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QUESTION TO BE INVESTIGATED: 

 
How is discharge current 1 related to the standard plasma parameters? 

 
SYMBOLIC NOTATION 

 
𝐴𝐴𝑝𝑝 – current-collecting surface area of the entire probe 
𝐴𝐴𝑑𝑑  – current-collecting surface area of the flat disc top of the probe 
𝑒𝑒 - elementary charge 
𝜖𝜖0 - permittivity of free space 
𝐾𝐾𝐵𝐵 – Boltzmann constant 
𝑟𝑟 – distance between charges 
𝑟𝑟𝑝𝑝 – probe radius 
𝑉𝑉𝑝𝑝 – probe voltage/potential 
𝑉𝑉𝑓𝑓 – floating potential 
𝑉𝑉𝑠𝑠 – plasma space potential/electrostatic potential 
𝑛𝑛𝛼𝛼  – number density of species α 
𝑚𝑚𝛼𝛼 – mass of species α 
𝑣𝑣𝑥𝑥 – x component of the thermal velocity 
�⃑�𝑣𝛼𝛼  – thermal velocity of species α  
〈�⃑�𝑣∝〉 - average thermal velocity of species α  
α=e, i, n, 0  (for electrons, ions, neutral atoms, or a selected reference density 
respectively).  Without a subscript the meaning depends on the context. 

 
I. INTRODUCTION: 

 
The Langmuir probe is a diagnostic device used to determine several basic 

properties of plasma2, such as temperature and density. Plasma is the most prevalent 
form of ordinary matter. Plasma is a state of matter which contains enough free (not 
bound to an atom) charged particles (electrons and ions) so that its dynamical 

1 Terms defined more precisely in the glossary will be italicized at first occurrence. 
2 The term “plasma” was first coined by Irving Langmuir and means from the Greek: ‘something molded or 
fabricated’.  Unfortunately, the Greek is not representative of plasma’s meaning in physics. Our definition 
of plasma is a medium which exhibits Debye shielding. 
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behavior is dominated by electrostatic shielding or, more specifically, Debye 
shielding. If a collection of charged particles is sufficiently large, then shielding can 
occur and one can expect to observe plasma behavior. If the typical kinetic energies 
of the particles is greater than their typical electrostatic energies then the plasma is 
weakly coupled meaning that it will behave very much like a fluid (in the opposite 
limit plasmas can crystalize). 

As an example of plasma behavior let us think about the situation of a Langmuir 
probe suspended in plasma (of test charge q). This situation can be described by 
looking at the Poisson equation in three spatial dimensions: 

 
∇2𝑉𝑉𝑠𝑠 = − 𝑒𝑒

𝜖𝜖0
(𝑛𝑛𝑖𝑖 − 𝑛𝑛𝑒𝑒) − 𝑞𝑞

𝜖𝜖0
 [Eq. 1] 

 
Notice that if the ion and electron densities are the same in [Eq. 1] the equation 
reduces to the Poisson equation for a typical electrostatic potential. For this simple 
model we can assume that the ions are colder and more massive than the electrons 
so that they do not move and have a constant density 𝑛𝑛𝑖𝑖 = 𝑛𝑛0 (in general they can also 
contribute to the shielding). We furthermore assume a Maxwell-Boltzmann 
distribution for the electron density as they rapidly move in the average space 
potential, 𝑉𝑉𝑠𝑠(𝑥𝑥):   𝑛𝑛𝑒𝑒 = 𝑛𝑛0𝑒𝑒𝑒𝑒𝑉𝑉𝑠𝑠/𝐾𝐾𝐵𝐵𝑇𝑇𝑒𝑒 . Putting this together and assuming that the 
density variation is not too large we obtain: 
       

(∇2𝑉𝑉𝑠𝑠) = 𝑛𝑛0𝑒𝑒2

𝜖𝜖0𝐾𝐾𝑇𝑇𝑒𝑒
𝑉𝑉𝑠𝑠 − 𝑞𝑞

𝜖𝜖0
 [Eq. 2] 

 
We define the Debye length as: 
 

𝜆𝜆𝐷𝐷 ≡  �𝜖𝜖0𝐾𝐾𝐵𝐵𝑇𝑇𝑒𝑒
𝑛𝑛0𝑒𝑒2 �

1
2�

 [Eq. 3] 

 
The solution to Eq. 2 is then:  
 

𝑉𝑉𝑠𝑠(𝑟𝑟) = 𝑞𝑞
4𝜋𝜋𝜀𝜀0|𝑟𝑟| ∙ 𝑒𝑒−|𝑟𝑟| 𝜆𝜆𝐷𝐷⁄  [Eq. 4] 

 
[Eq. 4] is the Debye-Hückel potential.  Near the charged probe, the potential is similar 
to what you obtain from a free charge q, but the presence of free charges in the plasma 
causes an additional exponential shielding over Debye length scales. The Debye 
length is a measure of the distance over which charge neutrality may not be valid near 
a boundary of the plasma, or in this case near the probe. It is also a measure of the 
effective range of the screened (Coulomb) potential. The requirement 𝑟𝑟𝑝𝑝 ≫ 𝜆𝜆𝐷𝐷 
insures that edge effects may be neglected. Provided that the radius (spherical 
symmetry) of the collection of particles is larger than the Debye length, shielding can 
occur.  Physically, the positively charged probe attracts a “cloud” of electrons that has 
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an equal and opposite charge to the probe causing the electric potential modification 
to be confined to a small sphere with a radius on the order of a Debye length.  It is an 
amazing fact that a weakly coupled plasma, despite all of its free charges moving 
about, is very nearly electrically neutral (that is, they are quasi-neutral). So the 
electric fields are small and the field of a charged probe will be shielded over a small 
distance (the Debye length). Plasmas often exist along with the presence of neutral 
gas because, usually, even a low percentage of ionization is sufficient to produce 
plasma behavior but if the mean-free-path for collisions between the charged 
particles and the neutrals is short enough (comparable to the Debye length) then the 
theory must be modified.  
 

A technique, first used by Irving Langmuir, can be employed to determine the ion 
and electron densities, the electron temperature, the electrostatic potential (also 
called the plasma space potential), and the electron distribution function. These 
quantities are commonly known as the plasma parameters. Langmuir’s technique 
involves the measurement of electron and ion currents to a small metal electrode (the 
Langmuir probe) as different voltages are applied to it. This yields a curve called the 
probe characteristic for the plasma. From the probe characteristic it is possible to 
determine the plasma parameters. 

 
In this experiment we make use of an argon gas tube, the OA4-G, which possesses 

a built-in Langmuir probe. The argon gas is at 10-3 atm. The tube contains three 
electrodes: In order to create plasma voltage is applied across two electrodes (a 
cathode and an anode) producing an electrical discharge current in the gas while the 
third electrode is used as the Langmuir probe. Plasma is generated when the potential 
between the cathode and the anode causes the electrons emitted from the cathode to 
be accelerated to energies sufficient to produce atomic excitation and ultimately 
collisional ionization of the gas. Once a few electrons have been liberated they will 
collide with other atoms knocking more electrons off and producing an “avalanche” 
or “discharge”. This discharge current then continuously creates plasma and is self-
sustaining despite the fact that in some of the plasma electrons and ions will hit the 
walls of the tube and recombine into neutral gas atoms. 

 
II. THEORY: 

 
Langmuir probe theory consists in predicting by use of the plasma parameters, 

what the electrical current to a conducting probe should be as a function of the probe 
voltage. A typical probe characteristic is shown in Figure 1. 

 
Referring to Figure 1 we divide the problem into four regions labeled A-D. In 

region A the probe potential is so large that a plasma discharge is established between 
the probe and the cathode (in parallel with the discharge between the anode and the 
cathode).  This means that the probe is a large perturbation to the plasma and will 
actually change the plasma parameters – you do not want to operate the probe in this 
region because it may damage the probe. In region B which covers the region where 
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probe potential is comparable to the space potential to the point where the probe 
discharge starts; the probe collects all the electrons that hit it (and repels none) while 
it repels all of the positively-charged ions. This is the electron saturation current. 
Region C is a transition region where the characteristic satisfies an exponential 
dependence (described later). Finally, in region D the electrons are all repelled and 
only ions are collected by the probe. This is the ion saturation current. Most of the 
information on the plasma parameters is obtained from the transition region (C) 
although the plasma density can be obtained from the saturation currents (although 
these currents also depend on the electron temperature). We will give a derivation in 
the appendix, but here we will summarize the results in the three regions that are 
useful for analysis. From this point on refer to Figure 2 when there is need to 
reference a probe characteristic as Region A will be ignored. 
 
The current of each species to the Langmuir probe as a function of velocity is: 
 

 𝐼𝐼𝛼𝛼 =  𝑛𝑛𝛼𝛼𝑞𝑞𝛼𝛼𝐴𝐴𝑝𝑝 ∭ �⃑�𝑣𝛼𝛼 �2𝜋𝜋𝐾𝐾𝐵𝐵𝑇𝑇𝛼𝛼
𝑚𝑚𝛼𝛼

�
−3 2⁄

exp �−𝑚𝑚𝛼𝛼|𝑣𝑣𝛼𝛼�����⃑ |2

2𝐾𝐾𝐵𝐵𝑇𝑇𝛼𝛼
�∞

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
 𝑑𝑑�⃑�𝑣𝛼𝛼  [Eq. 5] 

 

where 𝑣𝑣𝑚𝑚𝑖𝑖𝑛𝑛 = �2�𝑞𝑞∝𝑉𝑉𝑝𝑝�
𝑚𝑚𝛼𝛼

�
1 2⁄

. The height of the probe is 3.4 mm and the probe diameter 
is 0.8 mm. Eq. 5 is solved for the electron saturation current and the ion saturation 
current. 

The electron saturation current (Region B) is given by3: 

 

𝐼𝐼𝑒𝑒𝑠𝑠�𝑉𝑉𝑝𝑝� = −𝑛𝑛𝑒𝑒𝑒𝑒𝐴𝐴𝑝𝑝 � 𝑒𝑒𝑉𝑉𝑝𝑝

2𝜋𝜋𝑚𝑚𝑒𝑒
�

1 2⁄
 [Eq. 6] 

 
The ion saturation current (Region D): 

 

𝐼𝐼𝑖𝑖𝑠𝑠 ≈  𝑛𝑛𝑖𝑖𝑒𝑒𝐴𝐴𝑝𝑝 �2𝐾𝐾𝐵𝐵𝑇𝑇𝑒𝑒
𝑚𝑚𝑚𝑚

�
1 2⁄

 [Eq. 7] 
 

The transition current (Region C) where 𝐼𝐼𝑖𝑖𝑠𝑠 < 𝐼𝐼 < 𝐼𝐼𝑒𝑒𝑠𝑠 is: 
 

 𝐼𝐼𝑡𝑡�𝑉𝑉𝑝𝑝� ≈ 𝑒𝑒𝐴𝐴𝑝𝑝 �𝑛𝑛𝑖𝑖 �2𝐾𝐾𝐵𝐵𝑇𝑇𝑒𝑒
𝑚𝑚𝑚𝑚

�
1 2⁄

− 𝑛𝑛𝑒𝑒 � 𝐾𝐾𝐵𝐵𝑇𝑇𝑒𝑒
2𝜋𝜋𝑚𝑚𝑒𝑒

�
1 2⁄

exp � 𝑒𝑒𝑉𝑉𝑝𝑝

𝐾𝐾𝐵𝐵𝑇𝑇𝑒𝑒
�� [Eq. 8] 

 
The floating potential, 𝑉𝑉𝑓𝑓, is the potential when the ion and electron currents are 
equal and is given by: 
 

𝑉𝑉𝑓𝑓 ≈ 𝐾𝐾𝐵𝐵𝑇𝑇𝑒𝑒
𝑒𝑒

ln �𝑛𝑛𝑚𝑚
𝑛𝑛𝑒𝑒

�4𝜋𝜋𝑚𝑚𝑒𝑒
𝑚𝑚𝑚𝑚

�
1 2⁄

� [Eq. 9] 

3 Mathematical derivation is provided in the appendix. 
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You will need to know the electron temperature and the ion and electron densities 
in order to solve for the current values and the floating potential. The electron 
temperature is obtained from the slope of the probe characteristic: 
 

𝑑𝑑 ln|𝐼𝐼|
𝑑𝑑𝑉𝑉𝑝𝑝

= 𝑒𝑒
𝐾𝐾𝐵𝐵𝑇𝑇𝑒𝑒

 [Eq. 10] 

 
where the probe characteristic is semi-logarithmic.  Once the electron temperature 
has been obtained the ion and electron densities can be found by solving [Eq. 6] and 
[Eq. 7]. Keep in mind that these equations work because we have a weakly-coupled 
plasma. 
   

III. EXPERIMENT 
 

Before we begin I need to make aware a precaution that one must observe while 
operating the equipment, namely, please do not exceed 150 V on the Heathkit 
regulated power supply or a probe voltage of 8 V this may damage the equipment by 
causing discharge on the probe (Region A of Figure 1). Also, do not attempt to edit the 
LabVIEW program in any way. 
 

A sketch of the gas tube is shown in Figure 5. This tube consists of a metal disc 
cathode (pin 2), a Langmuir probe (pin 5), and an anode (pin 7). We will run the 
discharge current from the cathode to the anode. The circuit schematic for this 
experiment is shown as Figure 4. A supply voltage of 100–150 volts is used to run the 
discharge. The protective resistor (4kW) will limit the current because gas filled 
tubes tend to draw large currents if not stabilized. Identify these components if you 
have not yet already done so. 

 
The experiment has been automated using LabVIEW, which will control a 

variable voltage source (the Keithley 228) as connected in Figure 4. The Keithley 228 
is used by LabVIEW to bias or increment the voltage to the probe. As LabVIEW biases 
the probe, it will record readings from a picoammeter (the Keithley 485). A 
picoammeter is required because ion currents tend to be very small. Take all of your 
data for each part using the auto-scale function of the ammeter. The ammeter’s scale 
is set using LabVIEW. You may choose the scale to be other than “auto-scale” but to 
do so you must choose a scale such that the data fits within that range without 
overflowing. I do not recommend this. At the higher bias voltages the currents may 
exceed the maximum range of the picoammeter in which case you will need to change 
the scale on the ammeter or turn down the maximum bias voltage. The LabVIEW 
program automatically stops taking data if the data overflows the ammeter scale. The 
input values for the scale on LabVIEW correspond to current increments in this way: 
0=auto-scale, 1= 2nA, 2= 20 nA, 3= 200 nA, 4 = 2 μA, 5= 20 μA, 6= 200 μA, 7= 2 
mA. 
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At this point you should set up the device in accordance with Figure 4. Take time 
to understand what goes where and why keeping in mind that the ion and electron 
currents flow in opposite directions. 
 

IIIA. Measurements 
 

In this experiment you will obtain and interpret the probe characteristic for the 
plasma (e.g., Figures 1, 2). As the probe voltage is varied the current may vary over 
many orders of magnitude and thus it is convenient to use a semi-log plot. Set the 
discharge current to 10 mA on the Heathkit Regulated Power Supply. In LabVIEW set 
the picoammeter to autoscale, the minimum voltage to -12 V, the maximum voltage 
to 8 V, and the voltage increment to 0.1 V. Now run the program for the first time. 
Note how the probe current rapidly reverses polarity even though the negative 
currents were quite small. This is when the ion current switches to electron current 
where the several magnitudes of difference between the two is accounted for by the 
difference in mass between the ions and electrons. Run a few more times if you see 
fit. When running LabVIEW you will be prompted to specify a file name to save your 
data as make sure to save the file as “*.xls” in order to save it as an Excel spreadsheet 
otherwise it will save as an ASCII file. 

 
 You wish to understand how the discharge current is related the standard 
plasma parameters. Now that you have a good handle for how a probe characteristic 
should look repeat the process above with all the same values except for the discharge 
current. Instead use these values for the discharge current: 10 mA, 15 mA, and 20 mA. 
Take several measurements until you are satisfied with the probe characteristics for 
each of these discharge currents. Oftentimes the plasma will not be visible unless the 
lights are off so please check before feeling the need to increase the discharge current. 
Assuming that the flux of electrons and ions are the same to the sides of the wire as 
they are to its flat disk top, by calculating the surface area of the sides, the current to 
the entire probe can be estimated. 
 

IIIB. Data Analysis 
 

 LabVIEW should automatically create a plot of your data in Microsoft Excel. In 
Excel your data points should be accessed by right clicking on the plot and going to 
“Chart Object” then hitting “Open”. When you exit LabVIEW make sure to click to 
option “Do not save all”.  
 

1. Take your data for your best runs at 10 mA, 15 mA, and 20 mA and overlay 
them on the same plot to see how discharge current affects the probe 
characteristic. When plotting make sure that your graphs have a logarithmic 
current scale and that your ion current is plotted with its sign reversed. 
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2. Fit straight lines to the curves in Region B (by right clicking on the data points 
and pressing “add trendline”) and from them determine Te [Eq. 10] in both oK 
and eV (1 eV/KB = 11604.5 K). 

3. In the probe characteristic the electron saturation current will be the current 
produced by the interaction between the plasma and the entire surface area of 
the probe. Compute the electron density by use of [Eq. 6]. Is the electron 
density proportional to the discharge current? 

 
4. Use equation [Eq. 7] to compute the ion density. How does this compare with 

the electron density? 
 

5. What is the floating potential of the probe? Compute this value for your best 
runs and compare with the experimental values. 

 
6. Compute the Debye radius [Eq. 3] for all runs, and compare with the probe 

radius. Is the Debye radius much smaller than the probe radius? 
 

7. Using [Eq. 8], create curves of the transition region and lay them with your 
best runs to see if the theory approximates well with what is there. Show error 
bars and compute chi-reduced square. 

 
8. Compute the percentage ionization for the various discharge currents ( 𝑛𝑛𝑚𝑚

𝑛𝑛𝑚𝑚
×

100% where 𝑛𝑛𝑖𝑖  is the number ion density and 𝑛𝑛𝑛𝑛 is the number neutral atom 
density). You will need the ideal gas law and the knowledge that the neutral 
gas temperature is roughly room temperature. Does your calculation agree 
with our statement that we do not need a large level of ionization for plasma 
to exist? 

 
9. Does the theory of our experiment work well as an approximation of stellar 

plasma? Why or why not? 
 

10. Qualitatively, how do the plasma parameters depend on discharge current? 
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V. APPENDIX: 

 

 
Figure 1: A typical probe characteristic (i.e., data set) at a discharge current of 40mA. This 

curve has been reconstructed from several runs’ worth of data using Excel. 
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Figure 2: Probe characteristic created in LabVIEW without Region A. 

 
 

Figure 3: The region of integration from equation 4. 
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Derivation of current incident on the probe and other plasma parameters: 
 

A1) The Maxwell-Boltzmann Velocity Distribution 
 

The current collected by a probe is given by summing over all the contributions of 
various plasma species: 

 
 𝐼𝐼 = 𝐴𝐴𝑝𝑝 ∑ 𝑛𝑛𝛼𝛼𝛼𝛼 𝑞𝑞𝛼𝛼〈𝑣𝑣𝛼𝛼〉 [A. 1] 

 
where 〈𝑣𝑣𝛼𝛼〉 =  1

𝑛𝑛𝛼𝛼
 ∫ 𝑣𝑣 𝑓𝑓𝛼𝛼(�⃑�𝑣)𝑑𝑑�⃑�𝑣 for unnormalized 𝑓𝑓𝛼𝛼(�⃑�𝑣). The species 𝛼𝛼 takes values of 

either “electron” or “ion”. It is well known in statistical mechanics that collisions 
among free particles like those in a “classical” gas will result in an average velocity 
given by the Maxwell-Boltzmann velocity distribution function, 𝑓𝑓𝛼𝛼 (�⃑�𝑣). The 
distribution function may be used because we can safely ignore the electromagnetic 
forces between the electrons and ions due to the nature of low density plasmas: 
 

 𝑓𝑓𝛼𝛼(�⃗�𝑣) = 𝑛𝑛𝛼𝛼 �2𝜋𝜋𝐾𝐾𝐵𝐵𝑇𝑇𝛼𝛼
𝑚𝑚𝛼𝛼

�
−3 2⁄

exp �−𝑚𝑚𝛼𝛼|𝑣𝑣�⃗ 𝛼𝛼|2

2𝐾𝐾𝐵𝐵𝑇𝑇𝛼𝛼
� [A. 2] 

 
 In order to get a general expression of the current to the probe in terms of velocity 

we combine Eq.? and Eq.?.: 
 

 𝐼𝐼𝛼𝛼(𝑣𝑣𝛼𝛼����⃑ ) =  𝑛𝑛𝛼𝛼𝑞𝑞𝛼𝛼𝐴𝐴𝑝𝑝 ∭ 𝑣𝑣𝛼𝛼 �2𝜋𝜋𝐾𝐾𝐵𝐵𝑇𝑇𝛼𝛼
𝑚𝑚𝛼𝛼

�
−3 2⁄

exp �−𝑚𝑚𝛼𝛼|𝑣𝑣𝛼𝛼�����⃑ |2

2𝐾𝐾𝐵𝐵𝑇𝑇𝛼𝛼
�∞

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
 𝑑𝑑�⃑�𝑣𝛼𝛼  [A. 3] 

 
To simplify calculations we will first consider only the small disc top of the probe lying 
in the yz plane. Thus, particles will give rise to a current only if it has some vx 
component of velocity. The current to the probe from each species is a function of  𝑉𝑉 ∙
�𝑉𝑉𝑝𝑝 − 𝑉𝑉𝑠𝑠�. In Cartesian coordinates: 

 

𝐼𝐼(𝑣𝑣𝛼𝛼) =  𝑛𝑛𝛼𝛼𝑞𝑞𝛼𝛼𝐴𝐴𝑑𝑑 � 𝑣𝑣𝑥𝑥 �
2𝜋𝜋𝐾𝐾𝐵𝐵𝑇𝑇𝛼𝛼

𝑚𝑚𝛼𝛼
�

−1 2⁄

exp �
−𝑚𝑚𝛼𝛼𝑣𝑣𝑥𝑥

2

2𝐾𝐾𝐵𝐵𝑇𝑇𝛼𝛼
�

∞

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

𝑑𝑑𝑣𝑣𝑥𝑥  

  [A. 4] 
The lower limit of integration in the integral is 𝑣𝑣𝑚𝑚𝑖𝑖𝑛𝑛 since electrons and ions with 

component of velocity less than 𝑣𝑣𝑚𝑚𝑖𝑖𝑛𝑛 = �2�𝑞𝑞𝛼𝛼𝑉𝑉𝑝𝑝�
𝑚𝑚𝛼𝛼

�
1 2⁄

are repelled due to the fact that at 
this point the particles lack the sufficient kinetic energy needed to push through the 
Debye sheath, Figure 3.  
 
A2) The electron saturation current, Ies, (Region B):  

 
In region B, when all electrons which interact with the probe are collected we obtain 
the electron saturation current for the disc: 
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Since ∫ 𝑣𝑣𝑒𝑒−𝐶𝐶𝑣𝑣2𝑑𝑑𝑣𝑣∞
0 = 1

2𝐶𝐶
 for the real part of C  [A.8] we can show that 

 

 𝐼𝐼𝑒𝑒𝑠𝑠(𝑣𝑣𝑥𝑥) = −𝑛𝑛𝑒𝑒𝑒𝑒𝐴𝐴𝑑𝑑 ∫ 𝑣𝑣𝑥𝑥 �2𝜋𝜋𝐾𝐾𝐵𝐵𝑇𝑇𝑒𝑒
𝑚𝑚𝑒𝑒

�
−1 2⁄

exp �−𝑚𝑚𝑒𝑒𝑣𝑣𝑥𝑥
2

2𝐾𝐾𝐵𝐵𝑇𝑇𝑒𝑒
� 𝑑𝑑𝑣𝑣𝑥𝑥

∞
0 =

−𝑛𝑛𝑒𝑒𝑒𝑒𝐴𝐴𝑑𝑑 � 𝐾𝐾𝐵𝐵𝑇𝑇𝑒𝑒
2𝜋𝜋𝑚𝑚𝑒𝑒

�
1 2⁄

 [A. 9] 
 

in terms of the probe potential and generalizing to the area of the entire probe: 
 

𝐼𝐼𝑒𝑒𝑠𝑠�𝑉𝑉𝑝𝑝� = −𝑛𝑛𝑒𝑒𝑒𝑒𝐴𝐴𝑝𝑝 � 𝑒𝑒𝑉𝑉𝑝𝑝

2𝜋𝜋𝑚𝑚𝑒𝑒
�

1 2⁄
 [A. 10] 

 
We are able to generalize to the entire surface area of the probe because the flux to 
the probe is isotropic.  
 
A3) The ion saturation current, 𝐼𝐼𝑖𝑖𝑠𝑠 (Region D)  
 
The ion saturation current is not simply given by an expression similar to [A.10]. In 
order to repel all the electrons and observe 𝐼𝐼𝑖𝑖𝑠𝑠, 𝑉𝑉𝑝𝑝 must be negative and have a 
magnitude near 𝐾𝐾𝐵𝐵𝑇𝑇𝑒𝑒 𝑒𝑒⁄ . The Bohm sheath criterion requires that ions arriving at the 
periphery of the probe sheath be accelerated toward the probe with energy ~𝐾𝐾𝐵𝐵𝑇𝑇𝑒𝑒 
which is much larger than their thermal energy 𝐾𝐾𝐵𝐵𝑇𝑇𝑖𝑖. The ion saturation current is 
approximately given as: 
 

 𝐼𝐼𝑖𝑖𝑠𝑠 ≈  𝑛𝑛𝑖𝑖𝑒𝑒𝐴𝐴𝑝𝑝 �2𝐾𝐾𝐵𝐵𝑇𝑇𝑒𝑒
𝑚𝑚𝑚𝑚

�
1 2⁄

 [A. 11] 
 
Even though this flux density is larger than the incident flux density at the periphery 
of the collecting sheath, the total particle flux is still conserved because the area at the 
probe is smaller than the outer collecting area at the sheath boundary.  

 
A4) The transition current, 𝐼𝐼𝑡𝑡 (Region C) 

 
Since it may be assumed that the current to the probe is isotropic the total current to 
the probe may be calculated by use of [A.3]: 
 

𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑣𝑣𝑥𝑥) = 𝑒𝑒𝐴𝐴𝑝𝑝 �𝑛𝑛𝑖𝑖 � 𝑣𝑣𝑥𝑥 �
2𝜋𝜋𝐾𝐾𝐵𝐵𝑇𝑇𝑖𝑖

𝑚𝑚𝑖𝑖
�

−1 2⁄

exp �
−𝑚𝑚𝑖𝑖𝑣𝑣𝑥𝑥

2

2𝐾𝐾𝐵𝐵𝑇𝑇𝑖𝑖
�

∞

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

𝑑𝑑𝑣𝑣𝑥𝑥

− 𝑛𝑛𝑒𝑒 � 𝑣𝑣𝑥𝑥 �
2𝜋𝜋𝐾𝐾𝐵𝐵𝑇𝑇𝑒𝑒

𝑚𝑚𝑒𝑒
�

−1 2⁄

exp �
−𝑚𝑚𝑒𝑒𝑣𝑣𝑥𝑥

2

2𝐾𝐾𝐵𝐵𝑇𝑇𝑒𝑒
�

∞

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

𝑑𝑑𝑣𝑣𝑥𝑥� 

[A. 12] 
 
Note that the energy 𝐸𝐸 = 𝐾𝐾𝐵𝐵𝑇𝑇𝛼𝛼 = 1

2
𝑚𝑚𝑣𝑣2 = −𝑞𝑞∝𝑉𝑉𝑝𝑝 [A. 13] 
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𝐴𝐴𝑝𝑝 is the surface area of a cylinder with its bottom removed which may be substituted 
for 𝐴𝐴𝑑𝑑  because flux to the probe is isotropic on all sides and all variables in [A.13] are 
magnitudes. In this region where probe potential < plasma space potential there is a 
Debye sheath and particles are repelled, the total current to the probe is given by the 
solution to [A.12]: 
 

Since ∫ 𝑣𝑣 ∗ exp(−𝐴𝐴𝑣𝑣2) 𝑑𝑑𝑣𝑣∞
𝐶𝐶 = exp�−𝐴𝐴𝐶𝐶2�

2𝐴𝐴
 for Re(A)> 0 

 

 𝐼𝐼𝑡𝑡�𝑉𝑉𝑝𝑝� = 𝐼𝐼𝑖𝑖𝑠𝑠 − 𝑛𝑛𝑒𝑒𝑒𝑒𝐴𝐴𝑝𝑝 � 𝐾𝐾𝐵𝐵𝑇𝑇𝑒𝑒
2𝜋𝜋𝑚𝑚𝑒𝑒

�
1 2⁄

exp � 𝑒𝑒𝑉𝑉𝑝𝑝

𝐾𝐾𝐵𝐵𝑇𝑇𝑒𝑒
� [A. 14] 

 
since 𝑉𝑉𝑝𝑝 < 0 in region C. [A.14] shows that the electron current increases 
exponentially until the probe potential is the same as the plasma space potential (𝑉𝑉 =
𝑉𝑉𝑝𝑝 − 𝑉𝑉𝑠𝑠 = 0). Substituting [A.11] into [A.14] yields our complete solution for the 
transition region in terms of probe voltage: 
 

𝐼𝐼𝑡𝑡�𝑉𝑉𝑝𝑝� ≈ 𝑒𝑒𝐴𝐴𝑝𝑝 �𝑛𝑛𝑖𝑖 �2𝐾𝐾𝐵𝐵𝑇𝑇𝑒𝑒
𝑚𝑚𝑚𝑚

�
1 2⁄

− 𝑛𝑛𝑒𝑒 � 𝐾𝐾𝐵𝐵𝑇𝑇𝑒𝑒
2𝜋𝜋𝑚𝑚𝑒𝑒

�
1 2⁄

exp � 𝑒𝑒𝑉𝑉𝑝𝑝

𝐾𝐾𝐵𝐵𝑇𝑇𝑒𝑒
��   [A. 15] 

 
A5) Floating potential, Vf: Next we consider the floating potential. The probe potential 
equals the floating potential (Vp = Vf) when the ion and electron currents are equal 
and opposite thereby making the net probe current zero. Combining equations [A.10] 
and [A.11], and letting I = 0, we find that: 
 

 𝑉𝑉𝑓𝑓 ≈ 𝐾𝐾𝐵𝐵𝑇𝑇𝑒𝑒
𝑒𝑒

ln �𝑛𝑛𝑚𝑚
𝑛𝑛𝑒𝑒

�4𝜋𝜋𝑚𝑚𝑒𝑒
𝑚𝑚𝑚𝑚

�
1 2⁄

� [A. 16] 

 
A6) The electron temperature, Te: Measurement of the electron temperature can be 
obtained from equation [A.14] if Iis can be approximated to zero in reference to the 
probe current: 

 I𝑡𝑡�V𝑝𝑝� = −neeA𝑝𝑝 �KBTe
2πme

�
1 2⁄

exp � eV𝑝𝑝

KBTe
� = 𝐼𝐼𝑒𝑒𝑠𝑠 exp � 𝑒𝑒𝑉𝑉𝑝𝑝

𝐾𝐾𝐵𝐵𝑇𝑇𝑒𝑒
� [A. 17] 

 
 𝑑𝑑 ln|𝐼𝐼|

𝑑𝑑𝑉𝑉𝑝𝑝
= 𝑒𝑒

𝐾𝐾𝐵𝐵𝑇𝑇𝑒𝑒
 [A. 18] 

 
By differentiating the logarithm of the electron saturation current with respect to the 
probe voltage 𝑉𝑉𝑝𝑝 for 𝑉𝑉 < 0, the electron temperature is obtained. We note that the 
slope of ln|I| vs. V is a straight line only if the distribution is a Maxwell-Boltzmann 
distribution. 

 
A7) Measurement of the electron energy distribution function, fE(Vx): The electron 
current to the probe could be written in a more general expression as: 
 𝐼𝐼 = −𝑛𝑛𝑒𝑒𝑒𝑒𝐴𝐴𝑝𝑝 ∫ 𝑣𝑣𝑥𝑥𝑓𝑓𝑣𝑣(𝑣𝑣𝑥𝑥) 𝑑𝑑𝑣𝑣𝑥𝑥

∞
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

= −𝑛𝑛𝑒𝑒𝑒𝑒𝐴𝐴𝑝𝑝

𝑚𝑚𝑒𝑒
∫ 𝐸𝐸𝑓𝑓𝐸𝐸(−𝑒𝑒𝑉𝑉) 𝑑𝑑(−𝑒𝑒𝑉𝑉)∞

−𝑒𝑒𝑉𝑉𝑝𝑝
 [A. 19] 
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GLOSSARY 
 
Anode: The electron current from the cathode flows into the anode. The greater the 
potential between the anode and the cathode the greater discharge current will be 
produced in the plasma. 
 
ASCII File: A column-delimited data file containing only the most basic characters i.e 
the digits, the alphabet, and some punctuation. 
 
Bohm Sheath Criterion: An inequality which arises from the fact that electrons 
typically move magnitudes faster than ions in plasma (due to their mass). This limits 
the rate at which ions can be absorbed by the Langmuir Probe under the influence of 

Debye shielding, 𝑣𝑣 ≥  �𝑘𝑘𝐵𝐵𝑇𝑇𝑒𝑒
𝑚𝑚𝑚𝑚

�
1/2

 where 𝑣𝑣 is the speed of the ions; if the ion speed does 
not satisfy this inequality than it will not be absorbed by the probe. 
 
Cathode: The point of an electrical device where electron current flows out of it; by 
convention, the negative side of an electrical device. As stated above the anode-
cathode pair in Figure 5 is what produces the discharge current in the plasma. 
 
Collisional Ionization: Ionization of atoms by collisions where energies greater than 
or equal to the atom’s ionization potential enter the system. 
 
Debye Length (Sheath Distance): I. The distance at which charge carriers can begin to 
effectively reduce the strength of electromagnetic fields in the rest of the plasma (by 
screening). The Debye length will become smaller the denser the plasma. II: The 
distance in plasma over which significant deviations from charge quasi-neutrality can 
exist. 
 
Debye Sheath: A relatively dense region of charged particles around the Langmuir 
probe. Debye sheaths decrease the probe potential in the surrounding plasma. 
 
Debye Sphere: A sphere with the radius of the Debye Length. 
 
Dielectric Limit (Dielectric Strength): The energy limit at which an insulating material 
(for instance, the neutral gas) becomes a conductor through ionization or some other 
process.  
Discharge Current: The current of a plasma that is produced by the drift velocities of 
charged particles. 
 
Drift Velocity: The average velocity that a group of charged particles obtains from an 
electric field. 𝑣𝑣 =  𝐼𝐼

𝑛𝑛𝐴𝐴𝑞𝑞
 where 𝑣𝑣 is the drift velocity, 𝐼𝐼 is the current density through a 

cross sectional area A (like the surface area of the top of the probe), 𝑛𝑛 is the number 
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density of charged particles (or charge carrier density), and 𝑞𝑞 is the charge of each 
particle. We analyze the ion drift velocity and electron drift velocity in isolation from 
each other to simplify calculations. 
Electron Saturation Current: The electron current is said to be saturated when the 
probe potential is equal to or greater than the plasma space potential. At this point 
there is no longer a negative sheath which can repel electrons away from the probe, 
so, the electron current reaches its maximum value. 
 
Electron Temperature: The average kinetic energy of free electrons described by a 
Maxwell-Boltzmann distribution. 
 
Electron/Ion Density: The number of free electrons or ions per unit volume; normally 
the electron density is equal to the ion density given the need for overall charge 
neutrality. 
 
Flux Density: The density of field lines per given area. In this lab the flux density is the 
electron and/or ion density passing through the surface area of the probe per given 
time. 
 
Ion Saturation Current: Analogous to the electron saturation current, the ion 
saturation is when there is no longer a positive sheath around the probe to repel the 
ions approaching the probe and, consequently, one will find the maximum (the 
saturated) ion current is produced. 
 
Ionization Potential: The energies required to remove electrons from gaseous atoms 
or ions. There are typically several ionization energies for the same atom: singly 
ionized, doubly ionized, etc. 
 
Langmuir Probe : The probe in our experiment is defined as the wire where electron 
current flows in from the plasma. By varying the voltage on the probe the probe 
characteristic may be found. 
 
Laplacian Operator: The Laplacian operator, ∇2, is an operator that modifies scalar 
fields and is equivalent to (in Cartesian coordinates): 

 ∇2𝑡𝑡(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = (∇ ∙ ∇)𝑡𝑡 = �� 𝜕𝜕
𝜕𝜕𝑥𝑥

�
2

+ � 𝜕𝜕
𝜕𝜕𝜕𝜕

�
2

+ � 𝜕𝜕
𝜕𝜕𝜕𝜕

�
2

� 𝑡𝑡 = �𝜕𝜕𝑡𝑡
𝜕𝜕𝑥𝑥

�
2

+ �𝜕𝜕𝑡𝑡
𝜕𝜕𝜕𝜕

�
2

+ �𝜕𝜕𝑡𝑡
𝜕𝜕𝜕𝜕

�
2
. 

 
Mean-Free-Path: The average distance particles can travel before collision with other 
particles of that species. The mean free path is: ℓ =  𝐾𝐾𝐵𝐵𝑇𝑇𝑒𝑒

√2𝜋𝜋𝑑𝑑2𝑃𝑃
 where 𝑑𝑑 is the diameter of 

the particle and 𝑃𝑃 is the pressure of the “gas” of that species. In the experiment you 
will be primarily concerned with the mean-free-path of electrons, but the equation 
can be modified for ions as well. 
 
Plasma Parameters: Fundamental parameters of plasma which characterize that 
plasma from others i.e. electron temperature, ion density, and electron density. 
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Plasma Species: A species is just a sub-classification of members in a group. In this 
experiment there are two charged species: ions and electrons. 
Probe Characteristic: A plot of probe current vs. probe voltage which shows how the 
probe current varies with the probe voltage. The probe characteristic defines the 
plasma parameters. 
 
Probe Potential: The potential of the probe’s surface relative to the anode or the 
ground of the Earth. 
 
Quasi-Neutrality: In the context of our experiment a collection of charges with size 
greater than the Debye length is quasi-neutral if it can be thought of as electrically 
neutral.  
 
Screened Potential: Any diminishing of an electrostatic potential by external charges 
between that potential and a test charge. For example, in our experiment the probe 
potential is reduced by the screening effect of the Debye sheath around the probe. 
The greater concentration of charges there is around the probe the greater the effect 
of screening. 
 
Semi-Logarithmic Plot: A two-dimensional plot with a logarithmic scale on one axis 
and a non-logarithmic scale on the other. In our probe characteristic, probe current 
should be on a logarithmic scale and probe potential on a non-logarithmic scale.  
 
Space Potential (Electrostatic Potential): The voltage at any point in the plasma that is 
not inside or on the boundary of a Debye Sheath, that is, the region of plasma where 
the plasma may be considered to have a quasi-neutral distribution of charges. 
 
Velocity Distribution Function: A function when integrated with respect to velocity 
gives the probability of finding particles with velocity between 𝑣𝑣 and 𝑣𝑣 + 𝑑𝑑𝑣𝑣. [A. 2] 
 
Weakly-Coupled Plasma: Plasma where the dominate motions of charged particles are 
determined by the thermal velocities of those particles and not the presence of 
electromagnetic fields.  
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