Physics II: 1702 Gravity, Electricity, & Magnetism

Professor Jasper Halekas
Van Allen 70 [Clicker Channel #18]
MWF 11:30-12:30 Lecture, Th 12:30-1:30 Discussion

Announcements

HW5 Due On Wiley Plus Tonight

Dielectrics (Insulators)

Easy rule to remember...

Everywhere there is an ε_{o} , change it to $\varepsilon = \kappa \varepsilon_{o}$.

$$|\vec{F}| = +\frac{1}{4\pi\kappa\varepsilon_0} \frac{QQ}{r^2}$$

$$\oint \vec{E} \cdot d\vec{a} = \frac{Q_{enc}}{\kappa \varepsilon_0}$$

$$u_{ES} = \frac{1}{2}\varepsilon |\mathbf{E}|^2$$

$$C = \frac{\varepsilon_0 A}{d} \Longrightarrow \frac{\kappa \varepsilon_0 A}{d}$$

Vacuum
$$\kappa = 1.0000000$$
 Air $\kappa = 1.00054$

Paper
$$\kappa = 3.5$$

Water
$$\kappa = 80$$

Titanium Ceramic
$$\kappa = 130$$

Perfect Conductor
$$\kappa = \infty$$

Capacitor

What About Conductors?

- Why can't you make an awesome capacitor with a conductor in the center?
- Given an infinite dielectric constant, you would think you could store an infinite amount of charge per voltage (C = Q/V)
- But, the voltage across a conductor is always zero
- So, the charge is ∞ x o
 - Indeterminate, but in this case o wins

Conductors Make Bad Capacitors

- Even an almostconductor makes a poor dielectric, because it conducts current
- This means that any charge stored on the capacitor will leak through
- This can happen gradually, or very suddenly, in the form of a breakdown

EMF

- EMF = ElectroMotive Force
 - Not actually a force!

- Think of the EMF as something that produces a voltage difference
 - Could be a battery
 - Could be an electromagnetic power supply
 - Could be a changing magnetic field

 $Q_{total} = Q_1 + Q_2$ $C_{total} = C_1 DV + C_2 DV$ $C_{total} = C_1 + C_2$

$$\frac{Q-Q}{C_1|} = \frac{Q-Q}{DV_2}$$

$$\frac{Q}{DV_1} = \frac{Q}{DV_2}$$

$$\frac{Q}{Q} = \frac{Q}{Q} = \frac{Q}{Q} = \frac{Q}{Q}$$

$$\frac{Q}{Q} = \frac{Q}{Q} = \frac{Q}{Q}$$

Concept Check

Q16) For each circuit in the figure, are the capacitors connected in series, parallel, or neither?

- 1) (a) series (b) parallel (c) parallel
- 2) (a) series (b) parallel (c) neither
- 3) (a) series (b) neither (c) parallel
- 4) (a) series (b) neither (c) neither
- 5) (a) parallel (b) parallel (c) parallel

How Do You Charge a Capacitor?

- Apply a voltage across the capacitor
- Causes charge to flow to the terminals of the capacitor until it is "fully charged"
- How long does this take?
- How do we represent the flow of charge?

Charging a Capaciton
close suite4 valtare E flows charge Q = C V = C E until +a

-Very fast unless (is big-- con slow this down with a vesistor

Current

Electric Current

$$I = i \equiv \frac{\Delta Q}{\Delta t} = \frac{dQ}{dt}$$
 Rate of flow of net charge past a point

Units [i] = Coulombs/second = Ampere (A) or "Amp"

• Note that having a finite current does not imply that the net charge at a given point has to change – it just means there is a net charge flowing past that point.

Current Charging Up a Capacitor

Current Flow

- Current through a capacitor stops once you finish charging it
 - No charge can flow "through" the capacitor unless it breaks down
- However, there are other electrical components that can support a constant flow of charge through them
 - Example 1: Wire (really easy to make charge flow)
 - Example 2: Resistor (hard to make charge flow)

Concept Check

Q1) The figure below shows four situations in which positive and negative charges move horizontally through a region and gives the rate at which each charge moves. Rank the situations according to the effective current through the regions, greatest first.

1)
$$a = d, c, b$$

3)
$$a = b = c, d$$

5) none of the above

Current

Electrons flow in materials, not the protons, so the negative electric charges are moving.

Electrons go "upstream" against the electric field vector.

Resistors

Resistance R of a material

$$R \equiv \frac{V}{i} = \text{constant}$$

Definition of R

"Ohm's Law"
$$V=iR$$

This is not really a physical law. It is true for perfectly Ohmic materials.

Resistance has units of Ohms = Ω = Volts/Amp

Resistor Analogy

Flow of electrons in wire or resistor is like flow of water in a full pipe (no bubbles or leaks).

Resistor Analogy: Version 2

Concept Check

What if I put a resistor in series between the battery and the light bulb?

Does the light bulb:

- A. Get brighter
- B. Get dimmer
- C. Stay the same
- D. Go out
- E. Blow Up!