Problem Set 1

August 26, 2023

1 problem 1.1

Part (a)

We can derive the formulas for converting temperatures between Fahrenheit (F) and Celsius (C) using the given facts:

$$
\begin{aligned}
32^{\circ} \mathrm{F} & =0^{\circ} \mathrm{C} \\
212^{\circ} \mathrm{F} & =100^{\circ} \mathrm{C}
\end{aligned}
$$

We'll create a linear equation relating Fahrenheit and Celsius using the formula:

$$
C=m \cdot F+b
$$

Using the two given points to find the values of m and b :

1. From the freezing point:

$$
\begin{aligned}
0 & =m \cdot 32+b \\
b & =-32 \cdot m
\end{aligned}
$$

2. From the boiling point:

$$
\begin{aligned}
& 100=m \cdot 212+b \\
& 100=m \cdot 212-32 \cdot m \\
& 100=180 m
\end{aligned}
$$

Solving for m :

$$
m=\frac{100}{180}=\frac{5}{9}
$$

Substituting back into our expression for b :

$$
b=-32 \cdot \frac{5}{9}
$$

The formula for converting Fahrenheit to Celsius is:

$$
C=\frac{5}{9} \cdot(F-32)
$$

To convert Celsius to Fahrenheit, we can invert the relationship:

$$
F=\frac{9}{5} \cdot C+32
$$

So the conversion formulas are:

- Fahrenheit to Celsius: $C=\frac{5}{9} \cdot(F-32)$
- Celsius to Fahrenheit: $F=\frac{9}{5} \cdot C+32$

Part (b)

Absolute zero is the lowest possible temperature, at which the thermodynamic temperature is 0 Kelvin. To find the equivalent in Fahrenheit, we can convert 0 Kelvin to Celsius using:

$$
\begin{equation*}
C=K-273.15 \tag{1}
\end{equation*}
$$

And then convert to Fahrenheit:

$$
\begin{equation*}
F=\frac{9}{5} \cdot(-273.15)+32 \approx-459.67^{\circ} \mathrm{F} \tag{2}
\end{equation*}
$$

Grading Rubric

- 3 points: Correctly deriving the formula to convert from Fahrenheit to Celsius.
- 3 points: Correctly deriving the formula to convert from Celsius to Fahrenheit.
- 4 points: Correctly identifying absolute zero on the Fahrenheit scale.

Total: 10 points

2 problem 1.8a

Solution:

For a solid, we define the linear thermal expansion coefficient, α, as the fractional increase in length per degree. For steel, $\alpha=1.1 \times 10^{-5} \mathrm{~K}^{-1}$. To estimate the total variation in length of a 1 km steel bridge between a cold winter night and a hot summer day in Iowa, we can use the formula for linear expansion:

$$
\begin{equation*}
\Delta L=\alpha L \Delta T \tag{3}
\end{equation*}
$$

Assuming a typical temperature variation in Iowa of 70 K , we have:

$$
\begin{aligned}
\Delta L & =1.1 \times 10^{-5} \times 1000 \mathrm{~m} \times 70 \mathrm{~K} \\
& \approx 0.77 \mathrm{~m}
\end{aligned}
$$

The total variation in length of the bridge is approximately 0.77 m .
Grading Rubric (Total 10 points):

- 3 points: Correct use of the linear thermal expansion coefficient, including understanding its meaning and units.
- 4 points: Correct application of the formula for linear expansion and substitution of given values.
- 3 points: Correct calculation and final answer, with appropriate units.

3 problem 1.11

Solution

Rooms A and B are the same size, so they have the same volume. The number of moles of air in each room can be given by the ideal gas law, $n=\frac{P V}{R T}$, where P is the pressure, V is the volume, R is the universal gas constant, and T is the temperature in kelvin.

Since the rooms are connected by an open door, the pressure in both rooms is the same, and the volume V is also the same for both rooms. However, Room A is warmer, so the temperature $T_{A}>T_{B}$.

Substituting these values into the equation for the number of moles, we find:

$$
\begin{aligned}
n_{A} & =\frac{P V}{R T_{A}} \\
n_{B} & =\frac{P V}{R T_{B}}
\end{aligned}
$$

Since $T_{B}<T_{A}$, it follows that $n_{B}>n_{A}$. So, Room B has more moles, and thus contains the greater mass of air (assuming the air in each room has the same composition).

Grading Rubric

- 3 points: Explaining that the volume and pressure in both rooms are the same.
- 3 points: Applying the ideal gas law to find expressions for the mass of air in both rooms.
- 4 points: Correctly identifying that Room B contains the greater mass of air and explaining why.

Total: 10 points

4 problem 1.19

Solution:

In a gas at thermal equilibrium, all molecules, regardless of their mass, have the same average translational kinetic energy given by:

$$
\begin{equation*}
\frac{1}{2} m v^{2}=\frac{3}{2} k T \tag{4}
\end{equation*}
$$

By rearranging the equation, we have:

$$
\begin{equation*}
v=\sqrt{\frac{3 k T}{m}} \tag{5}
\end{equation*}
$$

Since hydrogen molecules $\left(H_{2}\right)$ are lighter than oxygen molecules $\left(O_{2}\right)$, they will have a higher average speed at the same temperature. The mass of an H_{2} molecule is approximately 2 amu , while the mass of an O_{2} molecule is approximately 32 amu . So the ratio of the average speeds is given by:

$$
\begin{equation*}
\frac{v_{H_{2}}}{v_{O_{2}}}=\sqrt{\frac{m_{O_{2}}}{m_{H_{2}}}}=\sqrt{\frac{32}{2}} \approx 4 \tag{6}
\end{equation*}
$$

Hydrogen molecules are moving, on average, 4 times faster than oxygen molecules.

Grading Rubric:

- Correct usage of kinetic energy formula: 3 points
- Correct derivation of speed formula: 3 points
- Correct calculation of the mass ratio: 2 points
- Correct conclusion (Hydrogen molecules are moving 4 times faster): 2 points

Total: 10 points

5 problem 1.21

Solution:

Given the mass of hailstones $m=2 \mathrm{~g}=2 \times 10^{-3} \mathrm{~kg}$, their speed $v=15 \mathrm{~m} / \mathrm{s}$, and the area of the window $A=0.5 \mathrm{~m}^{2}$, we can first find the force exerted by each hailstone by using the conservation of momentum.

Since the hailstones strike at a 45° angle, only a component of their momentum will be normal to the window. Thus, the change in momentum for each hailstone is given by:

$$
\begin{equation*}
\Delta p=2 m v \cos 45^{\circ}=2 \times 2 \times 10^{-3} \mathrm{~kg} \times 15 \mathrm{~m} / \mathrm{s} \times \frac{1}{\sqrt{2}} \approx 0.0424 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \tag{7}
\end{equation*}
$$

The total force on the window, considering 30 hailstones hitting the window per second, is:

$$
\begin{equation*}
F=30 \times \Delta p \approx 1.273 \mathrm{~N} \tag{8}
\end{equation*}
$$

The average pressure on the window is then:

$$
\begin{equation*}
P=\frac{F}{A} \approx \frac{1.26}{0.5} \mathrm{~Pa} \approx 2.546 \mathrm{~Pa} \tag{9}
\end{equation*}
$$

Compared to the atmospheric pressure (approximately 101325 Pa), the pressure exerted by the hailstones is significantly (2.5×10^{-5} times) lower.

Grading Rubric:

- Correct calculation of the change in momentum for each hailstone: 2 points
- Correct calculation of the total force on the window: 3 points
- Correct calculation of the average pressure on the window: 3 points
- Correct comparison to the atmospheric pressure: 2 points

Total: 10 points

