- $|\psi_f\rangle \rightarrow |\psi'_f\rangle = \mathcal{A}|\psi_f\rangle$
- $\langle \psi_f | J^{\mu}(0) | \psi_i \rangle \rightarrow \langle \psi'_f | J^{\mu}(0) | \psi'_i \rangle = \langle \psi_f | \mathcal{A}^\dagger J^{\mu}(0) \mathcal{A} | \psi_i \rangle$
How can we Test the Effects of A?

Model:
- First assume 3 particles interacting in Bakamjian-Thomas representation.
- Turn off 13- and 23- pair interactions.
- A connects resulting and TP representations.
- Scatter an electron off of particle 3.
- Can construct both BT and TP exactly.
Illustrate the Two Calculations: Details

\(A \) changes a delta function in \(p_3 \) to a delta function in relative momentum, \(q_3 \), obtained by boosting \(p_3 \) to rest frame of non-interacting 2+1 body system, using

\[
q_3 = B^{-1}(P/M_0)p_3.
\]

Realistic three body calculations are now being performed using this formalism and the issues being discussed are very relevant if these solutions are used to calculate electromagnetic observables!

\[
\langle \psi_f | A^\dagger J^\mu (0) A | \psi_i \rangle \quad \text{– good}
\]
\[
\langle \psi_f | J^\mu (0) | \psi_i \rangle \quad \text{– bad}
\]
Recap:

- Will calculate $\langle \psi_f | J^0(0) | \psi_i \rangle$ and $\langle \psi_f | A^\dagger J^0(0) A | \psi_i \rangle$.
- Here there is a difference since $N = 4$.

Recall

Current matrix elements...

TP: $\langle \psi_f | A^\dagger J^\mu(0) A | \psi_i \rangle$

BT: $\langle \psi_f | J^\mu(0) | \psi_i \rangle$
TP: Q and p_{12} vs $\langle \psi_f | A^\dagger J^0(0) A | \psi_i \rangle$ (good)

\[\int \langle Q/2 \ p_{12} | J^0 | - Q/2 \ p'_{12} \rangle dp'_{12} \]
BT: Q and p_{12} vs $\langle \psi_f | J^0(0) | \psi_i \rangle$ (bad)

$$\int \langle p_{12} \ P \ D | J^0 | p'_{12} \ P' \rangle dp'_{12}$$

Tucker, Keister, Polyzou Few Body Currents
Difference: BT - TP

Perpendicular BT - TP

Parallel BT - TP

Up to 6% difference.
Conclusion

- Two constructions of $U(\Lambda, a) - \text{BT, TP}$.
 - BT does not cluster for $N > 2$.
 - $N = 3$: scattering equivalent (special case).
 - $N > 3$: \exists measurable differences.

- EM observables from current matrix elements.

- Clustering should hold for Poincaré invariance, current conservation, and current covariance.

- In BT representation, clustering should be restored using A.

- Electromagnetic calculations being done without clustering.

- Calculations with and without A differ by up to 6%.
Goals

- Repeat with Light Front and Point forms.
- Use more complicated models.
Here the Minkowski metric is taken to have signature \((-,+,+,+):\)

\[
\eta_{\mu\nu} = \begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix},
\]

so that \(\lim (a_i - a_j)^2 \to +\infty\) means space-like separation.
Current Covariance

\[U(\Lambda, a) J^\mu(x) U^\dagger(\Lambda, a) = (\Lambda^{-1})^\mu_\nu J^\nu(\Lambda x + a) \]

\[\downarrow \]

\[\sum_a U_a(\Lambda, a) J^\mu_a(x) U_a^\dagger(\Lambda, a) = \sum_a (\Lambda^{-1})^\mu_\nu J^\nu_a(\Lambda x + a) \]

\[\downarrow \]

\[U_a(\Lambda, a) J^\mu_a(x) U_a^\dagger(\Lambda, a) = (\Lambda^{-1})^\mu_\nu J^\nu_a(\Lambda x + a) \quad \text{for each } a. \]
Illustration of BT and TP Constructions

\[
\begin{align*}
\left| (12) \otimes (3) \right\rangle & \xrightarrow{\langle AB|C \rangle_0} \left| ((12)(3)) \right\rangle \\
V_{(12)(3)} \downarrow & \\
\left| (12)_I \otimes (3) \right\rangle & \xrightarrow{\langle AB|C \rangle_I} \left| ((12)_I(3)) \right\rangle \sim \left| ((12)(3))_I \right\rangle \\
A_{(12)(3)} & \\
\end{align*}
\]
Methods

Wave Functions

Gaussian

\[|\phi(k^2)|^2 = \left| \exp \left(-\frac{k^2}{k_0^2} \right) \right|^2 \]

Malfliet-Tjon

\[
\begin{align*}
a &= 1438.4812 \\
b &= -626.893 \\
c_1 &= 3.11 \\
c_2 &= 1.55
\end{align*}
\]

Form Factor

Monopole:

\[
F(q^2) = \left(\frac{\Lambda^2}{\Lambda^2 + q^2} \right)^2
\]
Difference: BT - TP

Perpendicular BT - TP

Parallel BT - TP

Up to 6% difference.

Tucker, Keister, Polyzou Few Body Currents