Physics II: 1702 Gravity, Electricity, & Magnetism

Professor Jasper Halekas
Van Allen 70 [Clicker Channel #18]
MWF 11:30-12:30 Lecture, Th 12:30-1:30 Discussion

Announcements

- Hardcopy homework available on "assignments" page – due Wed. 11:00 pm
 - Can turn in paper or electronic copy, but you *must* show all your work
- Sample Midterm Questions now available on "notes" page
 - No sample questions on gravity doesn't mean no gravity questions on midterm!

Applying Gauss's Law

Spherically symmetric charge distribution:

Surface Ø E.JA = Q/Co

= E-4#12

=> E = 24776. r²

- For paint or shell or full sphere. - Preves shell theorem

-What if yourre inside?
- Only enclosed charge matters
- Say evenly distributed charge

q enc = 4/3 Tr' Q 4/3 TR3 = Q 1/23

9 E-JA = 4Tr2 = 9 en/2. =) E = Qr 4T(aR)

E (V) -What it it's 9 conductor? - Inside Canducton - All charge @ sunface - Ovtside surface = = 2/47/6. V 2 E (r) = E

Gauss's Law & Shell Theorem

- Gauss's law proves the shell theorem
- Why?
 - Any spherically symmetric distribution with the same total charge produces the same electric flux through any surface outside all of the charge, so the field of a shell is the same as a point with the same charge
 - No charge outside of a surface produces net flux through it, so the resulting field is zero inside any shell of charge

Potential Energy

Potential and Kinetic Energy

Work

Work done by a (constant) force F

$$W = \vec{F} \cdot \Delta \vec{r} = |\vec{F}| |\Delta \vec{r}| \cos \theta$$

Work W is the negative of the change in potential energy

$$W = -\Delta U$$

Electric Potential Energy

<u>Definition of electrical potential energy.</u>

 ΔU_{elec} = change in U when moving +q from initial to final position.

$$\Delta U = U_f - U_i = + W_{ext} = - W_{field}$$

$$\Delta U = -W_{field} = -\vec{F}_{field} \cdot \Delta \vec{r} = -q \vec{E} \cdot \Delta \vec{r}$$

* In the case of constant E-field.

Electric Potential Energy

Two parallel conducting plates (a capacitor) are charged as shown. A proton is lifted by an external agent (tweezers) a distance d as shown. Ignore gravity in this problem.

(There is a uniform electric field $\vec{E} = -E \hat{y}$ between the plates)

What direction is the force on the proton due to the E-field in the capacitor?

A: up

B: down

C: zero

The sign of the work done by the E-field as the proton is moved upwards is...?

A: + B: - C: zero

D: Not enough info

The sign of the work done by the external agent (the tweezers) is ...?

A: + B: - C: zero

D: Not enough info

Change in potential energy is:

$$\Delta U = +W_{ext} = -W_{field}$$

If we define U(proton) = o at the bottom plate, then U(proton) near the top is...

A: + B: - C: zero

D: Not enough info

Electric Potential Energy

- Note that things are a little bit more complicated when you have positive and negative charges
- If you move two charges of opposite sign through a given electric field, one of them gains potential energy, while the other loses potential energy!

Force and Potential Energy

$$-\frac{dU}{dx} = F(x)$$

$$U(x) = -\int_{x_0}^{x} F(x)dx + U(x_0)$$

Vector Fun

What if the E-field is not constant?

$$\Delta U = -q\vec{E} \cdot \Delta \vec{r}$$

$$\Delta U = -q \int_{i}^{f} \vec{E} \cdot d\vec{r}$$

Integral over the path from initial (i) position to final (f) position.

Conservative Forces are Great!

Since Coulomb forces are conservative, it means that the change in potential energy is path independent.

$$\Delta U = -q \int_{i}^{f} \vec{E} \cdot d\vec{r}$$
 initial

The same was true for gravitational potential energy.

Electric Potential

- Just as we defined a field E = F/q
- We define an electric potential V = U/q
- While the electric field is a vector field, the electric potential is a scalar field
- Electric potential V ≠
 Electric potential energy U !!

Electric Field and Potential

$$\overline{E} = -\nabla V$$

$$V_{BA} = V_B - V_A = -\int_A^B \overline{E} \bullet d\overline{\ell}$$

potential energy for test charge in field of another charge

- start at $r=\infty$ and radially integrate to r=R

3u = Uf - Ui

= -9 S, E.JE

E= 14TEO Pri F

de = -rdr since inward path

50 BU = -9 5, 4/18. Pr. p. - ndr

= 9 A Si 1/2 dr

= - 19 Q [-/r- (-/r-)]

$$r_{i} = 00$$

$$r_{f} = R$$

$$so U_{f} - U_{i} = \frac{QQ}{4TS_{i}R}$$

$$V = U_{Q} \Rightarrow V_{f} - V_{i} = \frac{QQ}{4TS_{i}R}$$

$$Ff we sef U(x) = 0$$

$$then in general$$

$$U(r) = \frac{QQ}{4TS_{i}r}$$

$$or V(x) = \frac{QQ}{4TS_{i}r}$$

$$= -\frac{QQ}{4TS_{i}r}$$

$$= -\frac{QQ}{4TS_{i}r}$$

$$= \frac{QQ}{4TS_{i}r}$$

$$=$$

Could also solve E = -VVto get same answer wo g included