problem set 2 solution
1.23 He has 3 degrees of freedom (translation) 2 points: $f=3$

$$
\begin{aligned}
& \text { Io } U=3 N \frac{1}{2} K T=\frac{3}{2} P V \\
& \text { for } P=10^{5} \mathrm{~N} / \mathrm{m}^{2}+V=10^{-3} \mathrm{~m}^{3}, \quad P V=100 \mathrm{~J} \Rightarrow U=150 \mathrm{~J}
\end{aligned}
$$

for air there are 5 degrees of freedom (3 translation

$$
\$ 2 \text { rotation } \Rightarrow U=\frac{5}{2} P V=250 \mathrm{~J} 3 \text { points: numerical } U
$$

Schroeder 5 points total
1.29 The $5^{\circ} \mathrm{C}$ increase in temperature requires
an energy input of $\Delta u=1 \frac{\mathrm{cal}}{\mathrm{g}-{ }^{\circ} \mathrm{C}} \times 5^{\circ} \mathrm{C} \times 200 \mathrm{~g}$
5 points: $\Delta U=W+Q$ means you cant tell how

$$
=10^{3} \mathrm{cal}
$$

energy is attributed to W and Q
But $\Delta u=Q+W$. There's no way fo
know it Δu was from heat, work, on both,

b) $w=-$ Area $=-\left(10^{5} P_{a} \times 2 \times 10^{-3} \mathrm{~m}^{3}\right)-\frac{1}{2}\left(2 \times 10^{5} P_{a} \times 2 \times 10^{-3} \mathrm{~m}^{3}\right)$

3 points $\quad=-400 \mathrm{~J}<0$ so work done by gas on environment
c) He atom has 3 Do, $U=\frac{3}{2} N K T=\frac{3}{2} P V$

3 points

$$
\begin{aligned}
\Delta u & =\frac{3}{2}\left[P_{f} V_{f}-P_{i} V_{i}\right]=\frac{3}{2}\left[\text { 3atm } \cdot 3 \mathrm{~L}-\text { ta tm. }^{\text {t }} 1 \mathrm{~L}\right] \\
& =12 \quad \text { L.atm }
\end{aligned}
$$

$\frac{1.31}{(\text { cont. })}$ d) $Q=\Delta u-w=1200 \mathrm{~J}-(-400 \mathrm{~J})=1600 \mathrm{~J}$ 2 points this the heat entering the gas
e) To cause an increase in P at T as the 2 points gas expands requires heat input.

This is ut much - the same as lifting 10 kg by 1 m 2 points That's because the water isn't very compressible,

So ΔV is small.

$$
\underbrace{\frac{1,36}{3 \text { points }}}_{\substack{10 \text { points } \\ \text { total }}} P_{f} V_{\gamma}^{\gamma}=P_{i} V_{i}^{\gamma} \rightarrow V_{f}=V_{i}\left(\frac{P_{i}}{P_{f}}\right)^{1 / \gamma}=(1 \mathrm{~L})\left(\frac{\text { ta tm }}{7 a t_{m}}\right)^{5 / 7}=0.25 \mathrm{~L}
$$

$$
\gamma=\frac{f+2}{f}=\frac{7}{5} \text { fir air @ room temp }
$$

$$
\begin{aligned}
& \frac{1.36}{(\text { cont. })} \text { b) } P(v)=C / v^{\gamma}=P_{i} V_{i}^{\gamma} / V^{\gamma} \text {. } \\
& \rightarrow W=-\int p d V=-P_{i} V_{i}^{\gamma} \int_{V_{i}}^{V_{f}} V^{\gamma} d V=-\left.\gamma_{i} V_{i}^{\gamma}\left(\frac{V^{1-\gamma}}{1-\gamma}\right)\right|_{V_{i}} ^{V_{f}} \\
& =\frac{P_{i} V_{i}^{\gamma}}{1-\gamma}\left(\frac{1}{V_{f}^{1-\gamma}}-\frac{1}{V_{i}^{1-\gamma}}\right)=\frac{P_{i} V_{i}}{\gamma-1}\left[\left(\frac{V_{i}}{V_{f}}\right)^{\gamma-1}\right] \\
& =\frac{1 \mathrm{~L} \cdot \operatorname{atm}}{2 / 5}\left[4^{2 / 5}-1\right]=1.853 \mathrm{~L} \cdot \text { atm }=185 \mathrm{~L}
\end{aligned}
$$

c) using equ. 1.35

$$
T_{f}=T_{i}\left(\frac{V_{i}}{V_{f}}\right)^{2 / f}=(300 \mathrm{~K})\left(\frac{1 \mathrm{~L}}{0.25 \mathrm{~L}}\right)^{2 / 5} \approx 522 \mathrm{~K}
$$

1,38 The bubbles have the same number of molecules of end with the same pressure. $\Rightarrow V=N K T / P$ will be langer for the bubble with the higher T $U=\frac{f}{2} N K T$, so higher $T \rightarrow$ larger U.
2 points As bubbles expand the do work and lose energy. 2 points B absorbs heat to maintain constant T
$\Rightarrow B$ has larger U, higher T, langer V.

6 points total
1,49
Ignore the volume of the liquid water which is \ll volume of the vapor

$$
\begin{aligned}
W=P V=W \cdot R T & =(1.5 \mathrm{~mol})\left(8,31 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K}) \\
& \approx 4 \mathrm{~kJ}
\end{aligned}
$$

3 points
out of 286 kJ of heat only 4 kJ is from
work done by the atmosphere. The other 282 kJ is from the chemical bonds
1.55

a)
apply $F=m a$ to one mass $\left[\frac{6 m^{2}}{(2 r)^{2}}=m \frac{v^{2}}{r}\right] \times 2 r$ 3 points

$$
\begin{aligned}
& \rightarrow \frac{G m^{2}}{2 r}=2 m v^{2}=2 u_{k} \\
& \rightarrow u_{p}=-2 u_{k}
\end{aligned}
$$

b)
\Rightarrow increasing $u_{\text {tot }}$ decreases u_{k}) is towards $v=0$ at $u_{b_{t}}=0$
c)
$\frac{1.55}{(\text { cont. })}$ d) U_{p} should depend on $G, \mu \notin R$ (radius of star)

$$
\begin{aligned}
& {[G]=\frac{N m^{2}}{\mathrm{Kg}^{2}} \quad M \& R \text { are in fundamental }} \\
& {[M]=\operatorname{kg} \quad[R]=m \quad \text { units. }}
\end{aligned}
$$

We must multiply G by powers of $M \nsubseteq R$ to get energy, $[E]=$ Length \times Force
want $\left[G M^{a} R^{b}\right]=N \cdot m \quad \frac{N m^{2}}{k g^{2}} \mathrm{~kg}^{a} m^{b}=N \cdot m$

3 points

$$
\rightarrow a=2, b=-1
$$

$$
\text { So } u_{p} \propto G m^{2} / R \quad \& \quad u_{p}<0 \text { to }
$$

e) $u_{k}=\frac{3}{2} N k T$, using this plus the fact that that

$$
U_{k}=-\frac{1}{2} U_{p} \text { we get } \frac{3}{2} N k T \approx-\frac{1}{2}\left(-\frac{G \mu^{2}}{r}\right)=\frac{2 G \mu^{2}}{2 R}
$$

$$
\rightarrow T \approx \frac{G M^{2}}{3 N K R}=\frac{G M}{3 k R} \cdot \underbrace{\frac{\mu}{N}}_{\substack{\text { mass pl } \\ \text { particle }}}
$$

$$
\frac{1.55}{(\text { cont. })} \quad \frac{M}{N}=\text { mass per particle } \approx \frac{1}{2}\left(m_{\text {proton }}+m_{\text {election }}\right) \approx \frac{1}{2} m_{\text {proton }}
$$

$\rightarrow T \approx 4 \times 10^{6} \mathrm{~K} \quad$ This is much higher than the $T \approx 6000 \mathrm{k}$ of The Sun's 2 points surface. The core of the sun is $T \approx 10^{7} \mathrm{~K}$, which is closer

