Physics II: 1702 Gravity, Electricity, & Magnetism

Professor Jasper Halekas
Van Allen 70 [Clicker Channel #18]
MWF 11:30-12:30 Lecture, Th 12:30-1:30 Discussion

Last Time's Concept Check

A circuit with two batteries is shown below. The directions of the currents have been chosen (guessed) as shown.

Which is the correct current equation for this circuit?

A)
$$I_2 = I_1 + I_3$$

B)
$$I_1 = I_2 + I_3$$

C)
$$I_3 = I_1 + I_2$$

D) None of these.

Last Time's Concept Check

Which equation below is the correct equation for Loop 1?

A)
$$-V_2 + I_1R_1 - I_2R_2 = 0$$

C)
$$-V_2 - I_1R_1 + I_2R_2 = 0$$
 D) $V_2 + I_1R_1 + I_2R_2 = 0$

E) None of these.

Answer:
$$-V_2 + I_1 R_1 - I_2 R_2 = 0$$

B)
$$V_2 + I_1 R_1 - I_2 R_2 = 0$$

D)
$$V_2 + I_1 R_1 + I_2 R_2 = C$$

+ $I_1R_1-I_2R_2=0$

 $-J_2R_2-J_3R_3-0$ Lo.p 2 $I_3 = I_1 + I_1$ Junction

 $V_i = 12 V$ - Say V2 = 24V $R_1 = R_2 = R_3 = 1 \Omega$

> $-24 + I_1 - I_2 = 0$ 12 - II - II 0

 $-24 + F_1 - T_2 = 0$

add

 $\frac{12 - I_1 - 2I_2 = 0}{-12 - 12 - 12 = 0}$ $\frac{12 - 12 - 2I_2 = 0}{\text{junction rule}}$

=> (I2 = -4A)

- Our quess for current direction was wrong. It actually up!

a kay as long as we are consistent.

RC Circuits

Now we will discuss circuits with batteries, resistors and capacitors. → <u>"RC Circuits"</u>

Simplest case is just a Capacitor C, charged to a Voltage $V_o = Q_o/C$, attached to a Resistor R and a switch.

Initially one has $+Q_o$ and $-Q_o$ on the Capacitor plates. Thus, the initial Voltage on the Capacitor $V_o = Q_o/C$. What do you think happens when the switch is closed?

Close the switch at t=o, then current i starts to flow.

At t=o,
$$i_0 = \frac{V_0}{R}$$

$$\leq$$
 R = 10 Ω Later $i(t) = -\frac{dQ}{dt}$

* Negative sign since Q is decreasing.

Voltage across C = Voltage across R

$$\frac{Q}{C} = iR = -\frac{dQ}{dt}R$$

$$\frac{dQ}{dt} = -\frac{1}{RC}Q$$

We now need to solve this differential equation.

Solving the differential equation:

$$\left| \frac{dQ}{dt} = -\frac{1}{RC}Q \right| \longrightarrow Q(t) = Q_0 e^{-t/RC}$$

Check solution by taking the derivative...

$$\frac{dQ}{dt} = Q_0 \left(-\frac{1}{RC} \right) e^{-t/RC} = -\frac{1}{RC} Q$$

Also $Q(t) = Q_0$ at t=0.

$$Q(t=0) = Q_0 e^{-0/RC} = Q_0$$

Exponential Decay

Q(t)

After a time τ = RC, Q has dropped by $e^{-1} = 1/e$.

Thus τ =RC is often called the time constant and has units [seconds].

time

Concept Check

A capacitor with capacitance 0.1F in an RC circuit is initially charged up to an initial voltage of $V_o = 10V$ and is then discharged through an R=10 Ω resistor as shown. The switch is closed at time t=0. Immediately after the switch is closed, the initial current is $I_o = V_o / R = 10V/10\Omega$.

What is the current I through the resistor at time t=2.0 s?

B) 0.5A

D) 0.14A

Answer: $1/e^2 A = 0.14A$. The time constant for this circuit is $RC=(10\Omega)(0.10F) = 1.0$ sec. So at time t=2.0 sec, two time constants have passed. After one time constant, the voltage, charge, and current have all decreased by a factor of e. After two time constants, everything has fallen by e^2 . The initial current is 1A. So after two time constants, the current is $1/e^2 A = 0.135A$.

$$\frac{dQ}{dt} = Q_0 \left(-\frac{1}{RC} \right) e^{-t/RC} = -\frac{1}{RC} Q$$

$$|i(t)| = \left|\frac{dQ}{dt}\right| = \left(\frac{Q_0}{RC}\right) e^{-t/RC} = i_0 e^{-t/RC}$$

Thus, the current also falls with the same exponential function.

 $u_c = \frac{Q^2}{2c}$ Udissipated in R UR = Solute dt = SIZR dt I(t) = I.e-t/RC = Q./RCe-t/RC UR = So Qol RCJ2 e - 2+ RC. R dt = \frac{Q.2}{RC2}. - \frac{RC}{2}e^{-2t/RC} $= \frac{Q \cdot \lambda}{RC^2} \cdot \frac{RC}{2} = \frac{Q \cdot \lambda}{2C}$

- All energy stored in capaciton dissipated in resistor

Charging Capacitor

More complex RC circuit: Charging C with a battery.

Before switch closed i=0, and charge on capacitor Q=0.

Close switch at t=o.

Try Voltage loop rule.

$$+V_b + V_R + V_C = 0$$

$$+V_b - iR - Q/C = 0$$

Charging Capacitor

$$+V_b - iR - Q/C = 0$$

$$+V_b - \frac{dQ}{dt}R - Q/C = 0$$

$$\frac{dQ}{dt} = +\frac{V_b}{R} - \frac{Q}{RC}$$

$$Q(t) = CV_b \left(1 - e^{-t/RC}\right)$$

Charging Capacitor

$$Q(t) = CV_b \left(1 - e^{-t/RC} \right)$$

$$i(t) = \frac{dQ}{dt}(t) = \frac{V_b}{R}e^{-t/RC}$$

Energy Pissipation Charging Ceptel = SIV St = 5° V6 - V, e - + RC St = \frac{V_0^2}{R}. - RC e^{-tR(\frac{100}{9})} $= CV_b^2$ Uc = 1200/c = 1200/2 - Half of power dissipated in resistor while charging, half goes to capacitor

Concept Check

An RC circuit is shown below. Initially the switch is open and the capacitor has no charge. At time t=0, the switch is closed. What is the voltage across the capacitor *immediately* after the switch is closed (time = 0)?

A) Zero

B) 10 V

C) 5V

D) None of these.

Capacitor in Circuit

Although no charge actually passes between the capacitor plates, it acts just like a current is flowing through it.

Uncharged capacitors act like a "short" : $V_C = Q/C = o$

Fully charged capacitors act like an "open circuit". Must have i_C = o eventually, otherwise $Q \rightarrow$ infinity.

Happy Spring Break!

Where I wish I was going to be...