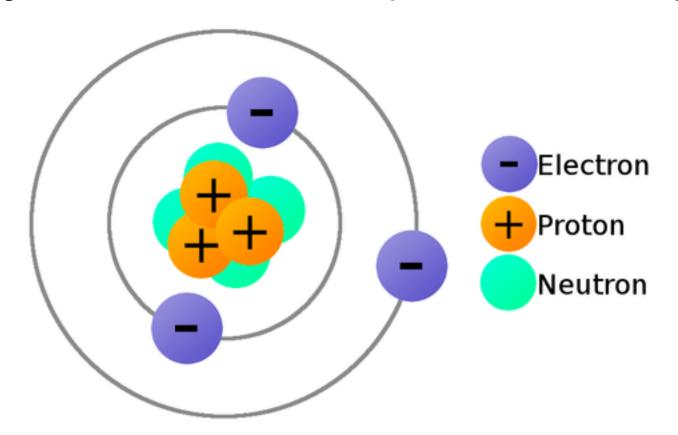
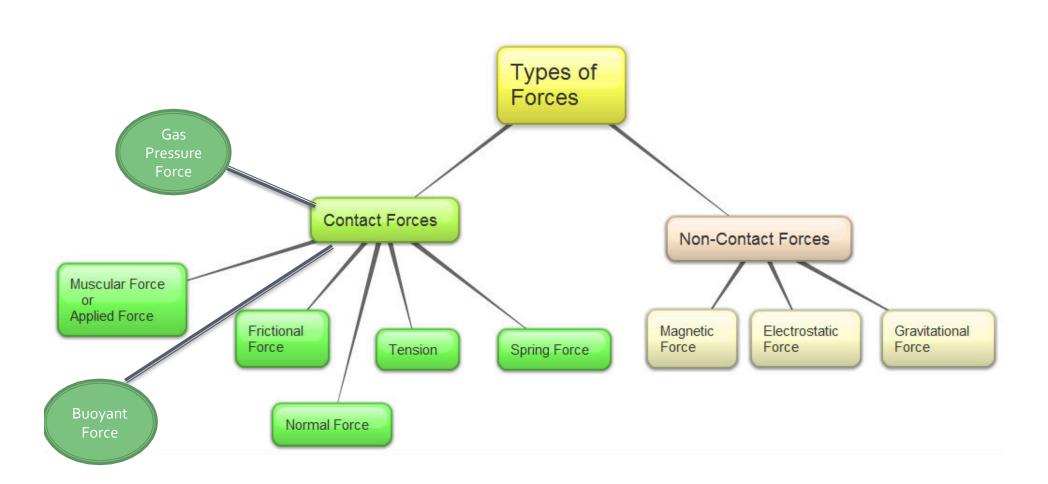

Physics II: 1702 Gravity, Electricity, & Magnetism

Professor Jasper Halekas
Van Allen 70 [Clicker Channel #18]
MWF 11:30-12:30 Lecture, Th 12:30-1:30 Discussion

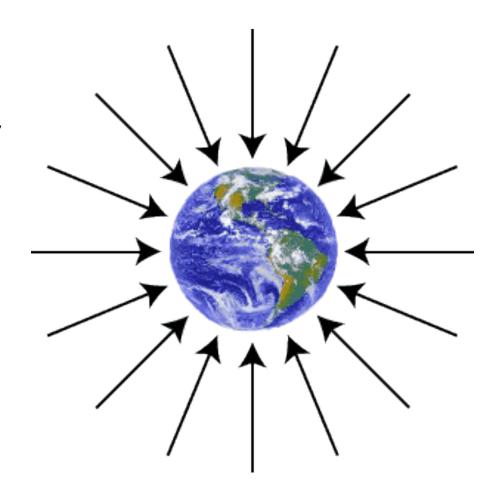

Inertia and Newton's Laws

- Objects have mass (inertia)
- Applying an unbalanced force to a mass causes it to accelerate

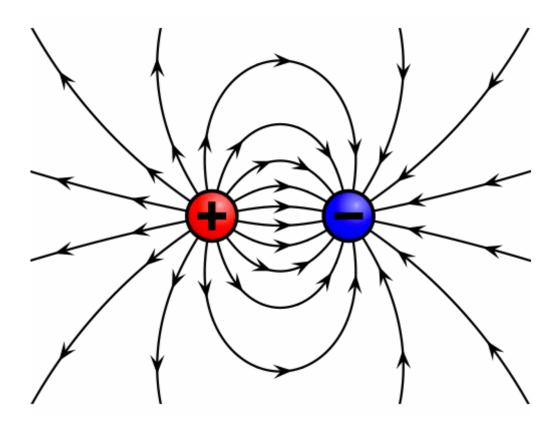


Electric Charge

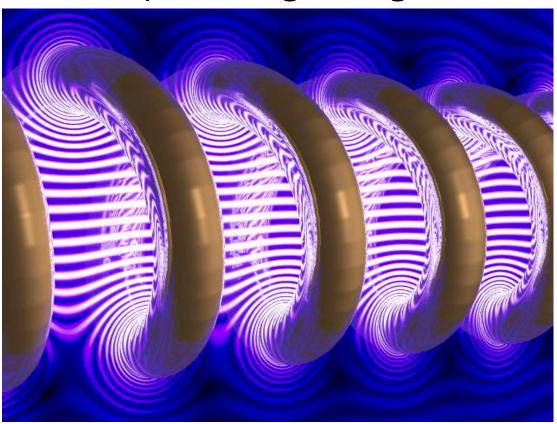
Objects can have not only mass, but charge



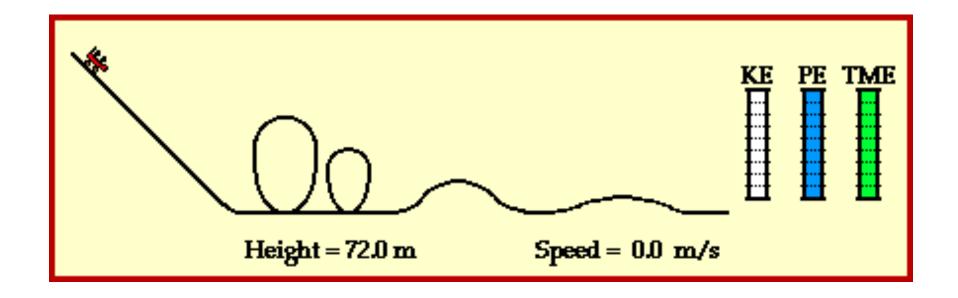
Forces


Gravitational Forces

- Gravitational forces act on mass, and are themselves caused by concentrations of mass
- The gravitational force can be thought of as caused by a field that fills all of space

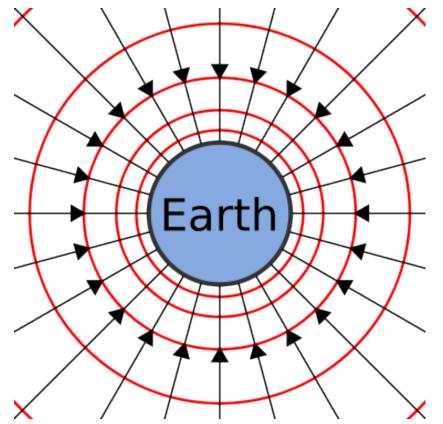

Electrical Forces

 Electrical forces act on charged particles, and are caused by charged particles



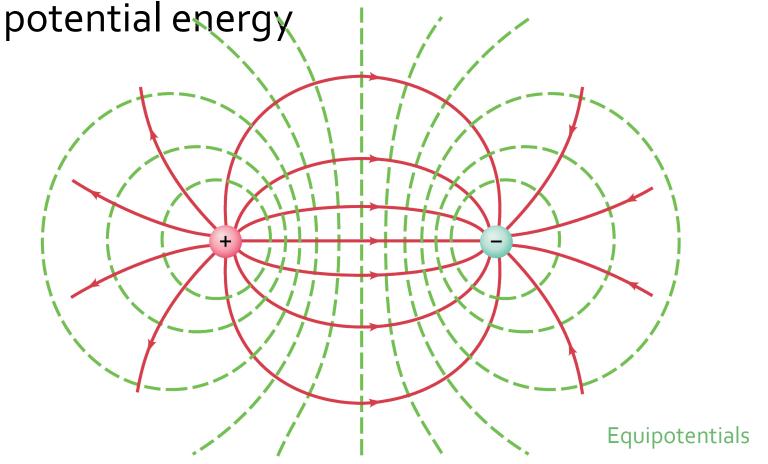
Magnetic Forces

 Magnetic forces act on moving charges, and are caused by moving charges



Conservation of Energy

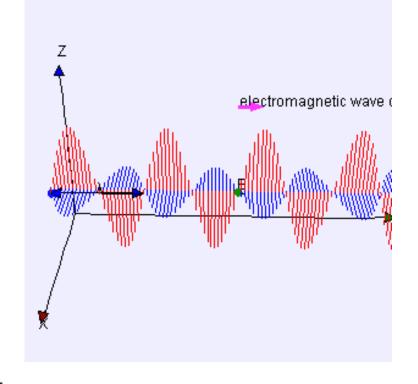
Gravitational Potential


 Gravitational forces are associated with gravitational potential energy

Equipotentials

Electric Potential

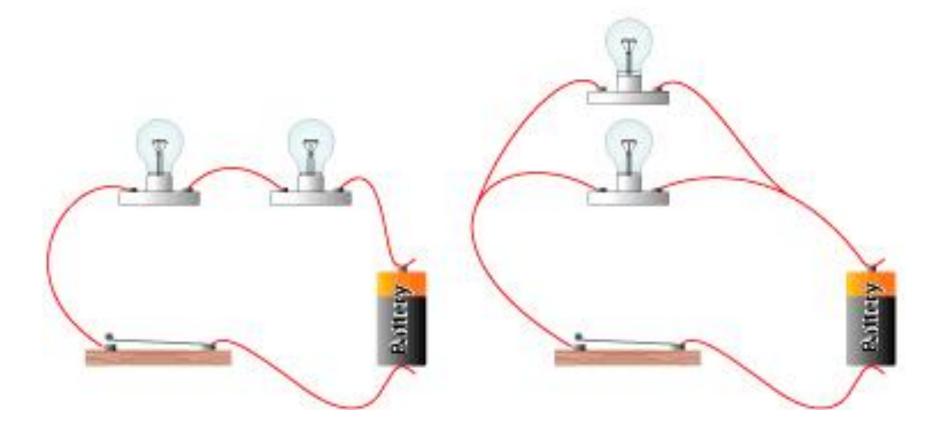
Electrical forces are associated with electric

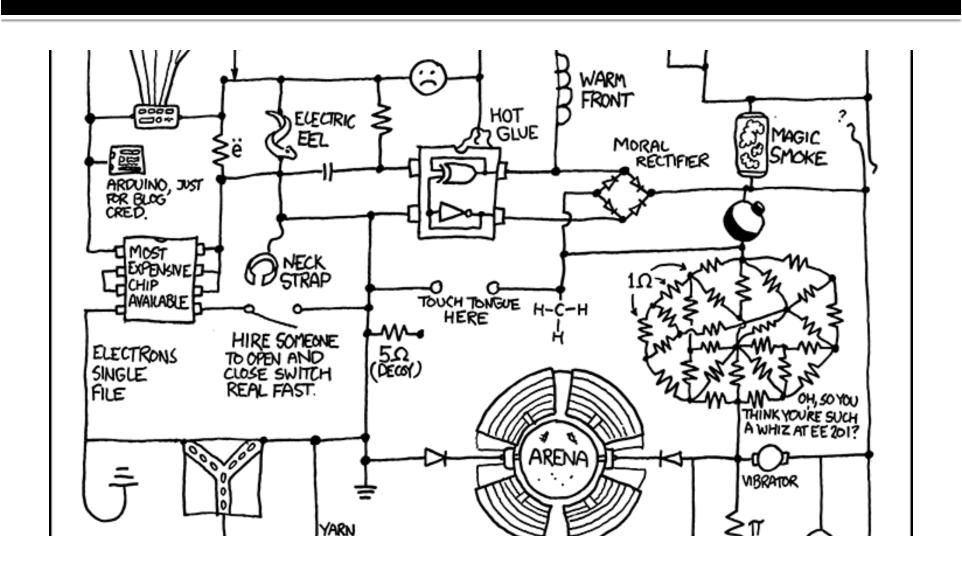


Magnetic and Electric Fields

1.
$$\oint \mathbf{E} \cdot d\mathbf{A} = \frac{q_{enc}}{\varepsilon_0}$$

$$2. \quad \oint \mathbf{B} \cdot d\mathbf{A} = 0$$


3.
$$\oint \mathbf{E} \cdot d\mathbf{s} = -\frac{d\Phi_{\mathbf{B}}}{d\mathbf{t}}$$


4.
$$\oint \mathbf{B} \cdot d\mathbf{s} = \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt} + \mu_0 i_{enc}$$

Simple Electric Circuits

Series Circuit Parallel Circuit

More Complicated Circuits

Syllabus & Schedule

- Will not be handed out
- Go to the class ICON page, or the main physics dept.
 web page, to navigate to the main class page
 - Here you can find the syllabus and class schedule (and a copy of these notes)

Syllabus I: Contacts/Times

Instructor: Jasper S Halekas

Office: 414 Van Allen Hall

Phone: (319) 335-1929

E-mail: jasper-halekas@uiowa.edu

Office Hours:

2:00-3:00 pm Tuesday,

9:00-10:00 am Wednesday,

4:00-5:00 pm Thursday

Or by Appointment

Lectures: MWF 11:30-12:20, 70 Van Allen

Discussion: Th 12:30-1:20, 70 Van Allen Hall

Syllabus II: Books/Pages

Required Text:

Fundamentals of Physics, Halliday & Resnick, 10th
 Edition, Volumes 1&2, Jearl Walker, with Wiley Plus.

Required Lab Text:

 Experiments in Electricity, Magnetism, & Light + Quantum Physics, John Goree and Anthony Moeller.

Course Web Pages:

- http://www.physics.uiowa.edu/~jhalekas/teaching/ physII_2016/index.html
- https://icon.uiowa.edu/d2l/home/2448875
- http://www.wileyplus.com/class/491564

Class Notes

 Notes from each class (both PPT and blackboard material) will be merged and placed online in PDF form within one day after the class

Syllabus III: Tests/Grading

Exam Schedule: Two Midterm Exams:

Wednesday, Feb. 24
 Chs. 13, 21-24

Wednesday, April 6 Chs. 25-29

Final Exam, TBD Date Chs. 13, 21-32

Grading:

Homework20%

Labs20%

Two Midterms 15% Each

Final Exam 30%

Participation
 Extra Credit (up to 2%)

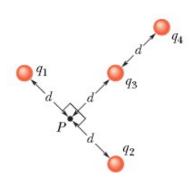
Syllabus IV: Homework

- Weekly homework assignments are to be completed online using WileyPLUS. All assignments must be completed online by 11:00pm on Wednesdays.
 - Online assignments will have separate conceptual (one chance per problem, no hints) and mathematical sections (two chances per problem, with hints)
- Twice per semester (before each exam), homework solutions will be required in hardcopy format with all work shown.

Syllabus V: Labs

- The laboratory assignments are a key part of the course, to be held under the supervision of your teaching assistant, who will also grade the laboratory reports.
- Only 9 of 10 labs will be counted toward grading, however, there will be no make-up labs.

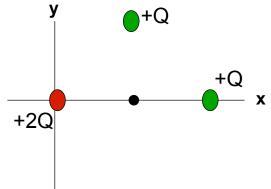
Syllabus VI: Exams


- Midterm exams will be held during regular class hours on the dates specified above. The final exam will be two hours, scheduled during finals week at a time to be announced.
- Exams will be closed book, but each student may bring a single-sided 8.5x11 equation sheet.
- Exams are long-form and require work to be shown. Partial credit may be granted for correct methodology, even if the final answer is incorrect.

Exams Vs. Homework

 Homework and exam questions treat same material, but are slightly different in form

Typical Homework Question:


In the figure the four particles are fixed in place and have charges $q_1=q_2=3e$, $q_3=2e$, and $q_4=-8e$. Distance $d=2.76~\mu m$. What is the magnitude of the net electric field at point P due to the particles?

Typical Exam Question:

Question 1 (6 points): A point in empty space is near 3 charges as shown. The distances from the point to each charge are identical.

A (2 points). Draw a vector showing the direction the electric field points.

B (2 points). What is the angle between the electric field and the x-axis at the point?

C (2 points). If the distance to each charge is L, what is the magnitude of the electric field at the point?

Exam Preparation

- To help you to prepare for the exams, which require long-form answers, I do two things:
 - Assign two long-form homeworks, which I personally hand grade
 - Provide previous exam questions as a study guide

Syllabus VII: Participation

- Participation will be tracked by your response to clicker questions during lecture. These questions are un-graded, so any response counts as participation.
 - You are all expected to have clickers by Friday


```
>60% participation
```

>80% participation

>90% participation

0.5% of overall points

1.0% of overall points

2.0% of overall points

Why are we using clickers?

- To give you a chance to practice tough concepts and check your understanding in real time – physics is tricky!
- To give me feedback on what you get and what you don't – I'm not perfect!
- Because clicker questions can (should) be fun
- Because peer-reviewed research shows that students in the worst classes that use clickers and other interactive learning techniques learn more than those in the best classes that don't

Ask Questions!

- The fact that I ask clicker questions in part to get feedback does not mean that you should not also ask other questions in class
- If you have a question, others may also have the same question
- Don't be afraid to speak up!

Discussions

- Discussions are a chance to get into the details of problem solving and mathematical techniques
 - We will practice problem-solving by going over any questions on previous homework and working through new problems together
 - We will also use this time to review and sometimes introduce mathematical techniques and concepts
 - In our first discussion (tomorrow), we'll discuss vector math

Syllabus VIII. Communication

- Please let me know if you have questions, comments, complaints, or are struggling with particular concepts.
 This class is for you, and I am here to help.
 - Students may communicate with me by phone, e-mail, or in person
 - Students with issues or questions should if possible raise them in person by attending office hours or by scheduling an appointment
 - If you prefer to give me anonymous feedback there is a comments envelope on my door

Schedule

Dates	Week	Reading Due	Lab	Homework Due	Test
		Monday	Monday	Wednesday	
Jan 19-22	Week 1		No Lab		
Jan 25-29	Week 2	Chapter 13	No Lab	Online	
Feb 1-5	Week 3	Chs. 21 to 22-3	E1	Online	
Feb 8-12	Week 4	Chs. 22-4 to 23	E2	Online	
Feb 15-19	Week 5	Chapter 24	E3	Hardcopy	
Feb 22-26	Week 6	No Reading	No Lab	No Homework	Midterm 1
					Wed. 2/24
					Chs. 13, 21-24
Feb 29-	Week 7	Chapter 25	E4	Online	
Mar 4					
Mar 7-11	Week 8	Chs. 26 and 27	E5	Online	
Mar 14-	Spring				
18	Break				
Mar 21-	Week 9	Chapter 28	E6.5	Online	
25					
Mar 28-	Week 10	Chapter 29	E9	Hardcopy	
Apr 1					
Apr 4-8	Week 11	No Reading	No Lab	No Homework	Midterm 2
					Wed. 4/6
					Chapters 25-29
Apr 11-15	Week 12	Chapter 30	E8	Online	
Apr 18-22	Week 13	Chapter 31	OS1	Online	
Apr 25-29	Week 14	Chapter 32	E11	Online	
May 2-6	Week 15	No Reading	No Lab	No Homework	
May 9-13	Finals	No Reading	No Lab	No Homework	Final
	Week				Chs. 13, 21-32