Physics II: 1702 Gravity, Electricity, & Magnetism

Professor Jasper Halekas
Van Allen 70 [Clicker Channel #18]
MWF 11:30-12:30 Lecture, Th 12:30-1:30 Discussion

Circuit Components

Quick Overview of Electric Circuit Components.

Capacitor – stores charge and potential energy. $\Delta V = Q/C$.

Battery – generates a constant electrical potential difference (ΔV) across it.

Resistor – resists flow of charge due to scattering; dissipates energy. $\Delta V = IR$.

Power Dissipation

$$\bigvee_{\mathbf{V}} = \frac{\mathbf{V}}{\mathbf{R}} = \mathbf{V} \mathbf{I} = \frac{\mathbf{V}^2}{\mathbf{R}} = \mathbf{I}^2 \mathbf{R}$$

Junction Rule

Junction Rule

In a steady state, must have $i_{(in)} = i_{(out)}$ at any junction, otherwise charge is building up somewhere, which cannot happen in steady state [Capacitors charging up are non-steady-state].

Loop Rule

- LOOP RULE: The algebraic sum of the changes in potential encountered in a complete traversal of any loop of a circuit must be zero.
 - These changes in potential include those across an EMF device, and those across any electrical components [resistors, capacitors, etc]

$$\sum_{loop} \Delta V_{rises} = \sum_{loop} \Delta V_{drops}$$

"Conservation of Energy (per Charge)"

Q27) If in the diagram below, $I_1 = 2$ A, what is the potential difference between points a and b, and which point is at the higher potential?

1) 50 V; point a

2) 50 V; point b

3) 10 V; point a

4) 10 V; point b

-to answer use 100p rule $30 - I, -10 - I_3 \cdot 2 = 0$ (1eft 100p)

 $\begin{array}{rcl}
59 & V_b - V_m & = & I_3 - 2 \\
 & = & 30 - I_1 - / 9 \\
 & = & 30 - 2 \cdot / 9 \\
 & = & 10 & V
\end{array}$

-What if we divn't know I?

- Look at right loop

and go cch $V_2 - I_2 - 4 - I_3 - 2 = 0$

- Leon @ outer loop and go Cw 30 - II-10 + Iz-4 -Vz =0

- solve first two 30-lo I, = 2 I 3

V2-4I2 = 2 I,

subtract to get 30-lo I, +4I2-V2-0

=) outer loop gives redundant info.

Nov t. solve:

 $I_{3} \cdot 2 = |0V|$ $\Rightarrow I_{3} = SA$ $I_{3} = I_{1} + I_{2}$ $\Rightarrow I_{2} = 3A$ $V_{2} - 4I_{2} - 2I_{3} = 0$ $\Rightarrow V_{2} = 4 \cdot 3 + 2 \cdot S$ = 22V $CheCk; 30 - |0I_{1}| + 4I_{2} - V_{2} = 0$

30 - 20 + 12 -22 = 0

Voltage Drop Across Battery

Critical Sign Convention!

If your loop goes through a battery from – to + the Voltage increases (e.g. $\Delta V = +12 \text{ V}$)

If your loop goes through a battery from + to – the Voltage decreases (e.g. $\Delta V = -12 V$)

Voltage Drop Across Resistors

- If your loop goes in the direction of current,
 the voltage drop across a resistor is negative
- If your loop goes opposite to the direction of current, the voltage drop across a resistor is positive

Two light bulbs, A and B, are in series, so they carry the same current. Light bulb A is brighter than B.

Which bulb has higher resistance?

A)A

B)B

C) Same resistance.

Answer: Bulb A has higher resistance. Since the resistors are in series, they have the same current I. According to $P = I^2 R$, if I = constant, then higher R gives higher P.

We start with the left circuit with one lightbulb (A). The brightness of the bulb directly reflects the power. If we add a second bulb (B) as shown on the right, what happens to the bulbs?

- A) Bulb A is equally bright.
- B) Bulb A is dimmer than before
- C)Bulb A is brighter than before

We start with the left circuit with one lightbulb (A). The brightness of the bulb directly reflects the power. If we add a second bulb (B) as shown on the right, what happens to the bulbs?

- A) Bulb A is equally bright.
- B) Bulb A is dimmer than before
- C)Bulb A is brighter than before

The three light bulbs A, B, and C are identical. How does the brightness of bulbs B and C together compare with the brightness of bulb A?

- A) Total power in B+C = power in A.
- B) Total power in B+C > power in A.
- C) Total power in B+C < power in A.

Answer: Use $P = V^2/R_{tot}$ For bulbs B and C, $R_{tot} = 2R$.

Total power in B+C < power in A.

In the circuit below, what happens to the brightness of bulb 1, when bulb 2 burns out? (When a bulb burns out, its resistance becomes infinite.)

- A) Bulb 1 gets brighter
- B) Bulb 1 gets dimmer.
- C) It's brightness remains the same.

(Hint: What happens to the current from the battery when bulb 2 burns out.)

A circuit with two batteries is shown below. The directions of the currents have been chosen (guessed) as shown.

Which is the correct current equation for this circuit?

A)
$$I_2 = I_1 + I_3$$

B)
$$I_1 = I_2 + I_3$$

C)
$$I_3 = I_1 + I_2$$

D) None of these.

Which equation below is the correct equation for Loop 1?

A)
$$-V_2 + I_1R_1 - I_2R_2 = 0$$

C)
$$-V_2 - I_1R_1 + I_2R_2 = 0$$

E) None of these.

Answer:
$$-V_2 + I_1 R_1 - I_2 R_2 = 0$$

B)
$$V_2 + I_1 R_1 - I_2 R_2 = 0$$

D)
$$V_2 + I_1 R_1 + I_2 R_2 = 0$$

