GRE Practice Questions — Electricity and Magnetism - 4. An infinitely long, straight wire carrying current I₁ passes through the center of a circular loop of wire carrying current I₂, as shown above. The long wire is perpendicular to the plane of the loop. Which of the following describes the magnetic force on the loop? - (A) Outward, along a radius of the loop. - (B) Inward, along a radius of the loop. - (C) Upward, along the axis of the loop. - (D) Downward, along the axis of the loop. - (E) There is no magnetic force on the loop. - 17. A very long, thin, straight wire carries a uniform charge density of λ per unit length. Which of the following gives the magnitude of the electric field at a radial distance r from the wire? - (A) $\frac{1}{2\pi\varepsilon_0}\frac{\lambda}{r}$ - (B) $\frac{1}{2\pi\varepsilon_0}\frac{r}{\lambda}$ - (C) $\frac{1}{2\pi\epsilon_0} \frac{\lambda}{r^2}$ - (D) $\frac{1}{4\pi\varepsilon_0}\frac{\lambda^2}{r^2}$ - (E) $\frac{1}{4\pi\varepsilon_0}\lambda \ln r$ - 18. The bar magnet shown in the figure above is moved completely through the loop. Which of the following is a true statement about the direction of the current flow between the two points *a* and *b* in the circuit? - (A) No current flows between a and b as the magnet passes through the loop. - (B) Current flows from a to b as the magnet passes through the loop. - (C) Current flows from b to a as the magnet passes through the loop. - (D) Current flows from a to b as the magnet enters the loop and from b to a as the magnet leaves the loop. - (E) Current flows from b to a as the magnet enters the loop and from a to b as the magnet leaves the loop. 36. The capacitor in the circuit above is charged. If switch S is closed at time t = 0, which of the following represents the magnetic energy, U, in the inductor as a function of time? (Assume that the capacitor and inductor are ideal.) (A) U ♠ 37. A pair of electric charges of equal magnitude q and opposite sign are separated by a distance ℓ, as shown in the figure above. Which of the following gives the approximate magnitude and direction of the electric field set up by the two charges at a point P on the y-axis, which is located a distance r >> ℓ from the x-axis? | | Magnitude | Direction | | | | |-----|--|------------|--|--|--| | (A) | $\frac{1}{4\pi\epsilon_0} \frac{2q}{r^2}$ | + y | | | | | (B) | $\frac{1}{4\pi\epsilon_0} \frac{2q}{r^2}$ | +x | | | | | (C) | $\frac{1}{4\pi\epsilon_0} \frac{2q}{r^2}$ | -x | | | | | (D) | $\frac{1}{4\pi\epsilon_0} \frac{q\ell}{r^3}$ | +x | | | | | (E) | $\frac{1}{4\pi\epsilon_0} \frac{q\ell}{r^3}$ | -x | | | | 38. Consider two very long, straight, insulated wires oriented at right angles. The wires carry currents of equal magnitude *I* in the directions shown in the figure above. What is the net magnetic field at point *P*? (A) $$\frac{\mu_0 I}{2\pi a} (\hat{\mathbf{x}} + \hat{\mathbf{y}})$$ (B) $$-\frac{\mu_0 I}{2\pi a} \left(\hat{\mathbf{x}} + \hat{\mathbf{y}} \right)$$ (C) $$\frac{\mu_0 I}{\pi a} \hat{\mathbf{z}}$$ (D) $$-\frac{\mu_0 I}{\pi a} \hat{\mathbf{z}}$$ $$(E)$$ 0 60. Three long, straight wires in the xz-plane, each carrying current I, cross at the origin of coordinates, as shown in the figure above. Let x̂, ŷ, and ẑ denote the unit vectors in the x-, y-, and z-directions, respectively. The magnetic field B as a function of x, with y = 0 and z = 0, is (A) $$\mathbf{B} = \frac{3\mu_0 I}{2\pi x} \hat{\mathbf{x}}$$ (B) $$\mathbf{B} = \frac{3\mu_0 I}{2\pi x} \hat{\mathbf{y}}$$ (C) $$\mathbf{B} = \frac{\mu_0 I}{2\pi x} (1 + 2\sqrt{2}) \hat{\mathbf{y}}$$ (D) $$\mathbf{B} = \frac{\mu_0 I}{2\pi x} \hat{\mathbf{x}}$$ (E) $$\mathbf{B} = \frac{\mu_0 I}{2\pi x} \hat{\mathbf{y}}$$ - 61. A particle with mass m and charge q, moving with a velocity v, enters a region of uniform magnetic field B, as shown in the figure above. The particle strikes the wall at a distance d from the entrance slit. If the particle's velocity stays the same but its charge-to-mass ratio is doubled, at what distance from the entrance slit will the particle strike the wall? - (A) 2d - (B) $\sqrt{2}d$ - (C) d - (D) $\frac{1}{\sqrt{2}}d$ - (E) $\frac{1}{2}d$ 62. Consider the closed cylindrical Gaussian surface above. Suppose that the net charge enclosed within this surface is +1 × 10⁻⁹ C and the electric flux out through the portion of the surface marked A is −100 N·m²/C. The flux through the rest of the surface is most nearly given by which of the following? - (A) -100 N·m²/C - (B) 0 N·m²/C - (C) 10 N·m²/C - (D) 100 N·m²/C - (E) 200 N⋅m²/C - 67. A large, parallel-plate capacitor consists of two square plates that measure 0.5 m on each side. A charging current of 9 A is applied to the capacitor. Which of the following gives the approximate rate of change of the electric field between the plates? - (A) $2 \frac{V}{m \cdot s}$ - (B) $40 \frac{V}{m \cdot s}$ - (C) $1 \times 10^{12} \frac{V}{m \cdot s}$ - (D) $4 \times 10^{12} \frac{V}{m \cdot s}$ - (E) $2 \times 10^{13} \frac{V}{m \cdot s}$ - 70. A wire loop that encloses an area of 10 cm² has a resistance of 5 Ω. The loop is placed in a magnetic field of 0.5 T with its plane perpendicular to the field. The loop is suddenly removed from the field. How much charge flows past a given point in the wire? - (A) 10⁻⁴ C - (B) 10^{-3} C - (C) 10⁻² C - (D) 10⁻¹ C - (E) 1 C - 71. Two nonrelativistic electrons move in circles under the influence of a uniform magnetic field **B**, as shown in the figure above. The ratio r_1/r_2 of the orbital radii is equal to 1/3. Which of the following is equal to the ratio v_1/v_2 of the speeds? - (A) 1/9 - (B) 1/3 - (C) 1 - (D) 3 - (E) 9 90. Two thin, concentric, spherical conducting shells are arranged as shown in the figure above. The inner shell has radius a, charge +Q, and is at zero electric potential. The outer shell has radius b and charge −Q. If r is the radial distance from the center of the spheres, what is the electric potential in region I (a < r < b) and in region II (r > b)? - 91. In static electromagnetism, let E, B, J, and ρ be the electric field, magnetic field, current density, and charge density, respectively. Which of the following conditions allows the electric field to be written in the form E = -∇ φ, where φ is the electrostatic potential? - (A) $\nabla \cdot \mathbf{J} = 0$ - (B) $\nabla \cdot \mathbf{E} = \rho/\epsilon_0$ - (C) $\nabla \times \mathbf{E} = \mathbf{0}$ - (D) $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$ - (E) $\nabla \cdot \mathbf{B} = 0$ 92. A long, straight, hollow cylindrical wire with an inner radius *R* and an outer radius 2*R* carries a uniform current density. Which of the following graphs best represents the magnitude of the magnetic field as a function of the distance from the center of the wire? 93. A parallel-plate capacitor has plate separation d. The space between the plates is empty. A battery supplying voltage V₀ is connected across the capacitor, resulting in electromagnetic energy U₀ stored in the capacitor. A dielectric, of dielectric constant κ, is inserted so that it just fills the space between the plates. If the battery is still connected, what are the electric field E and the energy U stored in the dielectric, in terms of V₀ and U₀? (A) $$\frac{V_0}{d}$$ U_0 (B) $$\frac{V_0}{d}$$ κU_0 (C) $$\frac{V_0}{d}$$ $\kappa^2 U_0$ (D) $$\frac{V_0}{\kappa d}$$ U_0 (E) $$\frac{V_0}{\kappa d}$$ κU_0 - . | QUESTION | | TO | ΓAL | QUESTION | | | TOTAL | | | | |----------------------------|-----------------------|----------------------------|-----|----------|--|-----------------------------|-----------------------|----------------------------|---|---| | Number | Answer | P + | C | I | | Number | Answer | P + | C | I | | 1
2
3
4
5 | B
D
E
E
A | 72
88
60
72
94 | | | | 51
52
53
54
55 | D C D E A | 69
56
50
71
45 | | | | 6
7
8
9
10 | ECDEB | 73
74
59
78
85 | | | | 56
57
58
59
60 | DBACC | 52
59
39
60
58 | | | | 11
12
13
14
15 | C A B E | 83
36
59
11
59 | | | | 61
62
63
64
65 | EEDDC | 73
41
47
64
66 | | | | 16
17
18
19
20 | D
E
A
A | 74
70
42
53
35 | | | | 66
67
68
69
70 | D
D
D
A | 34
26
33
51
29 | | | | 21
22
23
24
25 | CCBBE | 57
76
16
52
83 | | | | 71
72
73
74
75 | B D D E B | 65
70
11
40
19 | | | | 26
27
28
29
30 | DCDCD | 64
30
63
47
51 | | | | 76
77
78
79
80 | всвос | 32
39
80
49
50 | | | | 31
32
33
34
35 | CAECB | 73
19
72
45
30 | | | | 81
82
83
84
85 | B
D
E
E
B | 60
60
48
67
56 | | | | 36
37
38
39
40 | AEECB | 50
53
83
53
20 | | | | 86
87
88
89
90 | B
D
D
D | 60
74
27
49
21 | | | | 41
42
43
44
45 | BEDDC | 58
47
39
27
15 | | | | 91
92
93
94
95 | СШВСО | 60
67
21
12
51 | | | | 46
47
48
49
50 | DOCOC | 25
32
39
49
39 | | | | 96
97
98
99
100 | DEDEE | 17
20
49
40
67 | | |