College Physics I: 1511 Mechanics & Thermodynamics

Professor Jasper Halekas Van Allen Lecture Room 1 MWF 8:30-9:20 Lecture

Announcements

- HW grades in ICON today
- Lab grades in ICON this weekend
- Please fill out evaluations!
 - Completion rate 27% as of 12/9
 - Deadline Saturday 12/10

Final 8:00-10:00 pm in LR1 on Monday 12/12

The Five Most Important Concepts

- Kinematics
 - A. Translational
 - B. Rotational
- Newton's Laws
- 3. Conservation of Energy
 - A. Kinetic Energy
 - B. Potential Energy
 - C. Work
 - D. Heat
 - E. Temperature
- 4. Conservation of Momentum
- 5. Ideal Gas Law and Processes

Physics Concept Flow Chart

Kinematics is the Start

Kinematic Variables

Kinematics is the Start

Kinematic Equations

Translational	Rotational	
$v = v_0 + at$	$\omega = \omega_{\rm o} + \alpha t$	
$\Delta x = v_0 t + \frac{1}{2}at^2$	$\Delta \theta = \omega_0 t + \frac{1}{2} \alpha t^2$	
$v^2 = v_0^2 + 2a\Delta x$	$\boldsymbol{\omega}^2 = \boldsymbol{\omega}_0^2 + 2\alpha\Delta\boldsymbol{\theta}$	

Newton's Laws

Newton's Laws

- A body will remain at rest, or moving at a constant velocity, unless it is acted on by an unbalanced force.
- 2. The force experienced by an object is proportional to its mass times the acceleration it experiences:

$$\vec{F} = m\vec{a}$$

If two bodies exert a force on one another, the forces are equal in magnitude, but opposite in direction:

$$\vec{F}_{12} = -\vec{F}_{21}$$

Equilibrium

- Static Equilibrium
 - sum of forces on the body = 0
 - $\Sigma F = 0$
 - sum of torques on the body = 0
 - $\Sigma T = 0$

Forces

Newton + Kinematics -> Work-Energy Theorem

$$W_{net} = F_{net} \Delta x$$

$$W_{net} = ma\Delta x$$

$$v_f^2 = v_i^2 + 2a\Delta x$$

$$a\Delta x = \frac{v_f^2 - v_i^2}{2}$$

$$W_{net} = m(\frac{{v_f}^2 - {v_i}^2}{2})$$

$$W_{net} = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2$$

$$W_{net} = \Delta KE$$

Also works for rotational kinematics, but W = $\tau \Delta \theta$ and KE = 1/2 $I \omega^2$

Work and Potential Energy

- Work done on a body by a conservative force comes from the potential energy PE associated with that force:
 - W and ΔPE are equal and opposite if conservative

Gravitational P.E.

$$W_{gravity} = -mg(\Delta y) = -mg(\Delta h)$$
 $PE_g = -W_{gravity} = mgy = mgh$ $h = 0$ is arbitrarily set by you

E.g. decrease in height

⇒loss in PE

⇒positive W by gravity

⇒increase in KE

Conservation of Mechanical Energy

$$\underbrace{\frac{\mathcal{E}}{\text{Total}}}_{\substack{\text{mechanical} \\ \text{energy}}} = \underbrace{\frac{1}{2}mv^2}_{\substack{\text{Translational}}} + \underbrace{\frac{1}{2}I\omega^2}_{\substack{\text{Rotational}}} + \underbrace{\frac{mgh}{2}kx^2}_{\substack{\text{Gravitational}}} + \underbrace{\frac{1}{2}kx^2}_{\substack{\text{Elastic} \\ \text{potential} \\ \text{energy}}}$$

Mechanical energy can only change if a non-conservative force acts

A "non-conservative" process is code for a process in which some of the mechanical energy is lost to heat or deformation of the body

$$\Delta E = W_{nc}$$
 Nonconservative work done on body

Conservation of Total Energy

Energy Cannot Be Created or Destroyed
(It just changes forms)

Heat, Internal Energy, Temperature

T_A is proportional to the internal energy U_A in box A

 T_B is proportional to the internal energy U_B in box B

A and B in contact

 $Q = mc\Delta T$ $Q = nC\Delta T$

Heat will flow (transferring energy) until $T_A = T_B$

Kinematics + Newton -> Conservation of Momentum

$$F = mv$$

$$F = ma = \frac{m\Delta v}{\Delta t} = \frac{\Delta p}{\Delta t}$$

The average force on a constant mass system is seen to be equal to the rate of change of momentum.

If no external forces:

$$m_1 \vec{v}_{1i} + m_2 \vec{v}_{2i} + \dots + m_n \vec{v}_{ni}$$

$$= m_1 \vec{v}_{1f} + m_2 \vec{v}_{2f} + \dots + m_n \vec{v}_{nf}$$

Ideal Gas Law: An Experimental Fact

Kinematics + Newton -> Ideal Gas Law

microscopic quantities = kinetic motion of atoms

$$PV = nRT \iff PV = \frac{2}{3}N\left[\frac{1}{2}mv^2\right]$$

PV Diagrams

Ideal Gas Processes

 ΔU same for all, just depends on ΔT

Process	ΔU	Q	W
Constant Volume	3/2 nR ΔT (monatomic)	3/2 nR ΔT (monatomic)	O _{Lower} specific heat All Q goes to U
Constant Pressure	3/2 nR ΔT (monatomic)	<u> </u>	$P\Delta V = nR \Delta T$ Higher specific heat Some Q goes to W
Constant Temperature	0	nRT In (V _f /V _i)	nRT In (V _f /V _i)
Adiabatic $(pV^{\gamma} = constant)$	3/2 nR ΔT (monatomic)	0	-3/2 nR ΔT (monatomic)

PV Diagrams

Work W done by gas = area under curve
Increase in volume -> positive work +W by gas
Decrease in volume -> negative work -W by gas

Internal energy U can be read from this diagram as well:

Internal energy U is proportional to temperature T Temperature T is related to P & V through ideal gas law

From internal energy U and work W, we can get heat Q

Physics in Everyday Life

Conserve Energy

Goodbye!

- You've been a great class!
- You are the future of our world use your knowledge well
- My door is always open to my former students