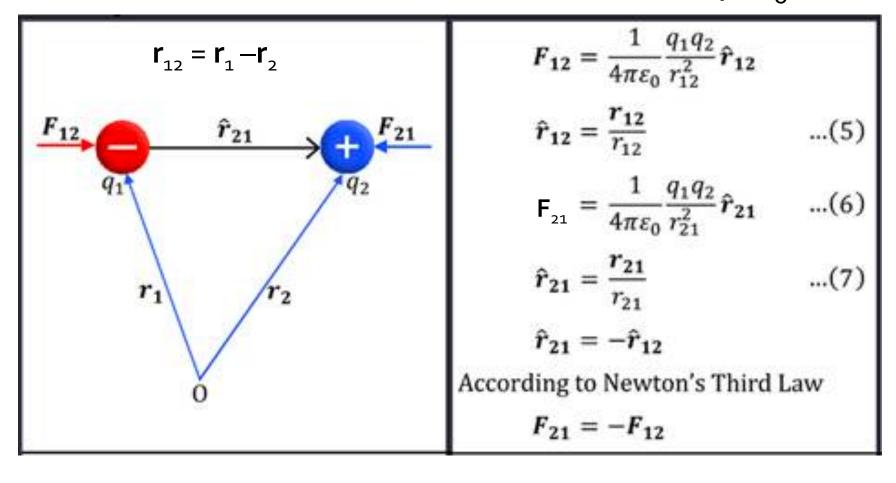
Physics II: 1702 Gravity, Electricity, & Magnetism

Professor Jasper Halekas
Van Allen 70 [Clicker Channel #18]
MWF 11:30-12:30 Lecture, Th 12:30-1:30 Discussion

Announcements I


- First lab tonight!
- Be sure to complete your pre-lab questions beforehand

Announcements II

- Office hours canceled Tuesday and Wednesday (2/2 and 2/3)
- Prof. Baalrud will sub Wednesday 2/3
- I'll be back on Thursday for discussion
- My apologies for any inconvenience

Coulomb's Law: Vector Form

• Note that Coulomb's constant $k = 1/(4\pi\epsilon_0)$

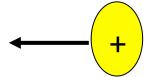
Inverse Square Laws

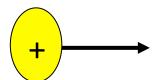
- Note something interesting
- Electrical force between two particles

$$F = kq_1q_2/r^2 = q_1q_2/(4\pi\epsilon_0 r^2)$$

Gravitational force between two particles

$$F = Gm_1m_2/r^2$$

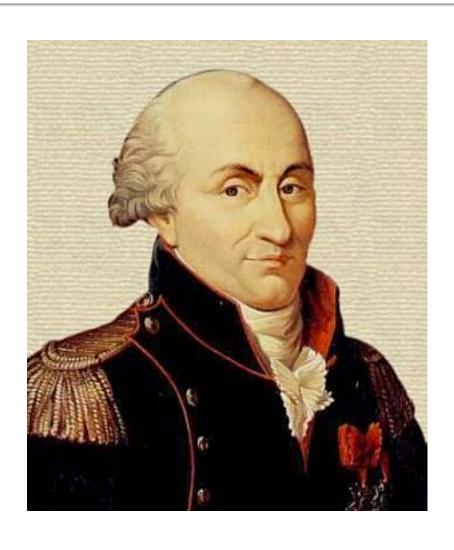

Concept Check

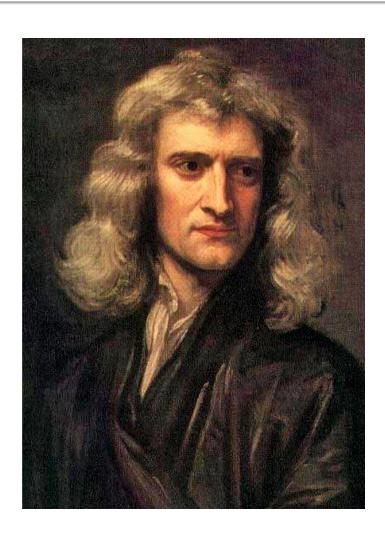

Two protons are near each other. Each feels an electrostatic repulsion of magnitude $F_{\rm elec}$ and a gravitational attraction of magnitude $F_{\rm grav}$, due to the other proton.

As the charges are moved apart, the ratio

$$\frac{F_{elec}}{F_{grav}}$$

- A) Increases
- B) Decreases
- C) Remains constant





Coulomb Vs. Newton

- Force between two particles $F = kq_1q_2/r^2$
- Force between two particles $F = Gm_1m_2/r^2$
- $k = 8.99 \times 10^9 \text{ Nm}^2/\text{C}^2 = 1/(4\pi\epsilon_0)$
- $q = 1.6 \times 10^{-19} C$
- $G = 6.673 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$
- $m_p = 1.67 \times 10^{-27} \text{ kg, } m_e = 9.1 \times 10^{-31} \text{ kg}$
- Who wins in a fair fight?

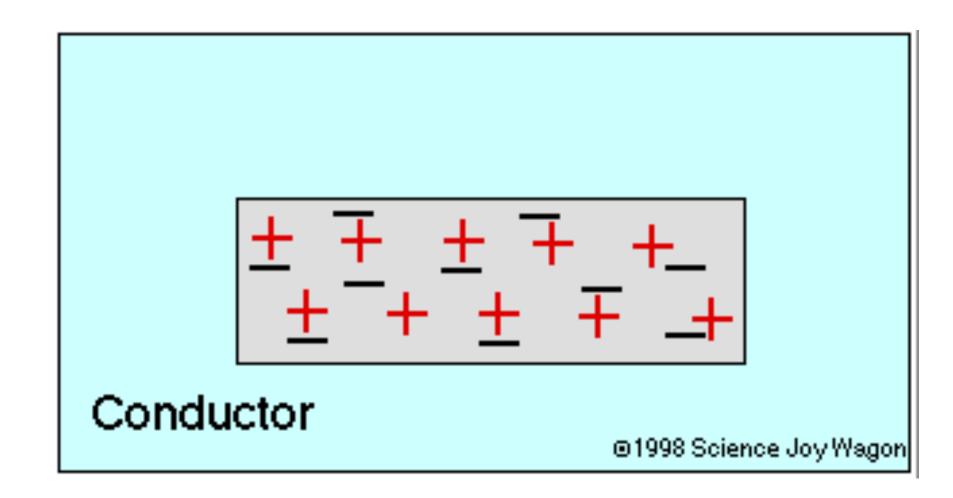
Hmmm...

Say we have a proton and an electron. Fg = -6 mp me/2 attracting K9, 2e/r2 Fe = = - Ke²/r² attracting e = 1.6 e - 19 c = 1701 FeFg = Ker Empme $= 8.99 \times 10^9 - (1.6 \times 10^{-19})^2$ 6.67×10-11.67×10-27-9.1×10-31 $\frac{10^{10} \cdot 2 \times 10^{-38}}{100 \times 10^{-69}} = \frac{2 \times 10^{-28}}{1 \times 10^{-69}}$ $= \left| 2 \times 10^{39} \right|$ Abig number!

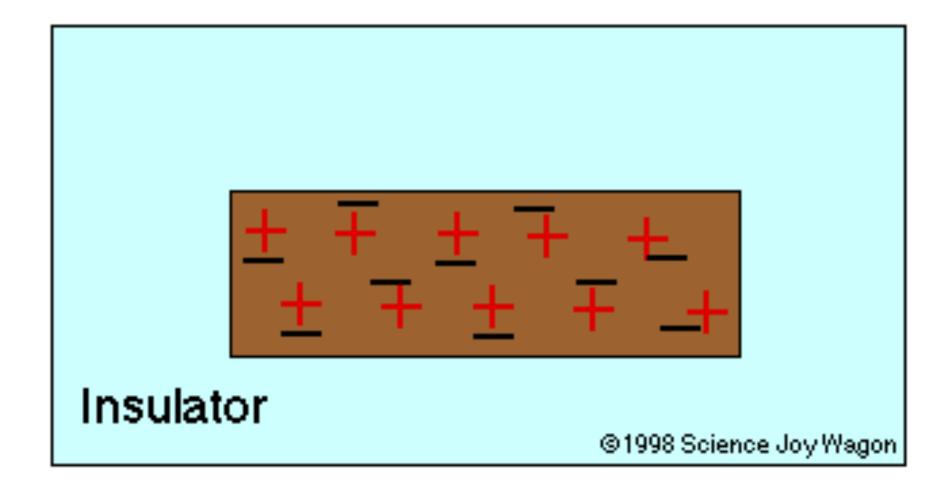
- For what 2/m are they equal? $Kq^2 = 6m^2$ $\sqrt{m} = \sqrt{6/k} = \sqrt{\frac{6.7 \times 1.-11}{2 \times 1.0^{9}}}$ = 10 -10 Ckg $= 10^{-10}/1.6 \times 10^{-19}$ = 6 × 10 8 e / kg Sounds like a lot pund but there are around NA - 1000 = 6x1026 afams - so you only need to ionite ane out of every 1018 = one billion billion atoms to have electrical be important forces

Insulators

Conductors


Insulators and Conductors

- Are both net neutral by default
 - Unless you transfer extra charge to them
- Under the influence of an external charge, they behave similarly in some ways, differently in others
- Only conductors will allow charge to flow across them (current)


The Confusing Part

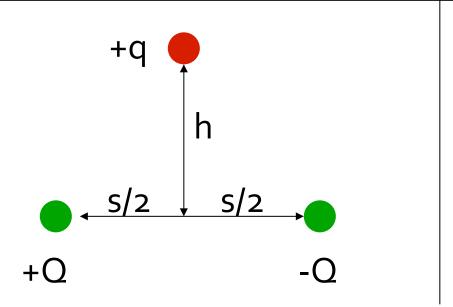
- Both conductors and insulators will be attracted to a nearby charge, even if they have no net charge on them
- The reason is essentially the same, but the details are different

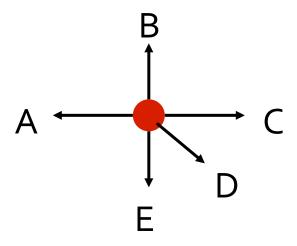
Conductor Response to Charge

Insulator Response to Charge

Concept Check

Two socks are observed to attract each other. Which, if any, of the first 3 statements MUST be true? (emphasis on MUST)


- A) The socks both have a non-zero net charge of the same sign.
- B) The socks both have a non-zero net charge of opposite sign.
- C) Only one sock is charged; the other is neutral.
- D) None of the preceding statements MUST be true.


Superposition of Forces

- Force on a point charge is the superposition of forces due to all other point charges
 - In the universe!
 - Thanks to 1/r² and neutrality on large scales, really just those nearby
- To add forces, you have to add vectors, not scalars

Concept Check

Consider the charge configuration shown below. What is the direction of the net force on the +q charge?

$$\overline{F}_{q\alpha} = \frac{\kappa q \alpha \hat{r}_{q\alpha}}{|\vec{r}_{q\alpha}|^2}$$

$$\overline{F}_{q-\alpha} = \frac{\kappa q (-\alpha) \hat{r}_{q\alpha}}{|\vec{r}_{q-\alpha}|^2} = \frac{-\kappa q \alpha \hat{r}_{q-\alpha}}{|\vec{r}_{q-\alpha}|^2}$$

What is I raal?

$$\frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2$$

flow about rga?

$$\hat{r}_{qa} = \frac{(-52i + h_{3}^{2})/h^{2} + 5\%}{(-52i + h_{3}^{2})} \frac{(-52i + h_{3}^{2})}{(-52i + h_{3}^{2})}$$

$$= \frac{\kappa q Q}{(h^{2} + 5\%)} \frac{(-52i + h_{3}^{2})}{(h^{2} + 5\%)}$$

$$\hat{F}_{q-Q} = \frac{\kappa q Q}{(-52i + h_{3}^{2})}$$

$$= \frac{\kappa q Q}{(h^{2} + 5\%)}$$

$$= \frac{\kappa q Q}{(h^{2} + 5\%)}$$

$$= \frac{\kappa q Q}{(h^{2} + 5\%)}$$

$$= \frac{\kappa q Q}{(h^{2} + 5\%)}$$