
one molecule:

$$
P=\frac{F_{x}}{A}=\frac{\Delta p / \Delta t}{A}=\frac{m v_{x}^{2}}{A L}
$$

N molecules :

$$
P V=N m \overline{v_{x}^{2}}=N k T
$$

$\begin{aligned} & \text { KE for } \\ & X \text {-motion }\end{aligned}: K E=N \frac{1}{2} m \overline{v_{x}^{2}}=N \frac{1}{2} k T$

$$
\underset{\text { all } 3 \text { directions }}{K E}=N(\underbrace{\frac{1}{2} m \overline{v_{x}^{2}}}_{\frac{1}{2} k T}+\underbrace{\frac{1}{2} m \overline{v_{y}^{2}}}_{\frac{1}{2} k T}+\underbrace{\frac{1}{2} m \overline{v_{z}^{2}}}_{\frac{1}{2} k T})=3 N \frac{1}{2} k T
$$

special case of Equipartion Theorem at thermal equilibrium, each quadratic contribution to energy (Degree of freedom) will have an avg of $\frac{1}{2} k T$ energy

$$
\begin{gathered}
K E_{\text {trans }}=3 N \frac{1}{2} k T=N \frac{1}{2} m \overline{v^{2}} \\
\frac{3}{2} k T=\frac{1}{2} m \overline{v^{2}} \\
v_{\text {RMS }}=\sqrt{\overline{v^{2}}=\vec{v} \cdot \vec{v}}=\sqrt{3 k T / m} \overbrace{\text { RMS }}=\sqrt{\overline{v^{2}}} \neq \frac{n(\vec{v} \mid)}{|\vec{v}|} \neq
\end{gathered}
$$

$E_{\text {quipartition }}$ Theorem

$$
U_{\text {thermal }}={\underset{\sim}{N}}^{N} \underbrace{f} * \frac{1}{2} k T
$$

\# of particles \# of degrees of fredoun quadratic meaning the energy depends on square of a coord or momentum.

$$
E=\sum_{n=1}^{N} \frac{P_{x_{n}}^{2}}{2 m}+\frac{P_{z, n}^{2}}{2 m}+\frac{P_{z n}^{2}}{2 m} \quad \text { \} ~ o n l y ~ }
$$

$$
E=\sum_{n=1}^{N} \frac{P_{x}^{2}}{2 m}+\frac{P_{y}^{2}}{2 m}+\frac{P_{z}^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}+\frac{1}{2} m \omega^{2} y^{2}+\frac{1}{2} m \omega^{2} z^{2}
$$

6 Do per particle. Each particle moves in 3D in a harmonic
system has 6N OoF
average: $U_{\text {thermal }}=6 N \times \frac{1}{2} k T$ "spring count"
add to $E:$ Vibration $\Leftrightarrow \Leftrightarrow N_{2} \quad \frac{1}{2}^{\downarrow} \Delta \Delta x^{2}$
rotate: $\circlearrowleft 2 \times \frac{1}{2} I \omega^{2}$

Equipartition Theorem is Requires: $k T \gg \Delta t$
ID harmonic oscillator: $E_{\text {osc }}=\hbar \omega(n+1 / 2)$

if $k T \gg \triangle E$ the ΔE stops don't matter.
air molecule with E~KT
 can change E Exc by $\sim k T$
$k T \lesssim \triangle E: \triangle E$ matters, energy steps important, not continuous energy NOT CLASSICAL. E.P.T. does not apply
$k T \gg \Delta E:$ cant see energy steps, energy look classical. E.P.T. OK
$u-235$ fissionable
$u-23.8 \leftarrow$ not fissionable

Gaseous Diffusion: Separate $1-235$ by exploiting fact that $U F_{6}(235)$ molecules move faster than $U F_{6}$ (238)

Uranium Hexafluoride, $U F_{6}$, a gas
u-238:

$$
V_{\text {RMS }}=\sqrt{\frac{3 R T}{M}}=\sqrt{\frac{3(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{k})(300 \mathrm{~K})}{0.352 \mathrm{~kg} / \mathrm{mol}}}=145.8 \frac{\mathrm{~m}}{\mathrm{~S} \mathrm{~K}}
$$

molar mass
u-238 is only $\begin{aligned} & \text { molar mass } \\ & =\text { mass per mol }\end{aligned} V_{\text {RMS }}\left(u F_{6}, 235\right)=146.4 \frac{\mathrm{~m}}{\mathrm{~s}}<0.6 \mathrm{~m} / \mathrm{s}$ slower!
A should be 19\#

$$
\left.\begin{array}{l}
M_{F}=(16) 9 / \mathrm{mol} \\
M_{u-235}=235 \mathrm{~g} / \mathrm{mol}
\end{array}\right\} \begin{aligned}
& M\left(u F_{6}, 235\right)=349 \mathrm{~g} / \mathrm{mole} \\
& M\left(u F_{6}, 238\right)=352 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

