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Problem

Nucleus = quarks + gluons

Nucleus = nucleons + mesons

-~



Scales

Mass of nucleon mc? = 940 MeV

Size of nucleon r ~ 1 x 107!® meters = 1 fm.
Binding energy per nucleon 8 MeV.

Nuclear excitation energies - a few MeV.
Range of nuclear force r ~ 1 x 107!® meters

Nucleon excitation energies 500 MeV



Elementary analysis

AxAp > h

h
=1

jnucleon radius

Ap >

1 1
Apc 2 §GeV R~ 5 x nucleon rest energy



Implications

Maximal cross section = minimal beam momentum
Minimal beam momentum = ApAx ~ h
ApAx ~ h = quantum mechanical treatment

Minimal beam momentum + Ax =~ %nucleon radius =
minimal Ap ~ %nucleon mass

Ap =~ % nucleon mass = relativistic treatment necessary



Goals

Formulate a mathematical model of nuclei that provides
a quantitative description of nuclear structure and
reaction observables for energies up to a few GeV.

The model should be quantum mechanical.
The model should be relativistically invariant.
The model should be as simple as is necessary.

The model should be able to describe complete sets of
observables for a large class of nuclei.



Poincaré invariant quantum mechanics of

few-nucleon or

few-quark systems



Minimal quantum theory

e Complex vector space

e Scalar product




Example: nucleon at rest
e Basis vectors

n=(o) 10=(7)

e Scalar product

TIn=dih=1  {dIN=0lH=0



Measurements

The state of a nucleon is represented by a unit vector

e) = cos(0) [ T) +sin(0) | 1)

Py = I(e 1)[2 = | cos(8) = cos?(6)

Py = [(el 1)? = |sin(0)[* = sin*(0)

Py + P; = sin?(0) + cos*(0) = 1



Quantum probabilities

and inner products

Pab = |(alb)|®




Key observations

e The Schrodinger equation plays no role in quantum
measurements.

e The result of any measurement is a probability.



Symmetries of quantum theories

A vector correspondence

|a) — |a)

is a symmetry of a quantum theory if

Pab = |(alb)|? = |{|b))[* = Payy



If |a) — |2) is a symmetry

physics in the unprimed world is indistinguishable from
physics in the primed world.



Relativity = existence of inertial reference frames

Physics in different inertial reference frames is
indistinguishable

|a) — |a)

U
Pab:Pa’b’

Differs from the historical development.



How are inertial reference frames related?

Use classical physics

e By coordinate transforms that preserve the form of
Newton’s second law ? (Galilean relativity)

e By coordinate transforms that preserve the form of
Maxwell’s equations of electricity and magnetism ?
(special relativity)



Galilean relativity preserves

X=7I ==V |t—tl=t—1]

X'=RX+Vt+3 ' =t+c

Special relativity preserves

R L e e A L

c = speed of light

—¢

Yy

| 2



Which is the correct symmetry of nature?

Michelson-Morley experiment

4

Special relativity



Poincaré group
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X =y1? = Pt = = X' = 7P = St — g2

xH = (ct,x*, x%, x3)
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Elementary Poincaré transformations

Rotations (3):
X'=0x oto=1

Translations (4):

2/

X' '=X+3, ct' = ct + a°
Rotationless Lorentz transformations (3):

1

1= A

x" = y(x + vt) t' = ~(t + vx/c?)



A", and a* are labels for distinct inertial reference
frames.

All Poincaré transformations can be generated from 10
elementary transformations.

Compositions of Poincaré transformations are Poincaré
transforms.

Poincaré transformations are elements of a group
(closed under composition, inverse, identity, associative).



Special relativity and quantum mechanics

The group of Poincaré transformations is a symmetry of
quantum mechanics

[v) = [va,a)
(S
Puv = Pu/\"r.,,,v/\,a



Eugene P. Wigner

Py =P

UA aVA,a

<UA,a|V/\,a> = <U|V>

U(/\g,ag)U(/\l, 31) = U(/\Q/\l,/\zal + 82)



Note that U(A, a) has the multiplication properties of the
Poincaré group but it acts on a vector space with different
dimension than four.

U(A, a) is a unitary representation of the Poincaré group.

How do we construct U(A, a) ?



Rotating a nucleon at rest

URIT) =1 Durr +1 Duyy

UR)I L) =1 Thu + 1 Duyy

UR)Iw) = Y ) DyA(R)

v=T,l

D,},/Lz(R) is a 2 X 2 matrix representation of the rotation group.



Translating a nucleon at rest

U(a°, @)lu) = [p)e™™



Nucleon moving with velocity v,

1P ) = U(V)|w)

(



Every Poincaré transformation can be expressed as

Rotationless Lorentz transform to rest frame

Rotation

Translation of a rest state

Rotationless Lorentz transform to final frame



Transformation law for a free particle

U(A,3)|B, i) = S 1", 1) D2 (R(A, p))e '
,LL/

This transformation law is a mass m,, spin 1/2 irreducible
representation for the Poincaré group.

This can be done for particles with any mass and spin.



Two free nucleons in zero total momentum frame

|k, pi1; =k, p2) = |0, k, pi1, i) =

e Decompose into linear combinations that have definite
angular momenta, J?, J-Z



e Resulting states look just like free particle rest
eigenstates with mass and spin

M =2,/k?®+ m? J

e Simultaneous eigenstates of M, P, J? and J, transform
like free particles of mass M and spin J:

[P, (M(k), J, d))

U(A, a)|p, (M(k), J, d) =

> 1B i (M(K). J. d)) Dy [R(A. p)le ™"

W



Two interacting nucleons

Consistent initial value problem?

t=tg




Solving the non-linear problem?

Add interactions to mass

M =2/k?+m?+V

Require that V commutes with J?
R that V commutes with and is independent of P and Iz

Diagonalize the matrix M in the basis |p, u(M(k), J, d)).



(2\/ K2+ m2 + V)[B, pu, (M, J)) = M'|B, 1, (M, J))

UI(/\7 3)\5#(’\/’/7 J)> =

S IR (M, D)D) (RN, p))e 2
7

Simultaneous eigenstates of M, P J2 and J, complete.

This defines a relativistic interacting two-nucleon quantum
theory



Relation to non-relativistic problem ?

- k2
M? = 4(m? + k?) + 4mpv,, = 4mn(E + Von) + 4m? =

dmuyhne + 4m,2,

e Has same eigenvectors as non-relativistic problem

e Has same scattering probabilities as non-relativistic
problem.



Nuclear potentials v,,
Van = Y Va(r) Oa
(0%

Oa € {I,Sl -+ S92, L- S, (f . Sl)(f . 52), (Sl . L)(52 . L), L2, (51 . 52)L2,

(Tl -T2), (Sl -52)(7'1 -T2), (L . S)(T1 . 7'2)7 (? 51)(?“ 52)(7'1 . 7'2)7 cee

T = isospin of particle /

L = orbital angular momentum of system

s; spin of particle |

S = sum of nucleon spins

e—mmer/h
)

Vi (r) = Yukawa-like interactions (



N> 2

Cluster properties - separate region A from region B

I

UN,a) — UN a)g @ UA,a)g — 0

H:ZH’+Z‘/’7+Z‘/’7k+"'
i if

ijk



Specific case: N =3

Structure of M dictated by two-body M and cluster
properties

M= W(\V)MV)WI(V)  M(V)= Mo+ Vip + Vaoz + Va1

V12:\/M122+Q§_\/M312+q§
M2, = 4(k* + m?) + 4m,v,, M2, = 4(k* + m?)

W(V) not required to calculate S!

(Coester 1965, Sokolov 1977, F.C & W.P. 1982)



Predictions

Binding energies
M(V)[W) = Alv)
W) = W(V)|W)  M(V)|¥) = \|V)
Scattering probabilities

[Sa[* = (WD) = (U7 W)

Electromagnetic and weak current matrix elements

(Wel17(0)|Wi) = (W WHV) I (0)W (V)W)



Three-body scattering

Sab = 0ap — 2mid(M, — Mp) T3P

Faddeev equation

T*(2) = 6%(z = Mo) + > Ve(z = Mo = Vo) 1 T(2)
c#a

a, b, c € {(12)(3), (23)(1), (31)(2)}
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Summary

Poincaré invariant quantum mechanics provides a
mathematical framework for modeling nuclei that can be
used effectively for energies up to a few GeV.

Calculations have been performed for three-nucleon
bound-state and scattering observables.

Spin has been treated up to 250 MeV and

spin-independent observable have been computed up to
2 GeV.

Two-body electromagnetic observables have been
computed for bound systems of quarks and nucleons.



Conclusions

A Poincaré invariant model is needed to compute
scattering observables above 250 MeV.

Kinematic corrections alone lead to misleading results.

Many standard approximations are not accurate in all
kinematic regions.

There are some surprising low-energy effects in spin
observables.



Future

Include explicit particle production.

Include baryon resonances.

More theory - cluster properties + particle production.

Effects of cluster properties on electroweak current.

Models with confined quark degrees of freedom.





