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Gala Contemplating the Mediterranean Sea (detail). © Salvador Dali, Gala-
Salvador Dali Foundation, DACS, London, 2003. Image supplied by Bridgeman
Art Gallery. One of the most important concepts presented in this book is that of
intermediate asymptotics. It isillustrated in chapter 2, Figure 2.3, by a tiled version
of the photograph of Abraham Lincoln on a $5 bill (Harmon 1973). The paper by
Harmon, and, in particular, this tiled picture inspired Salvador Dali to create in
1976 the painting presented here, where some tiles are themselves pictures: of
his.wife Gala entering the sea, Harmon’s original tiled picture of Lincoln, and
others. This painting is in fact an excellent example of multiscale intermediate
asymptotics.
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Foreword

For the past seven years students and faculty at the University of Califor-
nia at Berkeley have had the privilege of attending lectures by Professor G.L
Barenblatt on mechanics and related topics; the present book, which grew out
of some of these lectures, extends the privilege to a wider audience. Professor
Barenblatt explains here how to construct and understand self-similar solutions
of various physical problems, i.e. solutions whose structure recurs over differing
length or time scales and different parameter ranges. Such solutions are often
the key to understanding complex phenomena; there is no universal recipe for
finding them, but the tools that can be useful, including dimensional analysis
and nonlinear eigenvalue problems, are explained here with admirable concise-
ness and clarity, together with some of the multifarious uses of self-similarity
in intermediate asymptotics and their connection with wave propagation and
the renormalization group. Whenever possible, Professor Barenblatt shuns dry
and distant abstraction in favor of the telling example from his incomparable
stock of such examples; with the appearance of this book, there is no longer
any excuse for any scientist not to master these simple, elegant, crucial and
sometimes surprising ideas.

This book is also very timely. Dimensional analysis and simple similarity
arguments (what is called here complete similarity) are quite familiar to most
scientists, with the possible exception of many mathematicians, yet the deeper,
more beautiful and exceptionally useful idea of incomplete similarity, with
its extraordinary ramifications, is not yet part of everyone’s scientific culture.
Maybe part of the reason is the absence of a book that is both sound and
accessible. After all, the original papers by Barenblatt and Zeldovich and by
others were addressed to the expert; the previous books by Professor Barenblatt
are rich in theory and examples and therefore not always easy to read; the
very interesting book by Goldenfeld on the renormalization group, where the
connection with incomplete similarity is carefully explained, assumes a wider
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xiv Preface

the chapter on turbulence, based on our joint work with A.J. Chorin and V.M.
Prostokishin, may seem rather controversial, although not to me. This example
gives a unique possibility of presenting together general pricincples and the use
of freshly obtained large experimental databases.

I have previously written several books about the subject presented here.
(I remember with deep gratitude the publisher from ‘Gidrometeoizdat’, Mrs
O.V. Vlasova, Mrs T.G. Nedoshivina, and Mrs L.L. Belen’kaya. They pub-
lished my first book in Russian in spite of the serious risk of losing their jobs.)
Naturally, some material from my earlier books will find its place in the present
book too, particularly material regarding dimensional analysis and physical
similarity, in only slightly modified form. However, the central part of this
book is entirely new: in particular I have replaced some complicated and difficult
basic examples with simpler ones.

I want to express my thanks to Cambridge University Press (Dr D. Tranah
and Dr A. Harvey). In fact, the very idea that I should write such an ‘intermedi-
ate’ book matching my inaugural lecture (Barenblatt 1994) and the large book
(Barenblatt 1996) belongs with these gentlemen.

I want to express my gratitude to Professor V.M. Prostokishin, who attended
all my lectures and gave me important advice both about the lectures and the
present book. I am grateful to Professor L.C. Evans and Professor M. Brenner for
reading the manuscript and for valuable comments. I want to thank Professors
S.Kamin, R. Dal Passo, M. Bertsch, N. Goldenfeld, D.D. Joseph, L.A. Peletier,
G.I. Sivashinsky and J.L.. Vazquez for the stimulating and friendly exchange
of thoughts concerning the subjects presented in this book over many years. I
thank Mrs Deborah Craig for processing the manuscript.

To my friend Alexandre Chorin I want to express special thanks for our
remarkable time in Berkeley. I have learned from him a lot, in particular his
basic paradigm of computational science: this is a different, independent and
very productive way of mathematical modelling. I hope to be able to use this
knowledge in my future work.

Introduction

The term scaling is used in multiple branches of human activity: from forestry
and dentistry to theoretical physics. Each time it has a different meaning, not
always well defined. In the present book scaling describes a seemingly very
simple situation: the existence of a power-law relationship between certain
variables y and x1, ..., xx,

y=A%.. X ©.1)

where A, a1, ..., o are constants. Such relations often appear in the mathe-
matical modelling of various phenomena, not only in physics but also in biol-
ogy, economics, and engineering. However, scaling laws are not merely some
particularly simple cases of more general relations. They are of special and ex-
ceptional importance; scaling never appears by accident. Scaling laws always
reveal an important property of the phenomenon under consideration: its self-
similarity. The word ‘self-similar’ means that a phenomenon reproduces itself
on different time and/or space scales — I will explain this later in detail.

I'begin with one of the most illuminating examples of the discovery of scaling
laws and self-similar phenomena: G.1. Taylor’s analysis of the basic interme-
diate stage of a nuclear explosion. At this stage a very intense shock wave
propagates in the atmosphere and the gas motion inside the shock wave can be
considered as adiabatic.

This work started in one of the worst and most alarming days of the
Battle of Britain, in the early autumn of 1940. Cambridge professor Geoffrey
Ingram Taylor was invited to a business lunch at the Athenacum by Professor
George Thomson, chairman of the recently appointed MAUD committee (the
name ‘MAUD’ originally appeared by chance, but later it was interpreted as the
acronym for ‘military application of uranium detonation’). G.I. Taylor was told
that it might be possible to produce a bomb in which a very large amount of en-
ergy would be released by nuclear fission — the name ‘atomic bomb’ had not yet
been used. The question was: what mechanical effect might be expected if such
an explosion were to occur? The answer would be of crucial importance for the
further development of events. Shortly before this conversation the confidential
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Shock—wave ﬁ‘ob ¢
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air
Air in motion
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Figure 0.2. Photograph of the fireball of the atomic explosion in New Mexico at
t = 15 ms, confirming in general the spherical symmetry of the gas motion (Taylor
1950b, 1963).

report of G.B. Kistyakovsky, the well-known American expert in €xplosives,
had been received. Kistyakovsky claimed that even if the bomb were success-
fully constructed and exploded, its mechanical effect would be much less than
expected because the main part of the released energy would be lost to radiation.
As R.W. Clark wrote in his instructive book (Clark 1961), in the whole of Britain
there was only one man able to solve this problem — Professor G.I. Taylor.

To answer this question, G.I. Taylor had to understand and calculate the
motion of the ambient gas after such an explosion. It was clear to him that, after
a very short initial period (related as we now know to thermal-wave propagation
in quiescent air), a very intense shock wave would appear (Figure 0.1). The
motion was assumed to be spherically symmetric, that is, identical for all radii
going out from the explosion centre. (This simplifying assumption later received
excellent confirmation in the first atomic test; see Figure 0.2.) For constructing
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a complete mathematical model the following partial differential equations of
motion inside the shock wave had to be considered:

1. the equation for the conservation of mass;
2. the equation for the conservation of momentum;
3. the equation for the conservation of energy.

It was intuitively clear to G.I. Taylor that at this early stage in the explosion
viscous effects could be neglected and the gas motion could be considered
as adiabatic. The above equations of motion had to be supplemented by the
following boundary conditions at the shock-wave front:

1. the condition for the conservation of mass;
2. the condition for the conservation of momentum,;
3. the condition for the conservation of energy.

Also, the initial conditions, at the beginning of the very intense shock-wave-
propagation stage of a nuclear explosion, had to be prescribed.

In fact, this primary mathematical model is so complicated that even now
nobody is able to treat it analytically. Adequate computing facilities at that
time were non-existent. Moreover, the problem formulation outlined above is
incomplete, because nobody knew then or knows now how the air density, air
pressure and air velocity are distributed inside the initial shock wave at the
time when the shock wave just outstrips the thermal wave and the adiabatic gas
motion begins.

G.I. Taylor, however, was astute. His ability to deal with seemingly unsolv-
able problems, by apparently minor adjustment converting them to problems
admitting simple and effective mathematics, was remarkable. And here also
he took several steps, of crucial importance, which allowed him to obtain the
solution that was needed in a simple and effective form. In addition his formu-
lation allowed him to overcome the lack of detailed knowledge of the initial
distribution of the gas density, pressure and velocity. G.1. Taylor’s steps were
as follows:

1. He replaced the problem by an ‘ideal’ one. As he wrote (see Taylor 1941,
1950a, 1963), this ideal problem is the following: ‘A finite amount of
energy is suddenly released in an infinitely concentrated form.” This means
that rg, the initial radius of the shock wave (the radius at which the shock
wave outstrips the thermal wave), is taken as equal to zero, that is, the
explosion is considered as instantaneous and coming from a point source
of energy. It is clear that neglecting the initial radius of the shock wave ry is
allowable (if at all!) only when the motion is considered at a stage when
the shock front radius 7¢ is much larger than rg. If the initial shock-wave
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radius is taken as equal zero then the initial distributions of the air density,
pressure and velocity inside the initial shock wave disappear from the
problem statement: a great simplification.

2. At the same time, he restricted himself to consideration of the motion at the
stage when the maximum pressure of the moving gas, reached at the
shock-wave front, is large, much larger than the pressure py in the ambient
air; this allowed him to neglect the terms involving the initial pressure Do
in the boundary conditions at the shock-wave front and in the initial
conditions. Note that, namely, this stage determines the mechanical effect
of the explosion.

The first question G.I. Taylor addressed was: what are the quantities on which
the shock-wave radius r; depends? In the original ‘non-ideal’ problem they are
obviously:

1. E, the total explosion energy, concentrated in the sphere of radius r, where
the shock wave outstrips the thermal wave (according to the second
assumption above the initial internal energy of the ambient quiescent air is
negligible);

- po, the initial density of the ambient air;

. t, the time reckoned from the moment of explosion;

. 19, the initial radius of the shock wave;

. Do, the pressure of the ambient quiescent air;

. ¥, the adiabatic index.

NN bR W

The units for measuring these quantities in the c.g.s. system of units are

gem? g g
[E] = ot [oo] = pc [t] =s,[ro] = cm, [pg] = e 0.2)

¥ is a dimensionless number. We shall see later how important it was that G.L.
Taylor neglected the last two quantities ry and pg, thus replacing the problem
by an ideal one.

The reader may ask a natural question: in the real explosion r, and Do are
certain positive numbers which definitely influence the whole gas motion from
the very beginning to the end. How can their values be taken to be equal to
zero? .

In fact (and this comment will be important in our future analysis), the real
content of Taylor’s assumption was that at the intermediate stage under con-
sideration, where the mechanical effect occurs, the motion remains the same
if we replace ro by Arg, and Po by upo. Here A and p are arbitrary positive
numbers ‘of order unity’. This will be explained in detail in Chapter 5, but
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those who are familiar with the idea of a transformation group even vaguely,
will recognize that in fact this was an assumption of group invariance at the
all-important intermediate stage.

Taylor’s next step can be represented in the following way. He introduced
the quantity

2\ 1/5
R= (i_’) , 0.3)
0

which is measured according to (0.2) in units of length. Then, if we replace
centimeters, cm, by another unit of length, m, mm, sm, km, .. ., orin general by
cm divided by an arbitrary positive number L, the value of R will be magnified
by L, as will also the value of 7, whereas the quantity
e
I=— 0.4)
R
obviously will remain unchanged. .
The quantity / depends in principle on the same quantities as r¢, and this
dependence can be represented, neglecting ro and py, as

=2 =FR po.1,7) ©0.5)
where F is a certain function which is not known. The arguments 7, and Po
were neglected by Taylor: this was, as we will see, a step of crucial importance.
The argument y is an numerical constant.

The first three arguments of F have independent dimensions. This means,
in particular, that time ¢ is measured in time units, i.e., seconds or otherwise
s/T where T is an arbitrary positive number. Units of time are absent in the
dimensions of the first two arguments; therefore, by varying the number T we
can vary the numerical value of the argument ¢ while leaving the values of J
and those two other arguments of I invariant (all three others, in fact, since y
is a fixed number). But this means exactly that I cannot depend on ¢. Similarly
with po: if we vary the unit of mass then the value of 0y will vary arbitrarily,
leaving I and the first argument R invariant. That means that / likewise does not
depend on pp. Furthermore, I does not depend on the argument R: by varying
the unit of length we vary R, but the value of I remains invariant. Thus, the
function F is simply a constant deperding on the value of ¥, and so Taylor’s
famous scaling law for the radius of the shock wave was obtained:

2\ 1/5
Et ) : ©06)

re= C(y) (70-
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Figure 0.3. Logarithmic plot of the fireball radius, showing that rf5 2 s proportional
to the time ¢ (Taylor 1950b, 1963).

o, in the logarithmic form that he used,
1

log (£)+lo t 0.7
5 0810 % 810 ¥- .

% logyg 7t = % log;o C +

Later, Taylor’s processing of the photographs taken by J.E. Mack of the first
atomic explosion in New Mexico in July 1945 (Taylor 1950b, 1963) confirmed
this scaling law (Figures 0.2 and 0.3) — a well-deserved triumph of Taylor’s
. intuition. We can sée how important it was to neglect the arguments rp and po,
the initial radius of the shock wave and the initial pressure.. If not, additional
variable arguments would have appeared in the function ¥ and we would have
returned to the hopeless mathematical model that we faced at the outset. But the
outcome for the simplified situation was different. Taylor was able to obtain in
the same way scaling laws for the pressure, velocity and density immediately
behind the shock-wave front:

E2p3 1/5 1/5
pe=Cp(¥) ( 7 0) s pe=CoIpo,  ur=Culy) (%) .
(0.8)
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Inside the shock wave an additional argument, the distance r from the center
of the explosion, appears, so that the relationships for the pressure, density and
velocity inside the shock wave can be represented in the form

r r r
p= pr(—, V) s p= pr (_9 J’) ’ U= us ('—'a )’) . (09)
143 e re

The structure of the relationships (0.9) obtained by Taylor is instructive. It
demonstrates that the phenomenon has the important property of self-similarity.
This means that the spatial distribution of pressure (and other quantities) varies
with time while remaining always geometrically similar to itself (Figure 0.4(a)):
the distribution at any time can be obtained from that at a different time by a
simple similarity transformation. Therefore in ‘reduced” coordinates using ps,
pr, ue and 7y as corresponding scales,

P d “ and -r—,

P o’ us’ e

the spatial distributions of pressure, density and velocity remain invariant in
time (Figure 0.4(b)).-The property of self-similarity greatly simplifies the in-
vestigation: instead of the two independent variables r and ¢ in the system of
differential equations, boundary conditions and initial conditions mentioned
above, Taylor obtained one single variable argument, r/rs, in his solution and
so was able to reduce the original problem, which required the solution of partial
differential equations to the solution of a set of ordinary differential equations.
The method of solution was sufficiently simple that he himself was able to
make all the necessary numerical computations using a primitive calculator. In
particular, he showed that the constant C in the scaling law (0.6) is close to
unity: for y = 1.4, C = 1.033,

G.L Taylor submitted his paper on Friday 27 June 1941. The great American
mathematician J. von Neumann, who was also involved in the atomic prob-
lem and asked the same question independently, submitted a paper three days
later, on Monday 30 June 1941 (von Neumann 1941; see also von Neumann
1963). His solution complemented Taylor’s solution — he noticed an energy
integral for the set of ordinary differential equations and was able to obtain
the solution in closed form. Later, the solution of this problem was published
in the Soviet Union by L.I. Sedov (Sedov 1946, 1959), who also found the
energy integral, and by other authors, R. Latter (1955) and J. Lockwood Taylor
(1955).

We have seen that in obtaining the scaling law (0.6) and achieving the prop-
erty of self-sirnilarity an important role was played by dimensional analysis:
the construction of dimensionless quantities from the arguments of the function
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Figure 0.4. (a) Air pressure as a function of radius at various instants of time for the
motion of air following an atomic explosion. The pressure distributions at various
times are similar to one another. (b) Spatial distributions of the gas pressure, density
and velocity in the reduced ‘self-similar’ coordinates p/px, p/ps, u/us and r/r¢
do not depend on time.
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F with subsequent reduction in the number of arguments. The idea on which
dimensional analysis is based is fundamental, but very simple: physical laws
cannot depend on an arbitrary choice of basic units of measurement. The formal
recipe for using dimensional analysis is very simple also. The main art, how-
ever, is not in using this simple tool but in finding, as G.I. Taylor did, the proper
formulation or idealization of the problem in hand — an instantaneous concen-
trated very intense explosion in his case ~ that allows effective use of this tool.
Here the key point is the concept of intermediate asymptotics: consideration of
the phenomenon in intermediate time and space intervals.

It is important, however, to note that dimensional analysis is not always
sufficient for obtaining self-similar solutions and scaling laws, Moreover, it can
be claimed that as a rule it is not so and that the Taylor—von Neumann solution
to the explosion problem was in fact a rare and lucky exception.

Here an instructive role is played by the paper by K.G. Guderley (1942)
where, in a certain sense, the mirror image of the problem of a very intense
explosion was considered. The formulation of this implosion problem is as
follows.! On the wall of a spherical cavity of radius rg in an absolutely rigid
vessel filled by gas of density po (Figure 0.5) there is a uniform thin layer
of a strong explosive. The latter is exploded instantaneously and uniformly
over the wall and a strong spherical shock wave is formed. The shock wave
converges to the center of the cavity. It is very intense, as in the case of a very
intense explosion, so that the pressure behind the wave is much larger than the
initial gas pressure po, which, as in the case of a very intense explosion, can
be neglected. The shock wave comes to a focus at the center of the cavity at a
time which we take as ¢ = 0, so that the time before focusing will be negative,
t < 0. Similarly to the case of an intense explosion, dimensional analysis gives
for the radius of the shock wave

= [E(—t)*/po]/* S [ N—
re=[E(=t)Y"/po) " ®(n, ), n= [E(17/ po] 5
where as before E is the energy of the explosion and y is the adiabatic index.

Seemingly the application of reasoning analogous to that for the case of an
intense explosion would suggest that the argument 1 goes to infinity at 7 — 0
and therefore can be neglected close to the focus, so that a formula analogous
to (0.6) could be obtained:

(0.10)

2715
ECD :I 0.11)

- rf=C(J’)[

1 A detailed discussion of the Guderley problem can also be found in the books by Zeldovich and
Raizer (1967) and Landau and Lifshitz (1987).
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Figure 0.5. A very intense implosion in a spherical cavity. The explosive is placed
on the wall of the cavity. The black dot shows the shock front as it comes to a
focus at the centre of the cavity at z = 0.

In fact, this is not the case, for the following reason. In the case of implosion
the function. D(n,y) at n - oo does not tend to a finite non-zero limit as
was the case for an explosion! However, it happens that at 5 — oo the function
@(7, y) has a power-law-type behavior, ®(3, y)~C(y)n~F where B=By)=
- const > 0, so that at ¢t — 0, that is, close to the focus, the expression for the
radius of the shock wave assumes the form

2
= s [E(—t)
Lo

/2
:I = A(_t)a5

2 a/2
a=2(1+p, A=Cor’ (£> : (0.12)
Lo

It is important to note that the exponent « cannot be obtained by dimensional
analysis, as it was in the case of an intense explosion, but requires a more
complicated technique, the solution of a nonlinear eigenvalue problem.
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The Guderley (1942) solution as well as the solution to the ‘impulsive load’
problem which is in fact a one-dimensional analog of the implosion problem,
obtained by von Weizsicher (1954) and Zeldovich (1956), introduced a new
class of self-similar phenomena: incomplete similarity and self-similar solu-
tions of the second kind. These problems are closely related to the concept of
the renormalization group, well known in theoretical physics.

In what follows we will present in detail the ideas of dimensional analysis,
physical similarity, self-similarity, intermediate asymptotics and the renormal-
ization group. Our goal is to demonstrate in detail the many possibilities for
application of these ideas and also the difficulties which can occur — throughout
using many examples. Most of the examples in the present book are related
to fluid dynamics: my experience shows that the elements of fliid mechanics
are familiar to engineers, mathematicians and physicists. Those who are more
interested in elasticity, fracture, fatigue or geophysical fluid dynamics can find
additional examples in my book Barenblatt (1996). The examples (‘Problems’)
considered in the present book should be considered as an essential part of the
whole text.



Chapter 1

Dimensional analysis and physical similarity

1.1 Dimensions

1.1.1 Measurement of physical quantities, units
of measurement. Systems of units

We say without any particular thought that the mass of water in a glass is
200 grams, the length of a ruler is 0.30 meters (12 inches), the half-life of
radium is 1600 years, the speed of a car is 60 miles per hour. In general, we
express all physical quantities in terms of numbers; these numbers are obtained
by measuring the physical quantities. Measurement is the direct or indirect
comparison of a certain quantity with an appropriate standard, or, to put it
another way, with an appropriate unit of measurement. Thus, in the examples
discussed above, the mass of water is compared with a standard — a unit of
mass, the gram; the length of the ruler is compared with a unit of length, the
meter; the half-lifetime of radium is compared with a unit of time, the year;
and the velocity of the car is compared with a unit of velocity, the velocity of
uniform motion in which a distance of one mile is traversed in a time equal to
one hour.

The units for measuring physical quantities are divided into two categories:
Jfundamental units and derived units. This means the following.

A class of phenomena (for example, mechanics, i.e. the motion and equi-
librium of bodies) is singled out for study. Certain quantities are listed, and
standard reference values ~ either natural or artificial — for these quantities are
adopted as fundamental units; there is a certain amount of arbitrariness here.
For example, when describing mechanical phenomena we may adopt mass,
length and time standards as the fundamental units, though it is also possible
to adopt other sets, such as force, length and time. However, these standards
are insufficient for the description of, for example, heat transfer, and so the unit
of temperature, the kelvin, is introduced. Additional standards also become

12
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necessary when one is studying electromagnetic phenomena, luminous phe-
nomena or, indeed, subject areas quite outside the scope of physical science,
such as economics.!

Once the fundamental units have been decided upon, derived units are ob-
tained from the fundamental units using the definitions of the physical quanti-
ties involved. These definitions always involve describing at least a conceptual
method for measuring the physical quantity in question. For example, velocity
is by definition the ratio of the distance traversed during some interval of time
to the size of that time interval. Therefore, the velocity of uniform motion in
which one unit of length is traversed in one unit of time can be adopted as a unit
of velocity. In exactly the same way, density is by definition the ratio of some
mass to the volume occupied by that mass. Thus, the density of a homogeneous
body that contains one unit of mass per unit of volume — a cube with a side equal
to one unit of length — can be adopted as a unit of density, and so on. We see that
it is precisely the class of phenomena under discussion, i.e., the complete set
of physical quantities in which we are interested, which ultimately determines
whether a given set of fundamental units is sufficient for its measurement. For
example, it is impossible to define a unit for the measurement of density using
only the fundamental units of length and time. It becomes possible to define
such a unit by adding a unit of mass.

A set of fundamental units that is sufficient for measuring the properties of
the class of phenomena under consideration is called a system of units. Until
recently, the cgs (centimeter—gram—second) system, in which units for mass,
length and time are used as the basic units and one gram? (g) is adopted as the
unit of mass, one centimeter® (cm) as the unit of length and one second? (s) as
the unit of time, has customarily been used.

The unit of velocity in this system is the velocity of uniform motion in which
a distance of one centimeter is traversed in one second. This unit is written in
the following way: cm/s. The unit of density in the cgs system is the density
of a homogeneous body in which one cubic centimeter contains a mass of one

! Recently the anal§'s"is of economic and, especially, financial phenomena using the traditional
approaches of applied mathematics has attracted serious attention. For such applications the
correct definition and measurement of the quantities involved is of prime importance.

2 The gram is one-thousandth of the mass of a specially fabricated standard mass, which is

carefully preserved at the Bureau of Weights and Measures in Paris.

The centimeter is one-hundredth of the length of a specially fabricated, carefully preserved

standard length - the meter. There is another, more precise and universal definition of this

standard based on a natural process: 1650 736.73 wavelengths in vacuo of the radiation
corresponding to the transition between the 2p'® and 5d5 levels of the krypton-86 atom.

The second is, by definition, 1/86 400 of a mean solar day. A more precise and universal

definition of the second is 9192 621 770 periods of the radiation corresponding to the transition

between two hyperfine levels in the ground state of the caesium-133 atom.

w

S



14 I Dimensional analysis and Dhysical similarity

gram, This unit is written in the following way: g/cm?. This method of writing
units is, to a certain extent, a matter of convention: for example, the ratio cm/s
cannot be thought of as a quotient of the length standard - the centimeter — and
the time standard — the second. Such a quotient would be totally meaningless:
one may divide one number by another, but not an interval of length by an
interval of time!

A system of units consisting of two units (a unit for the measurement of
length and a unit for the measurement of time, for example the centimeter
and the second) is sufficient for measuring the properties of kinematic phe-
nomena, while a system of units consisting of only one length unit (for ex-
ample the centimeter) is sufficient for measuring the properties of geometric
objects.

However, in order to be able to measure the properties of heat transfer, the
system of units for the measurement of mechanical quantities must be supple-
mented by an independent standard (the degree Kelvin (kelvin), a temperature
standard, is convenient for this purpose). We would require an additional stan-
dard, for example a unit of electric current (the ampere) in order to be able to
measure electromagnetic phenomena and so forth.

Note that a system of units need not be minimal, i.e. redundancy in its units
need not be avoided. For example, one can use a system of units in which
the unit of length is 1 cm, the unit of time is 1 s and the unit of velocity is
1 knot (approximately 50 cm/s). However, in this case, the velocity will not be
numerically equal to the ratio of the distance traversed to the magnitude of the
time interval in which the distance is traversed. We shall discuss this important
point in greater detail below.

1.1.2 Classes of systems of units

Let us now consider, in addition to the ¢gs system, a second system, in which
one kilometer (= 10° cm) is used as the unit of length, one metric ton (= 10° g)
is used as the unit of mass and one hour (= 3600 s) is used as the unit of
time. These two systems of units have the following property in common:
standard quantities of the same physical nature (mass, length and time) are
used as the fundamental units. Consequently, we say that these systems belong
to the same class. To generalize, a set of systems of units that differ only in the
magnitudes (but not in the physical nature) of the fundamental units is called
a class of systems of units. The system just mentioned and the cgs system are
members of the class in which standard lengths, masses and times are used as
the fundamental units. If we choose to regard the cgs system as the original
system in this class then the corresponding units for an arbitrary system in this
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class are as follows:

unit of length = cm/L,
unit of mass = g/M, (1.1)
unit of time = s/ T,

where L, M and T are positive numbers that indicate the factors by which
the fundamental units of length, mass and time decrease in passing from the
original system (in this case, the cgs system) to another system in the s.e.une
class. This class is called the LMT class.” The SI system has recently come into
widespread use. This system, in which one meter (= 100 cm) is adopted as the
unit of length, one kilogram (= 1000 g) as the unit of mass and one second as
the unit of time, also belongs to the LMT class. Thus, when passing from the
original system to the SI system, M = 0.001, L = 0.01 and T = 1.
Systems in the LFT class, where units for length, force and time are? chosen
as the fundamental units, are also frequently used. Using as original units 1 cm,
1 kgf'and 1 s, the fundamental units for an arbitrary system in this class are as

follows:

unit of length = ecm/L,
unit of force = kgf/F, (1.2)
unit of time = s/7T.

The unit of force in the original system, the kilogram-force (kgf), is the force

that imparts an acceleration of 9.80665 m/s? to a mass equal to that of the

standard kilogram, .
We emphasize that a change in the magnitudes of the fundamental units in

the original system of units does not change the class of systems of units. For

example, a class in which the units of length, mass and time are given by

m kg hr

L’ M T
is the same as that defined in (1.1), LMT. The only difference is that the numbers
L, M and T {0F a certain system of units (for example, the SI system) will be
different for the two members, or representations, of the LMT class: in the
second representation, we obviously have L = 1, M = 1 and T = 3600.

3 ignation of a class of systems of units is obtained by writing down, in ponsecuﬁve order,
gfs‘;ﬁbﬂs for the quantities }vlvhose units are adopted as the fundamental units. Such a symbol
simultaneously denotes the factor by which the corresponding fundamental unit decreases upon
passage from the original system to another system in the same class. The reader should be
careful to distinguish between these two, closely related, meanings of L, M, T etc.
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. 1.1.3 Dimension of a physical quantity

If the unit of length is decreased by a factor L and the unit of time is decreased
by a factor 7 then the new unit of velocity is a factor LT! times smaller than
the original unit, so that the numerical values of all velocities are increased
by a factor LT~!. Similarly, upon decreasing the unit of mass by a factor M
and the unit of length by a factor L we find that the new unit of density is
a factor L=3M smaller than the original unit, so that the numerical values of
all densities are increased by a factor L=3M. Other quantities may be treated
similarly. The change in the numerical value of a physical quantity upon passage
from one system of units to an arbitrary system within the same class is deter-
mined by its dimension. The function that determines the Jactor by which the
numerical value of a physical quantity changes upon passage from the origi-
nal system of units to an arbitrary system within a given class is called the
dimension function, or dimension,$ of that quantity. It is customary, following
a suggestion of J.C. Maxwell, to denote the dimension of a quantity ¢ by [¢].
We emphasize that the dimension function of a given physical quantity is de-
termined for a specified class and is different in different classes of systems
of units. For example, the dimension function of density p in the LMT class is
[p] = L™3M;in the LFT class it is [p] = L~4FT2.
Quantities whose numerical values are identical in all systems of units within
a given class are called dimensionless; clearly, the dimension function is equal to
unity for a dimensionless quantity. All other quantities are called dimensional,
We shall now cite a few additional examples. If (in the LMT class) the unit
of length is decreased by a factor L, the unit of mass is decreased by a factor
M and the unit of time is decreased by a factor T then the numerical values
of all forces are increased by a factor LMT 2. Indeed, according to Newton’s
second law, the net force f on a mass m is the product of the mass and its
-acceleration a:

f =ma.

For the decreases in the fundamental units mentioned at the start of this sub-
section, the numerical values of all masses are increased by a factor M and the
numerical va]ues of all accelerations are increased by a factor LT-2. Now, the
dimensions of both sides of any equation with Physical sense must be identical:
otherwise, an equality in one system of units would not be an equality in another

6 Qur use of the singular should be noted.
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system, and this is not permissible for equations with physical sense.” Thus, we
find that the dimension of force in the LMT class is

[f1=[mlla] = LMT 2. (1.3)

Analogously, the dimension of mass in the LMT class is M, while it is [m] =
L-1FT? in the LFT class; the dimension of energy, [e], is L2MT~2 in the
LMT class and LF in the LFT class. In the LMT class, the ratio of velocity and
distance divided by time is dimensionless. However, if we use the LMTV class,
in which the unit of velocity (knot/V) is independent, this ratio has a dimension
different from unity, L1 TV. For instance, for a vessel travelling at 20 knots the
ratio is equal to 20 if the unit of length is one nautical mile (~ 1850 meters)
and equal to 37 if the unit of length is one kilometer, whereas the units of time
and velocity, one hour and one knot respectively, are the same in each system.

Dimension functions possess two important properties, which we shall now

discuss.

1.1.4 The dimension function is always a power-law monomial

We have seen that the dimension function is a power-law monomial in all
the cases discussed above. This brings up the following question: are there
physical quantities for which this is not so, and for which the dimensions in
the LMT class are given, for example, by dimension functions of the form
L + M?, e M or sin M log T? In fact, there are no such physical quantities,
and the dimension function for any physical quantity is always a power-law
monomial. This follows from a simple, naturally formulated (but actually very
deep) physical principle: all systems within a given class are equivalent, i.e.,
there are no distinguished, somehow preferred, systems among them.

We shall prove this using the LMT class of systems; the reader may easily
make the generalization to an arbitrary class of systems. By virtue of the fact
that the systems within a given class are equivalent, the dimension in this class
of any mechanical quantity a depends only on the ratios L, M and T (see
subsection 1.1.3):

[a)=¢L,M,T). 14

7 Equations which hold only in one system of units do exist and sometimes are very useful,
although they have no physical sense. For instance, my colleague Professor A.Yu. Ishlinsky
proposed a formula for the time taken to drive a given distance in Moscow: the time in minutes
is equal to the distance in kilometers plus the number of traffic lights. Of course, the formula
time = distance 4+ number of traffic lights does not work in other units, and therefore has no

physical sense.

=
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If there existed some distinguished system within the LMT class, it would be
necessary to include in (1.4) the relationship between the system of units we are
working in and the distinguished system. In this case, the dimension function ¢
would depend on three additional arguments, £o/€q, mo/mgq and ty/t4, the ratios
of the units of length, mass and time, £y, mo and £y, in the original system of
the LMT class and the corresponding units, £4, mq and #;, in the distinguished
system. According to the equivalence principle formulated above, this cannot
be so: the dimension function ¢ depends only upon the dimensions L, M and
T in the LMT class, independently of which system is adopted as the original
system.

To continue our proof, we shall now choose two systems of units within
the LMT class: system 1, which is obtained from the original system upon
decreasing the fundamental units by factors of Ly, M; and Tj, and system 2,
which is obtained from the original system upon decreasing the fundamental
units by factors of Ly, M, and 7.

By the definition of dimension, the numerical value of the quantity under
discussion, equal, say, to @ in the original system, is a; = a¢(L,, M;, T7) in the
first system, and @, = a¢(Ly, My, T5) in the second system. Thus, we have

@ _ 9Ly, My, T3)

a oLy, My, Ty (1.3)

We now note that by virtue of the equivalence of systems within a given
class, we may assume that system 1 is the original system of the class, without
altering the class. In this case, system 2 can be obtained from the new original
system (system 1) by decreasing the fundamental units by factors of L, /L,
M>/M, and T»/T;, respectively. Consequently, the numerical value a, of the
quantity under discussion in the second system of units, is, by the definition of
the dimension function,

a = a1p(La/L1, My/My, T,/ T);

we emphasize that a;, the numerical value of the quantity @ in system 1, remains
unchanged under the change in original system made above. Thus ay/a; =
&(Ly/Ly, My/M;, T,/ T). Setting this expression equal to that in (1.5), we
obtain the following equation for the dimension function ¢:

& (Lo, M, Tr)

o1, iy, Ty — P2/l Mo/ My, T/ Th). (1.6)

Equations of this type are called functional equations. We shall now show
that only power-law monomials satisfy this equation.

1.1 Dimensions 19

To solve (1.6), we differentiate® both sides of this equation with respect to
L, and thenset Ly = Ly = L My=Mi=Mand T, = T; = T. We find that

gL, M, T) 1

oL, M, T) L

where the quantity o = dr¢(1, 1, 1) is a constant independent of L, M and T.
Integrating (1.7), we find that

¢(L, M, T)=L°Cy(M, T). (1.8)

(1, 1,1) = % A7)

Substituting this expression into (1.6), we obtain an equation for the function
C; of the same form as (1.6) but with one argument fewer:
C1(M, T»)
Ci(My, Th)
Once again, we proceed in the same way: we differentiate both sides of (1.9)
withrespectto My andset M\, =M =Mand T, =T, =T:

omCiM, Ty 1 B
e e —aCi(L, ) = £,
aGM, 1) M™ i, D=7

= Ci(Ma/My, T/ Th). (19)

from which
C1 = MPCy(D), (1.10)

where 8 = 93 C1(1, 1) is a constant similar to &. Following the same line of
reasoning again, we find that

Co(T) = G3T7,

so that
¢ = C3L°MPTY. 1.11)

The constant Cs is obviously equal to unity, since L = M = T = 1 means
that the fundamental units remain unchanged, so that the value of the quantity
a must remain unchanged and ¢(1, 1, 1) = 1.

So,we have shown that the solution to the functional equation (1.6) is the
power-law monomial L* MAT? where «, B and y are constants; therefore the
dimension of any mechanical quantity and, by extension, any other physical
quantity can be expressed in terms of a power-law monomial.

Let us look at what would happen if, for instance, the unit of length were
a distinguished unit, equal, say, to £3 = 1 foot. (Originally, it was taken as

8 It is natural to assume that the dimension function is smooth, although, in fact, only the
assumption of continuity is enough.
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the length of the foot of an English king.) In this case the ratio £5/£4 of the
fundamental unit of length in the original system £ to the foot, i.e. the length of
the former in feet, will be significant and should be included in the arguments
of the dimension function. Therefore, relation (1.6) would be of the form

¢(La, Mz, T, £o/La) (Lz M, T, Zo/ﬂd)

é(L1, My, Ty, £o/4q) L'M'T,’ L )
Differentiating by L, and then setting L, = Ly = L, My = M; = M and
T, =T = T, we obtain

3L¢(L,M, T) _ l
¢(L,M,T) ~ L

£
5.6 (1, L1, Lo/ d) ” const‘

L L

Thus, if we give up the principle that all systems of units within a given class
are equivalent, i.e. that there is no distinguished system in the class, the main
result of this principle — that dimension functions are power monomials — does
not hold.

It should be noted that systems of units convenient for use with some special
classes of problem have frequently been proposed. For example, Kapitza (1966)
proposed a natural system of units for classical electrodynamics. Kapitza’s
system uses the classical radius of the electron as the unit of length, the rest-
mass energy of the electron as the unit of energy and the mass of the electron
as the unit of mass. This system is convenient in classical electrodynamics
problems, since it allows one to avoid very large or very small numerical values
for all quantities of practical interest. It is important to note that Kapitza’s
system is not ‘distinguished’ in the sense described above: the dimensions of
physical quantities for an arbitrary system in the LEM class (E is the symbol
for energy) do not depend on the ratios of the units of length, energy and mass
in an original system in the class to the units in Kapitza’s system.

1.1.5 Quantities with independent dimensions

The quantities a;, . . ., g are said to have independent dimensions if none of
these quantities has a dimension function that can be represented as a product
of the powers of the dimensions of the remaining quantities.

For example, density ([p] = LM ~3), velocity (U] = LT~") and force ([ f] =
LMT~?), have independent dimensions. To show this, let us assume that, on the
contrary, only two of the three have independent dimensions. Then, since the
dimension functions for both density and force contain M and the dimension
function for velocity does not, there must exist numbers x and y such that
[f1 = [p*[UY’. Substituting the expressions for the dimensions [ f], [o] and
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[U1in terms of L, M and T into this relation, we find that
LMT? = ML (LT, (1.12)

Equating the exponents of L, M and T on the two sides of the equation, we
obtain a system of three equations for the two unknowns x and y:

=3x+y=1, x=1, y=2, (1.13)

which 0bv1ously has no solution; x = 1 and y = 2 do not satisfy the first
equation. So, we come to a contradiction, and we conclude that our assumption
was false. In fact, it is easy to see that the dimensions of density, velocity
and pressure are dependent: the dimension of pressure (force per unit area),
L~'MT~2, is equal to the product of the dimension of density and the square
of the dimension of velocity.

Furthermore, it is clear that none of the quantities gy, ..., a; having inde-
pendent dimensions can be dimensionless: the dimension of a dimensionless
quantity, which is equal to unity, is equal to the product of the dimensions of
the remaining quantities (whatever they are) raised to the power zero.

The fact which will be important below is that it is always possible to pass
from a chosen original system of units to some other system, within the same
class, such that any quantity, say ai, in the set of quantities with independent
dimensions a1, ..., ax changes its numerical value by a specified factor A,
while the other quantities remain unchanged.

Problem Prove the above-mentioned property.

Solution. Passing, in a given class of systems of units PQ:..(P, 0, ...
denote the symbols L, M, T and/or other similar quantities), from a chosen

original system to an arbitrary one we obtain new values ay, ..., a of the
parameters ai, . .., G
a,=aPuQl ..., ay=aP%Q%..., ..,
Qa;c=akP°”‘Qﬁk... , (1.14)
where the powers o, Bi,..., %, Br are determined by the dimensions of
ai, ..., ay, respectively. We want to find the system such that
a; = Aay, ay =ay, ey ay = ay.

Therefore, for P, Q, ... asystem of equations is obtained:

Pubi .. = A, pugh ... =1, PuQP ... =1. (1.15)
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Taking logarithms, we obtain a system of linear equations:

aiInP+ g InQ+--- =InAy,
yInP+BInQ+--- =0,

. (1.16)
gnP+BInQ+--- =0.

This system has at least one solution. Indeed, it is insoluble only if the left-
hand side of the first equation is a linear combination of the left-hand sides of
the remaining equations,

orlnP+BInQ+-- - =cleolnP+BlnQ+--)+---
+alggln P+ BInQ+--) (1.17)

where ¢s, . . ., ¢ are constants. This would imply, if we return to the exponents
from the logarithms, that

PUQP .. = (PuQP .y (PUQPr Ly
giving
[a1] = [@2]® - - [@]* (1.18)

so that the dimension of a; would be equal to the product of the powers of
the dimensions of as, . . ., a;, which would contradict the assumption that the
dimensions of the quantities aj, .. ., ax are independent. Thus the property is
proved.

1.2 Dimensional analysis

1.2.1 Governing parameters

In any physical study (theoretical or experimental), we attempt to obtain rela-
tionships among the quantities that characterize the phenomenon being studied.
Thus, the problem always reduces to determining one or several relationships
of the form

a=fla,...,ak b1, ..., bm), (1.19)

where a is the quantity being determined in the study, and its n = k + m
arguments ai, . .., &, b1, . . ., b are assumed to be given; they are called gov-
erning parameters. The governing parameters in (1.19) are divided up in such
a way that the k parameters a1, . . ., a; have independent dimensions while the
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dimensions of the m parameters by, ..., b, can be expressed as products of
powers of the dimensions of the parameters ay, . . ., ax:

[b1] = [a1]7 - - - [a]™,
bl = [a1]” - - - &)™ (1.20)

[bp] = [a1]?m - - [a]™.

Such a division may always be made. In some special cases, we might have
m = 0 (if the dimensions of all the governing parameters are independent) or
k = 0 (if all the governing parameters are dimensionless). In general k > 0,
m > 0.

The dimension of the quantity a to be determined must be expressible in terms

of the dimensions of the governing parameters in the first group, a1, ..., ax:
lal=[a11? - [a&]". (1.21)
If this were not so, the dimensions of the quantities @, a1, . . . , ; would be inde-

pendent. Then, by the property proved in subsection 1.1.5, it would be possible
to change the value of the quantity a by an arbitrary factor, via a change in the
system of units within the class in question, and leave the quantities ay, . .. , a
unchanged. In doing so, the quantities b, . . ., by, whose dimensions can be ex-
pressed in terms of the dimensions of the quantities a1, . . ., a, would likewise
remain unchanged. Thus, the quantity to be determined, @, could be changed
by any amount while the values of all the governing parameters remained un-
changed,; this is impossible if the list of governing parameters is complete. Thus,
there always exist numbers p, ..., r such that (1.21) holds.

1.2.2 Transformation to dimensionless parameters.
- Generalized homogeneity. I1-theorem

N

We shall now introduce the parameters

a
H=ap...a'
1 k
I bl I bz
1= —p1 71 T e i ? e
aj - ay --ay
bm
I, =—m—— 1.22
mn alpm...a;”’ ( )
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where the exponents of the governing parameters with independent dimensions
are chosen such that all the parameters I, Iy, ..., 11, are dimensionless. Re-
lation (1.19) may be rewritten, replacing the parameters a, b, . . . , by, (Whose
dimensions depend on those of the parameters ay, .. ., a;) by the dimension-
less quantities IT, IT;, ..., I1,, defined in (1.22) and keeping the parameters
ai, ..., a;. We find that

e S, ...a, by, ..., by)

af..'ai
| = mf(a;,...ak, Myal" ... a}, o My afr .. .ai).
Thus, we find that
O=Fa,...aq, y,..., I1,,), (1.23)

where F is a certain function,

Now, the most important point to be discussed here is as follows. We have
already seen that it is always possible to pass to a system of units within the class
in question such that any one of the parameters with independent dimensions
ai, ..., a, let us say ay, is changed by an arbitrary factor, the remaining
parameters, ay, ..., a, remaining unchanged. Obviously, the dimensionless
arguments Iy, ..., IT,, of the function F and the value of the dimensionless
function IT also remain unchanged under such a transformation. It follows from
this that the function F is in fact independent of the argument ;. In exactly
the same way, it can be shown that it is also independent of the arguments
..., ar, 80 that F = ®(I14, ..., I1,,). Equation (1.23) can therefore in fact
be written in terms of a function ® of m rather than n = £ + m arguments:

In= (D(Hl, LR Hm)' (1.24)

However, since I = f/af ... ay, it follows that any function f that defines
some physical relationship possesses the property of a generalized homogeneity
or symmetry, i.e. it can be written in terms of a function of a smaller number of
variables and is of the following special form:

b b
f(al,...ak,bl,...,bm)=af’--~a,§d> _Pl-—rl"“’_P—m—r .
al ...ak al”‘...ak’”

(1.25)
These results lead to the central result in dimensional analysis, the so-

called I-theorem: a physical relationship between some dimensional (gen-
erally speaking) quantity and several dimensional governing parameters can
be rewritten as a relationship between a dimensionless parameter and several
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dimensionless products of the powers of governing parameters; the number of
dimensionless products is equal to the total number of governing parameters
minus the number of governing parameters with independent dimensions. The
term ‘physical relationship’ is used to emphasize that it should be valid in all
systems of units.

Note that the TT-theorem is, in fact, obvious at an intuitive level. Indeed, it
is clear that physical laws cannot depend on the choice of units. Therefore, it
must be possible to express them using relationships between quantities that
do not depend on this arbitrary choice, i.e., dimensionless combinations of the
variables. This was realized long ago, and concepts from dimensional analysis
were in use long before the I1-theorem had been explicitly recognized, formu-
lated and proved formally. The outstanding names that should be mentioned
here are Galilei, Newton, Fourier, Maxwell, Reynolds and Rayleigh.

Dimensional analysis may be successfully applied (see below) in theoretical
studies where a mathematical model of the problem is available, in the pro-
cessing of experimental data and also in the preliminary analysis of physical
phenomena preceding the construction of each model. The point that we are
trying to make here is the following.

In order to determine the functional dependence of some quantity a, (1.19),
on each of the governing parameters, it is necessary to either measure or cal-
culate the function f for, let us say, 10 values of each governing parameter.
Of course, the number 10 is somewhat arbitrary; a smaller number of mea-
surements or calculations may suffice for some smooth functions, while even
100 measurements are insufficient for other functions. Thus, it is necessary to
carry out a total of 10¥+™ measurements or calculations to determine a. After
applying dimensional analysis, the problem is reduced to one of determining
a function @ of m dimensionless arguments Iy, ..., I1,,, and only 10™ (i.e. a
factor of 10* fewer) experiments or calculations are required to determine this
function. As aresult, we reach the following important conclusion: the amount
of work required to determine the desired function is reduced by as many orders
of magnitude as there are governing parameters with independent dimensions.

The following question naturally. arises: if such substantial advantages are
obtained for n = k, m = 0, why not go to a class of systems of units in which
the dimensions of all the quantities ay, ..., a, by, . . ., by, are independent?

Actually, nothing is gained in general by transforming to such a class. We
will show this using as an example a problem where quantities with dimen-
sions of length £, time 7 and velocity v are included among the governing
parameters. We will then change to the LTV class of systems, where the unit of
velocity is independent. However, without modification the formula v = /t
(where s is the distance travelled, and ¢ is the time of travel) is not valid in
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Figure 1.1. A pendulum performs small oscillations. Experiment shows that the pe-
riod of small oscillations is independent (Galilei) of the maximum deviation of the
pendulum.

this class; it must be replaced by the formula v = As /t, where A is a con-
stant having dimension L~!TV (see subsection 1.1.3). In general, therefore, the
quantity A must also be included among the governing parameters, thereby
increasing the number of governing parameters by one. And, in general, the
difference m = n — k between the total number of governing parameters and
the number of governing parameters with independent dimensions remains un-
changed; thus, generally speaking, there is no advantage in transforming to a
new class of systems of units. However, in some special cases it may turn out
that the additional parameters, as is the case for A, happen to be non-essential.
In such cases, transforming to a new class increases the number of parameters
with independent dimensions and so is useful. We will see examples of this
below.

1.2.3 Problems

Problem 1. Derive, using dimensional analysis, the Sformula for the period 6
of small oscillations of a pendulum,

/@ [€
0 =2n |- ~ 628 —. 1.
P 2 (1.26)

Here £ is the length of the pendulum (Figure 1.1), and g is the gravitational
acceleration.
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Solution: Tt is arguable that in principle the period 6 depends upon the fol-
lowing governing parameters:

1. the length of the pendulum ¢;

2. the mass of the bob m;

3. the gravitational acceleration g: if there were no gravity then the pendulum
would not oscillate.

The dimensions of the quantities involved are as follows:
01=7, (=L, [m=M, [gl=LT" (1.27)

The dimensions of the governing parameters, £, m, g, are independent (each of
them contains a dimension absent in the others). Therefore, using the notation
defined at (1.19), k = n = 3. It is easy to show that [8] = [£]"/2[g]~!/2; then,
from (1.22) we obtain

6

= AT (1.28)

In this case, m = n—k = 0, so that there are no parameters IT;, and the function
@ in (1.24) and (1.25) is a constant. Therefore

6 = const\/g . (1.29)

The constant in (1.29) can be determined fairly accurately from a single exper-
iment, which the reader may carry out by measuring the period of oscillation
of a weight hung on a thread. With this step the derivation of formula (1.26)
will be complete. This derivation (which is due to the French mathematician
P. Appell) is instructive. It would seem that we have succeeded in obtaining
an answer to an interesting problem from nothing — except a list of the quanti-
ties on which the period of oscillation of the pendulum is expected to depend,
and a comparison (analysis) of their dimensions. In fact, this is not completely
true: under this argument lies a deep physical model — idealization, like in the
problem of G.I. Taylor considered in the introduction, — and observation: the
amplitude-independence of the period for small oscillations, the possibility of
neglecting the decay of oscillations due to the drag of ambient air etc.

Problem 2. Prove, using dimensional analysis, Pythagoras’ theorem (see also
Migdal 1977)

¢t =a 4% (1.30)

Solution: Consider Figure 1.2. The area S, of the largest right-angled triangle
is determined by its hypotenuse ¢ and, for definiteness, the smaller of its acute



