
 Page i

PathScale™ Compiler Suite
User Guide

Version 3.2



PathScale Compiler Suite User Guide
Version 3.2

Page ii  



PathScale Compiler Suite User Guide
Version 3.2

 Page iii

Information furnished in this manual is believed to be accurate and reliable. However, PathScale LLC assumes no 
responsibility for its use, nor for any infringements of patents or other rights of third parties which may result from its use. 
PathScale LLC reserves the right to change product specifications at any time without notice. Applications described in 
this document for any of these products are for illustrative purposes only. PathScale LLC makes no representation nor 
warranty that such applications are suitable for the specified use without further testing or modification. PathScale LLC 
assumes no responsibility for any errors that may appear in this document.

No part of this document may be copied nor reproduced by any means, nor translated nor transmitted to any magnetic 
medium without the express written consent of PathScale LLC. In accordance with the terms of their valid PathScale 
agreements, customers are permitted to make electronic and paper copies of this document for their own exclusive use.

Linux is a registered trademark of Linus Torvalds.

PathScale, the PathScale logo, and EKOPath are registered trademarks of PathScale, LLC.

Red Hat and all Red Hat-based trademarks are trademarks or registered trademarks of Red Hat, Inc.

SuSE is a registered trademark of SuSE Linux AG.

All other brand and product names are trademarks or registered trademarks of their respective owners.

© 2007, 2008 PathScale, LLC. All rights reserved.
© 2006, 2007 QLogic Corporation. All rights reserved worldwide.

© 2004, 2005, 2006 PathScale. All rights reserved.
First Published: April 2004

Printed in U.S.A.

PathScale LLC, 2071 Stierlin Ct., Suite 200, Mountain View, CA 94043



PathScale Compiler Suite User Guide
Version 3.2

Page iv  



 Page v

Table of Contsents

Section 1
Introduction

1.1
Conventions Used in This Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

1.2
Documentation Suite  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Section 2
Compiler Quick Reference

2.1
What You Installed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

2.2
How To Invoke the PathScale Compilers . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

2.2.1
Accessing the GCC 4.x Front-ends for C and C++  . . . . . . . . . . . . . . . 2-2

2.3
Compiling for Different Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

2.3.1
Target Options for This Release  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

2.3.2
Defaults Flag  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

2.3.3
Compiling for an Alternate Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

2.3.4
Compiling Option Tool: pathhow-compiled . . . . . . . . . . . . . . . . . . . 2-6

2.4
Input File Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6

2.5
Other Input Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7

2.6
Common Compiler Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8

2.7
Shared Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8

2.8
Large File Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9

2.9
Memory Model Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9

2.9.1



PathScale Compiler Suite User Guide
Version 3.2

Page vi  

Support for "Large" Memory Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
2.10

Debugging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
2.11

Profiling: Locate Your Program’s Hot Spots . . . . . . . . . . . . . . . . . . . . . . . 2-11
2.12

taskset: Assigning a Process to a Specific CPU. . . . . . . . . . . . . . . . . . 2-12

Section 3
The PathScale Fortran Compiler

3.1
Using the Fortran Compiler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

3.1.1
Fixed-form and Free-form Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

3.2
Modules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

3.2.1
Order of Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

3.2.2
Linking Object Files to the Rest of the Program  . . . . . . . . . . . . . . . . . 3-4

3.3
Linking When the Main Program Is In a Library . . . . . . . . . . . . . . . . . . . . 3-4

3.3.1
Module-related Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4

3.4
Fortran 2003 Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5

3.4.1
Syntax Improvements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5

3.4.2
Intrinsic Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6

3.4.3
Pointer INTENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7

3.4.4
VOLATILE Attribute and Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8

3.4.5
IMPORT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9

3.4.6
Intrinsic Module ISO_FORTRAN_ENV  . . . . . . . . . . . . . . . . . . . . . . . . 3-10

3.4.7
IEEE Floating Point  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11

3.4.7.1
Gradual Underflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12



PathScale Compiler Suite User

 Page vii

PathScale Compiler Suite User Guide
Version 3.2

3.4.8
Allocatable Components and Dummy Arguments . . . . . . . . . . . . . . . . 3-12

3.4.9
Fortran 2003 C Interoperability  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13

3.4.9.1
BIND attribute  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14

3.4.9.2
Intrinsic Module ISO_C_BINDING . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16

3.4.9.3
Pointer Compatibility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18

3.4.9.4
Passing Arguments by Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18

3.4.9.5
Enumerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19

3.4.9.6
Example: Using C "malloc" from Fortran . . . . . . . . . . . . . . . . . . . . . 3-20

3.4.9.7
Issues Unique to C++  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20

3.4.9.8
Pitfalls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21

3.5
Extensions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21

3.5.1
Promotion of REAL and INTEGER Types . . . . . . . . . . . . . . . . . . . . . . 3-21

3.5.2
Cray Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21

3.5.3
Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22

3.5.3.1
Prefetch Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22

3.5.3.2
Changing Optimization Using Directives  . . . . . . . . . . . . . . . . . . . . . 3-24

3.6
Compiler and Runtime Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-24

3.6.1
Preprocessing Source Files with -cpp  . . . . . . . . . . . . . . . . . . . . . . . . 3-24

3.6.2
Preprocessing Source Files with -ftpp  . . . . . . . . . . . . . . . . . . . . . . . 3-24

3.6.3
Support for Varying Length Character Strings . . . . . . . . . . . . . . . . . . . 3-25

3.6.4
Preprocessing Source Files with -fcoco  . . . . . . . . . . . . . . . . . . . . . . 3-25



PathScale Compiler Suite User Guide
Version 3.2

Page viii  

3.6.4.1
Pre-defined Macros  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26

3.6.5
Error Numbers: The explain Command . . . . . . . . . . . . . . . . . . . . . . 3-27

3.6.6
Fortran 90 Dope Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28

3.6.7
Bounds Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-29

3.6.8
Pseudo-random Numbers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-29

3.7
Mixed Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-29

3.7.1
Legacy Support for Calls between C and Fortran  . . . . . . . . . . . . . . . . 3-30

3.7.1.1
Example: Calls between C and Fortran . . . . . . . . . . . . . . . . . . . . . . 3-31

3.7.1.2
Example: Accessing Common Blocks from C  . . . . . . . . . . . . . . . . . 3-33

3.8
Runtime I/O Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-34

3.8.1
Performing Endian Conversions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-35

3.8.1.1
The assign Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-35

3.8.1.2
Using the Wildcard Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-35

3.8.1.3
Converting Data and Record Headers . . . . . . . . . . . . . . . . . . . . . . . 3-36

3.8.1.4
The ASSIGN( ) Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-36

3.8.1.5
I/O Compilation Flags  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-36

3.8.2
Reserved File Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-37

3.9
Source Code Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-37

3.9.1
Fortran KINDs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-37

3.10
Library Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-37

3.10.1
Name Mangling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-38



PathScale Compiler Suite User

 Page ix

PathScale Compiler Suite User Guide
Version 3.2

3.10.2
ABI Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-39

3.10.3
Linking with g77-compiled Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-39

3.10.3.1
AMD Core Math Library (ACML)  . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-40

3.10.4
List Directed I/O and Repeat Factors . . . . . . . . . . . . . . . . . . . . . . . . . . 3-40

3.10.4.1
Environment Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-41

3.10.4.2
assign Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-41

3.11
Porting Fortran Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-42

3.12
Debugging and Troubleshooting Fortran  . . . . . . . . . . . . . . . . . . . . . . . . . 3-42

3.12.1
Writing to Constants Can Cause Crashes . . . . . . . . . . . . . . . . . . . . . . 3-43

3.12.2
Runtime Errors Caused by Aliasing Among Fortran Dummy Arguments 3-43

3.12.3
Fortran malloc Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-44

3.12.4
Arguments Copied to Temporary Variables . . . . . . . . . . . . . . . . . . . . . 3-44

3.13
Fortran Compiler Stack Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-46

Section 4
The PathScale C/C++ Compiler

4.1
Using the C/C++ Compilers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

4.1.1
Accessing the GCC 4.x Front-ends for C and C++  . . . . . . . . . . . . . . . 4-2

4.2
Compiler and Runtime Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3

4.2.1
Preprocessing Source Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3

4.2.1.1
Pre-defined Macros  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

4.2.2
Pragmas  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

4.2.2.1



PathScale Compiler Suite User Guide
Version 3.2

Page x  

Pragma pack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
4.2.2.2

Changing Optimization Using Pragmas . . . . . . . . . . . . . . . . . . . . . . 4-6
4.2.2.3

Code Layout Optimization Using Pragmas  . . . . . . . . . . . . . . . . . . . 4-6
4.2.3

Mixing Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
4.2.4

Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
4.3

Debugging and Troubleshooting C/C++ . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
4.4

Unsupported GCC Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8

Section 5
Porting and Compatibility

5.1
Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

5.2
GNU Compatibility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

5.3
Compatibility with Other Fortran Compilers  . . . . . . . . . . . . . . . . . . . . . . . 5-1

5.4
Porting Fortran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

5.4.1
Intrinsics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

5.4.1.1
An Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4

5.4.2
Name-mangling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4

5.4.3
Static Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4

5.5
Porting to x86_64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4

5.6
Migrating from Other Compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5

5.7
Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5

5.7.1
gcc Compatibility Wrapper Script  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5



PathScale Compiler Suite User

 Page xi

PathScale Compiler Suite User Guide
Version 3.2

Section 6
Tuning Quick Reference

6.1
Basic Optimization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

6.2
IPA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

6.3
Feedback Directed Optimization (FDO) . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2

6.4
Aggressive Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2

6.5
Compiler Flag Recommendations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3

6.6
Performance Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4

6.7
Optimize Your Hardware  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4

Section 7
Tuning Options

7.1
Basic Optimizations: The -O flag  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1

7.2
Syntax for Complex Optimizations (-CG, -IPA, -LNO -OPT, -WOPT) . . . 7-2

7.3
Inter-Procedural Analysis (IPA)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3

7.3.1
The IPA Compilation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3

7.3.2
Inter-procedural Analysis and Optimization . . . . . . . . . . . . . . . . . . . . . 7-4

7.3.2.1
Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4

7.3.3
Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5

7.3.4
Controlling IPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7

7.3.4.1
Inlining  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7

7.3.5
Cloning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9

7.3.6
Other IPA Tuning Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9

7.3.6.1



PathScale Compiler Suite User Guide
Version 3.2

Page xii  

Disabling Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10
7.3.7

Case Study on SPEC CPU2000  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10
7.3.8

Invoking IPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-12
7.3.9

Size and Correctness Limitations to IPA  . . . . . . . . . . . . . . . . . . . . . . . 7-14
7.4

Loop Nest Optimization (LNO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-14
7.4.1

Loop Fusion and Fission  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-14
7.4.2

Cache Size Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-15
7.4.3

Cache Blocking, Loop Unrolling, Interchange Transformations . . . . . . 7-16
7.4.4

Prefetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-16
7.4.5

Vectorization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-17
7.5

Code Generation (-CG:) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-17
7.6

Feedback Directed Optimization (FDO) . . . . . . . . . . . . . . . . . . . . . . . . . . 7-18
7.7

Aggressive Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-19
7.7.1

Alias Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-19
7.7.2

Numerically Unsafe Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-20
7.7.3

Fast-math Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-21
7.7.4

IEEE 754 Compliance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-21
7.7.4.1

Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-21
7.7.4.2

Roundoff  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-22
7.7.5

Other Unsafe Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-23
7.7.6

Assumptions About Numerical Accuracy . . . . . . . . . . . . . . . . . . . . . . . 7-23
7.7.6.1



PathScale Compiler Suite User

 Page xiii

PathScale Compiler Suite User Guide
Version 3.2

Flush-to-Zero Behavior  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-24
7.8

Hardware Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-24
7.8.1

Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-24
7.8.2

BIOS Setup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-25
7.8.3

Multiprocessor Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-25
7.8.4

Kernel and System Effects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-25
7.8.5

Tools and APIs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-26
7.8.6

Testing Memory Latency and Bandwidth . . . . . . . . . . . . . . . . . . . . . . . 7-26
7.9

The pathopt2 Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-27
7.9.1

A Simple Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-28
7.9.2

pathopt2 Usage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-29
7.9.3

Option Configuration File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-32
7.9.4

Testing Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-35
7.9.5

Using an External Configuration File to Modify pathopt2.xml  . . . . . . . 7-35
7.9.6

PSC_GENFLAGS Environment Variable  . . . . . . . . . . . . . . . . . . . . . . . . 7-36
7.9.7

Using Build and Test Scripts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-36
7.9.8

The NAS Parallel Benchmark Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-37
7.9.8.1

Set Up the Workarea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-37
7.9.8.2

Example 1-Run with Makefile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-37
7.9.8.3

Example 2-Use Build/Run Scripts and a Timing File . . . . . . . . . . . . 7-38
7.9.8.4

Example 3-Using a Single Script with the rate-file . . . . . . . . . . . . . . 7-41
7.10



PathScale Compiler Suite User Guide
Version 3.2

Page xiv  

How Did the Compiler Optimize My Code?  . . . . . . . . . . . . . . . . . . . . . . . 7-43
7.10.1

Using the -S flag  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-43
7.10.2

Using -CLIST or -FLIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-44
7.10.3

Verbose Flags  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-44

Section 8
Using OpenMP and Autoparallelization

8.1
OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1

8.2
Autoparallelization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2

8.3
Getting Started With OpenMP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3

8.4
OpenMP Compiler Directives (Fortran)  . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3

8.5
OpenMP Compiler Directives (C/C++) . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6

8.6
OpenMP Runtime Library Calls (Fortran) . . . . . . . . . . . . . . . . . . . . . . . . . 8-7

8.7
OpenMP Runtime Library Calls (C/C++)  . . . . . . . . . . . . . . . . . . . . . . . . . 8-9

8.8
Runtime Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10

8.9
Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11

8.9.1
Standard OpenMP Environment Variables  . . . . . . . . . . . . . . . . . . . . . 8-12

8.9.2
PathScale OpenMP Environment Variables  . . . . . . . . . . . . . . . . . . . . 8-12

8.10
OpenMP Stack Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-21

8.10.1
Stack Size for Fortran  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-21

8.10.2
Stack Size for C/C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-22

8.11
Stack Size Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-22

8.12
Example OpenMP Code in Fortran. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-24



PathScale Compiler Suite User

 Page xv

PathScale Compiler Suite User Guide
Version 3.2

8.13
Example OpenMP Code in C/C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-25

8.14
Tuning for OpenMP Application Performance  . . . . . . . . . . . . . . . . . . . . . 8-27

8.14.1
Reduced Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-27

8.14.2
Enable OpenMP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-28

8.14.3
Optimizations for OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-28

8.14.3.1
Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-28

8.14.3.2
Memory System Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-28

8.14.3.3
Load Balancing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-29

8.14.3.4
Tuning the Application Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-30

8.14.3.5
Using Feedback Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-30

8.15
Other Resources for OpenMP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-31

Section 9
Examples

9.1
Compiler Flag Tuning and Profiling With pathprof  . . . . . . . . . . . . . . . . 9-1

9.2
Using the -profile Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4

Section 10
Debugging and Troubleshooting

10.1
Subscription Manager Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1

10.2
Debugging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1

10.3
Dealing with Uninitialized Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1

10.4
Trapping IEEE Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2

10.5
Large Object Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3



PathScale Compiler Suite User Guide
Version 3.2

Page xvi  

10.6
More Inputs Than Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4

10.7
Linking With libg2c  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4

10.8
Linking Large Object Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4

10.9
Using -ipa and -Ofast  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4

10.10
Tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-5

10.11
Troubleshooting OpenMP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-5

10.11.1
Compiling and Linking with -mp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-5

Appendix A
Environment Variables

A.1
Environment Variables for Use with C . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1

A.2
Environment variables for Use with C++ . . . . . . . . . . . . . . . . . . . . . . . . . A-1

A.3
Environment Variables for Use with Fortran  . . . . . . . . . . . . . . . . . . . . . . A-1

A.4
Language-independent Environment Variables . . . . . . . . . . . . . . . . . . . . A-2

A.5
Environment Variables for OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2

A.5.1
Standard OpenMP Runtime Environment Variables  . . . . . . . . . . . . . . A-3

A.5.2
PathScale OpenMP Environment Variables  . . . . . . . . . . . . . . . . . . . . A-3

Appendix B
Implementation Dependent Behavior for OpenMP Fortran

Appendix C
Supported Fortran Intrinsics

C.1
How to Use the Intrinsics Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1

C.2
Intrinsic Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1

C.3
Table of Supported Intrinsics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-2



PathScale Compiler Suite User

 Page xvii

PathScale Compiler Suite User Guide
Version 3.2

C.4
Fortran Intrinsic Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-41

Appendix D
Fortran 90 Dope Vector

Appendix E
Summary of Compiler Options

Appendix F
eko man Page

Appendix G
Glossary

Figures
Figure Page
7-1 IPA Compilation Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-6

Tables
Table Page
4-1 Pre-defined Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-4
7-1 Effects of IPA on SPEC CPU 2000 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-10
7-2 Effects of IPA tuning on some SPEC CPU2000 benchmarks . . . . . . . . . . . . . . . . . .  7-12
7-3 Numerical Accuracy with Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-23
7-4 pathopt2 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-30
7-5 Tags for Option Configuration Fle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-34
8-1 Fortran Compiler Directives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-4
8-2 C/C++ Compiler Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-6
8-3 Fortran OpenMP Runtime Library Routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-8
8-4 C/C++ OpenMP Runtime Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-9
8-5 Standard OpenMP Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-12
C-1 Fortran Intrinsics Supported in 3.2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C-3
E-1 Summary of Compiler Options by Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  E-



PathScale Compiler Suite User Guide
Version 3.2

Page xviii  



 1-1

Section 1      
Introduction

This User Guide covers how to use the PathScale™ Compiler Suite compilers; how 
to configure them, how to use them to optimize your code, and how to get the best 
performance from them. This guide also covers the language extensions and 
differences from the other commonly available language compilers.

The PathScale Compiler Suite will be referred to as the PathScale Compiler Suite 
or the PathScale compiler in the rest of this document.

The PathScale Compiler Suite generates both 32-bit and 64-bit code, with 64-bit 
code as the default. See the eko man page for details.

The information in this guide is organized into these sections:

• Section 2 is a quick reference to using the PathScale compilers

• Section 3 covers the PathScale Fortran compiler

• Section 4 covers the PathScale C/C++ compilers

• Section 5 provides suggestions for porting and compatibility

• Section 6 is a Tuning Quick Reference, with tips for getting faster code

• Section 7 discusses tuning options in more detail

• Section 8 covers using autoparallelization and OpenMP in Fortran and C/C++

• Section 9 provides an example of optimizing code

• Section 10 covers debugging and troubleshooting code

• Appendix A lists environmental variables used with the compilers

• Appendix B discusses implementation dependent behavior for OpenMP Fortran

• Appendix C is a list of the supported Fortran intrinsics

• Appendix D provides a simplified data structure from a Fortran 90 dope vector

• Appendix E is a summary of the compiler options, grouped by function

• Appendix F is a reference copy of the eko man page

• Appendix G contains a glossary of terms associated with the compilers 



1 – Introduction
Conventions Used in This Document

1-2  

1.1
Conventions Used in This Document

These conventions are used throughout this document.

1.2
Documentation Suite

The PathScale Compiler Suite product documentation set includes:

• The PathScale Compiler Suite and Subscription Manager Install Guide 
• The PathScale Compiler Suite User Guide
• The PathScale Compiler Suite Support Guide
• The PathScale Debugger User Guide

There are also online manual pages (“man pages”) available describing the flags 
and options for the PathScale Compiler Suite. These man pages are a subset of 
the pages that are shipped with the Compiler Suite: eko, pathf95, pathf90, 
pathcc, pathCC. The pathscale-intro man page gives a complete list of all 
the various man pages that are included with the Compiler Suite.

Please see the PathScale website for further information about current releases 
and developer support.

http://www.pathscale.com/support.html 

In addition, you may want to refer to language reference books for more information 
on compilers and language usage. Programming and language reference books 
are often a matter of personal taste. Everyone has a personal preferences in 
reference books, and this list reflects the variety of opinions found within the 
PathScale engineering team.

Convention Meaning
command Fixed-space font is used for literal items such as commands, files, 

routines, and pathnames.
variable Italic typeface is used for variable names or concepts being 

defined
user input Bold, fixed-space font is used for literal items the user types in. 

Output is shown in non-bold, fixed-space font.
$ Indicates a command line prompt
[ ] Brackets enclose optional portions of a command or directive line.
... Ellipses indicate that a preceding element can be repeated.

NOTE Indicates important information



1 – Introduction
Documentation Suite

 1-3

Fortran Language:
• Fortran 95 Handbook: Complete ISO /ANSI Reference by Jeanne C. Adams, et 

al., MIT Press, 1997. ISBN 0-262-51096-0

• Fortran 95 Explained by Metcalf, M. and Reid, J., Oxford University Press, 1996. 
ISBN 0-19-851888-8

C Language:
• C Programming Language by Brian W. Kernighan, Dennis Ritchie, Dennis M. 

Ritchie, Prentice Hall, 1988, 2nd edition, ISBN 0-13-110362-8

• C: A Reference Manual by Samuel P. Harbison, Guy L. Steele, Prentice Hall, 5th 
Edition, 2002, ISBN 0-130-89592-X

• C: How to Program by H.M. Deitel and P.J. Deitel, Prentice Hall, Fourth Edition, 
2004 ISBN 0-131-42644-3

C++ Language:
• The C++ Standard Library A Tutorial and Reference by Josutis, Nicolai M., 1999. 

Addison- Wesley, ISBN 0-201-37926-0

• Effective C++: 55 Specific Ways to Improve Your Programs and Design by Scott 
Meyers, Addison-Wesley Professional, 2005, 3rd edition, ISBN 0-321-33487-6

• More Effective C++: 35 New Ways to Improve Your Programs and Designs by 
Scott Meyers, Addison-Wesley Professional, 1995, ISBN 0-201-63371-X

• Thinking in C++, Volume 1: Introduction to Standard C++ by Bruce Eckel, 
Prentice Hall, 2nd Edition, 2000, ISBN: 0-139-79809-9 (NOTE: There is a later 
version–2002–available online as a free download.)

• Thinking in C++, Vol. 2: Practical Programming by Bruce Eckel, Prentice Hall, 
Second Edition, 2003, ISBN 0-130-35313-2

• C++ Inside & Out by Bruce Eckel, Osborne/McGraw-Hill, 1993, ISBN: 
0-07-881809-5

• C++: How to Program by H.M. Deitel and P.J. Deitel, Prentice Hall, 2005, 5th 
edition, ISBN 0-131-85757-6

Other Topics:
• Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template 

Library by Scott Meyers, Addison-Wesley Professional, 2001, ISBN 
0-201-74962-9



1 – Introduction
Documentation Suite

1-4  

Notes



 2-1

Section 2      
Compiler Quick Reference

This section describes how to get started using the PathScale Compiler Suite. The 
compilers follow the standard conventions of Unix and Linux compilers, produce 
code that follows the Linux x86_64 ABI, and run on both the AMD64 and Intel EM64T 
families of chips. 

AMD64 is the AMD 64-bit extension to the Intel IA32 architecture, often referred to 
as “x86”. EM64T is the Intel® Extended Memory 64 Technology chip family.

This means that object files produced by the PathScale compilers can link with 
object files produced by other Linux x86_64-compliant compilers such as Red Hat 
and SUSE GNU gcc, g++, and g771.

2.1
What You Installed

For details on installing the PathScale compilers, see the PathScale Compiler Suite 
Install Guide.

The PathScale Compiler Suite includes optimizing compilers and runtime support 
for C, C++, and Fortran. Depending on the type of subscription you purchased, you 
enabled some or all of the following:

• PathScale C compiler for x86_64 and EM64T architectures

• PathScale C++ compiler for x86_64 and EM64T architectures

• PathScale Fortran compiler for x86_64 and EM64T architectures

• Documentation

• Libraries

• Subscription Manager client. You must have a valid subscription and associated 
subscription file in order to run the compiler.

• Subscription Manager server. The PathScale Subscription Manager server is 
only required for floating subscriptions.

• PathScale debugger (pathdb)

• GNU binutils

2.2
How To Invoke the PathScale Compilers

The PathScale Compiler Suite has three different front-ends to handle programs 
written in C, C++, and Fortran, and it has common optimization and code generation 



2 – Compiler Quick Reference
How To Invoke the PathScale Compilers

2-2  

components that interface with all the language front-ends. The language your 
program uses determines which command (driver) name to use:

You can create a common example program called world.c:

#include <stdio.h>
main() {

printf ("Hello World!\n"); 
}

Then you can compile it from your shell prompt very simply:

$ pathcc world.c

The default output file for the pathcc-generated executable is named a.out. You 
can execute it and see the output:

$ ./a.out 
Hello World!

As with most compilers, you can use the -o <filename> option to give your 
program executable file the desired name.

If invoked with the flag -v (or -version), the compilers will emit some text that 
identifies the version. For example:

$ pathcc -v
PathScale(TM) Compiler Suite: Version 3.2
Built on: 2007-10-21 07:03:08 -0800
Thread model: posix
GNU gcc version 4.0.2 (PathScale 3.2 driver)

There are online manual pages (“man pages”) with descriptions of the large number 
of command line options that are available. Type man pathscale_intro at the 
command line to see the pathscale-intro man page and its overview of the 
various man pages included with the Compiler Suite.

2.2.1
Accessing the GCC 4.x Front-ends for C and C++

This release supports GCC 3.x and GCC 4.x. The compiler defaults to gnu3 or gnu4 
depending on whether the system-installed gcc/g++ is a 3.x or 4.x compiler. It is 
possible to override this choice using -gnu3 or -gnu4 to get the compiler to use 
the alternate front-end instead of the default one. A sample command for C is:

Language Command Name Compiler Name
C pathcc PathScale C compiler
C++ pathCC PathScale C++ compiler
Fortran 77
Fortran 90
Fortran 95

pathf95 PathScale Fortran compiler



2 – Compiler Quick Reference
Compiling for Different Platforms

 2-3

$ pathcc -gnu4 world.c 

This default option can be changed in your compiler.defaults file by adding 
this line:

-gnu4 

See section 2.3 for an example compiler.defaults file.

The option has no effect on pathf90 or pathf95.

There are currently some limitations when using this option. Please see the Release 
Notes for more information.

2.3
Compiling for Different Platforms

The PathScale Compiler Suite currently compiles and optimizes your code for the 
Opteron processor independent of where the compilation is happening. (This may 
change in the future.)  To select the 32-bit/64-bit ABI, the compiler queries the 
machine where the compilation is happening and will compile to the best ABI 
supported for that machine. These defaults (for the target processor and the ABI) 
can be overridden by command-line flags or the compiler.defaults file.

You can set or change the default platform for compilation using the 
compiler.defaults file, found in /opt/pathscale/etc. If you installed in a 
non-default location the path will be /<install_directory>/pathscale/etc. 
You can use the defaults file to provide a set of additional include or library directories 
to search, or to specify some default compiler optimization flags.

The compiler refers to the compiler.defaults file for options to be used during 
compilation.The syntax in c?mpiler.defaults file is the same as options 
specified on the compiler command line.

Options are added to the command line in the order in which they appear in the 
defaults file. Every option is included unconditionally. For exclusive options, the 
command line takes precedence over the defaults file. For example, if the defaults 
file contains the -O3 option, but the compiler is invoked with -O2 on the command 
line, it will behave as if invoked with -O2 alone, because -O2 and -O3 are exclusive 
options.

For additive options, the command line is used before the defaults file. For example, 
if the defaults.compiler contains -I/usr/foo and the command line contains 
-I/usr/bar, the compiler will behave as if invoked with -I/usr/bar 
-I/usr/foo.

The format of the compiler.defaults file is simple. Each line can contain 
compiler options, separated by white space, followed by an optional comment. A 
comment begins with the # character, and ends at the end of a line. Empty lines 
and lines containing only comments are skipped.



2 – Compiler Quick Reference
Compiling for Different Platforms

2-4  

Here is an example defaults file:

# PathScale compiler defaults file.
#
# Set default CPU type to optimize for, since all of our 
# systems use the same CPUs.
-march=opteron
# We have a recent Opteron CPU stepping, so it’s safe to 
# always use SSE3.
-msse3
# Ensure that the FFTW library is available to users, so 
# they don’t need to remember where it’s installed.
-L/share/fftw3/lib
-I / share/fftw3 /include
# Use the GCC 4.x front-end by default
-gnu4 

The environment variable PSC_COMPILER_DEFAULTS_PATH, if set, specifies a 
PATH or a colon-separated list of PATHs, designating where the compiler is to look 
for the compiler.defaults file. If the environment variable is set, the PATH 
/opt/pathscale/etc will not be used. If the file cannot be found, then no defaults 
file will be used, even if one is present in /opt/pathscale/etc.

For more details, see the compiler.defaults man page.

2.3.1
Target Options for This Release

These options, related to ABI, ISA, and processor target, are supported in 
this release:

• -m32
• -m64
• -march= (same as -mcpu= and -mtune=)
• -mcpu= (same as -march= and -mtune=)
• -mtune= (same as -march= and -mcpu=)
• -msse2
• -msse3
• -msse4a
• -m3dnow

There are also -mno- versions for these options: -msse2, -msse3, -msse4a, 
-m3dnow. For example, -mno-msse3. As indicated in this list using the -march= 
flag, the architectures supported in this release are:

• -march=(opteron|athlon64|athlon64fx)
• -march=barcelona
• -march=pentium4
• -march=xeon
• -march=em64t



2 – Compiler Quick Reference
Compiling for Different Platforms

 2-5

• -march=core

We have also added two special options, -march=any86 and -march=auto. If 
you want to compile the program so that it can be run on any x86 machine, you can 
specify anyx86 as the value of the -march, mcpu, or -mtune options.

• -march=anyx86

If the value for the -march, -mcpu, or -mtune options is auto, the compiler will 
automatically choose the target processor based on the machine on which the 
compilation takes place.

• -march=auto

The compiler defaults to -march=auto.

Here is a sample of how options are specified in the compiler.defaults file:

# Compile for Athlon64 and turn on 3DNow extensions. One 
# option per line.
-march=athlon64 # anything after ’#’ is ignored
-m3dnow

These options can also be used on the command line. See the eko man page for 
details.

2.3.2
Defaults Flag

This release includes a flag, -show-defaults, which directs the compiler to print 
out the defaults used related to ABI, ISA, and processor targets. When this flag is 
specified, the compiler will just print the defaults and quit. No compilation is 
performed.

$ pathcc -show-defaults

2.3.3
Compiling for an Alternate Platform

You will need to compile with the -march=anyx86 flag if you want to run your 
compiled executables on both AMD and Intel platforms. See the eko man page for 
more information about the -march= flag.

To run code generated with the PathScale Compiler Suite on a different host 
machine, you will need to install the runtime libraries on your host machine, or you 
need to static link your programs when you compile. See section 2.7 for information 
on static linking and the PathScale Compiler Suite Install Guide for information on 
installing runtime libraries.



2 – Compiler Quick Reference
Input File Types

2-6  

2.3.4
Compiling Option Tool: pathhow-compiled

The PathScale Compiler Suite includes a tool that displays the compilation options 
and compiler version currently being used. The tool is called pathhow-compiled 
and can be found after installation in /opt/pathscale/bin (or 
/<install_directory>/bin if you installed to a non-default location).

When a .o file, archive, or an executable is passed to pathhow-compiled, it will 
display the compilation options for each .o file constituting the argument file. This 
includes any linked archives.

For example, compile the file myfile.c with pathcc and then use the 
pathhow-compiled tool:

$ pathcc myfile.c -o myfile
$ pathhow-compiled myfile.o

The output would look something like this:

PathScale Compiler Version 3.2 compiled myfile.c with options:
-O2 -march=opteron -msse2 -mno-sse3 -mno-3dnow -m64

2.4
Input File Types

The name for a source file usually has the form filename.ext, where ext is a 
one to three character extension used on a source code file that can have various 
meanings:

For Fortran files with the extensions .f, .f90, or .f95 you can use -ftpp (to 
invoke the Fortran preprocessor) or -cpp (to invoke the C preprocessor) on the 

Extension Implication to the driver
.c C source file that will be preprocessed
.C

.cc

.cpp

.cxx

C++ source file that will be preprocessed

.f

.f90

.f95

Fortran source file
.f is fixed format, no preprocessor
.f90 is freeform format, no preprocessor
.f95 is freeform format, no preprocessor

.F

.F90

.F95

Fortran source file
.F is fixed format, invokes preprocessor
.F90 is freeform format, invokes preprocessor
.F95 is freeform format, invokes preprocessor



2 – Compiler Quick Reference
Other Input Files

 2-7

pathf95 command line. The default preprocessor for files with .F, .F90, or .F95 
extensions, is -cpp. See section 3.6.1 for more information on preprocessing.

The compiler drivers can use the extension to determine which language front-end 
to invoke. For example, some mixed language programs can be compiled with a 
single command:

# pathf95 stream_d.f second_wall.c -o stream

The path f 95 driver will use the .c extension to know that it should automatically 
invoke the C front-end on the second_wall.c module and link the generated 
object files into the stream executable.

NOTE: GNU make does not contain a rule for generating object files from Fortran 
.f90 files. You can add the following rules to your project Makefiles to 
achieve this:

$.o: %.f90
$(FC) $(FFLAGS) -c $<

$.o: %.F90
$(FC) $(FFLAGS) -c $<

You may need to modify this for your project, but in general the rules should follow 
this form.

For more information on compatibility and porting existing code, see section 5. 
Information on GCC compatibility and a wrapper script that you can use for your 
build packages can be found in section 5.7.1.

2.5
Other Input Files

Other possible input files, common to both C/C++ and Fortran, are 
assembly-language files, object files, and libraries. These can be used as inputs on 
the command line.

Extension Implication to the driver
.i preprocessed C source file
.ii preprocessed C++ source file
.s assembly language file
.o object file
.a a static library of object files
.so a library of shared (dynamic) object files



2 – Compiler Quick Reference
Common Compiler Options

2-8  

2.6
Common Compiler Options

The PathScale Compiler Suite has command line options that are similar to many 
other Linux or Unix compilers:

Many more options are available and described in the man pages 
(pathscale_intro, pathcc, pathf95, pathCC, eko) and section 7 in this 
document.

2.7
Shared Libraries

The PathScale Compiler Suite includes shared versions of the runtime libraries that 
the compilers use. The shared libraries are packaged in the 
pathscale-compilers-libs package. The compiler will use these shared 
libraries by default when linking executables and shared objects. Therefore, if you 
link a program with these shared libraries, you must install them on systems where 
that program will run.

You should continue to use the static versions of the runtime libraries if you wish to 
obtain maximum portability or peak performance. The latter is the case because 
the compiler cannot optimize shared libraries as aggressively as static libraries. 
Shared libraries are compiled using position-independent code, which limits some 
opportunities for optimization, while our static libraries are not compiled this way.

Option What it does
-c Generates an intermediate object file for each source file, but doesn’t 

link
-g Produces debugging information to allow full symbolic debugging

-I<dir> Adds <path> to the directories searched by preprocessor for include 
file resolution.

-l<library> Searches the library specified during the linking phase for unresolved 
symbols

-L<dir> Adds <path> to the directories searched during the linking phase 
for libraries

-lm Links using the libm math library. This is typically required in C 
programs that use functions such as exp(), log(), sin(), cos().

-o <filename> Generates the named executable (binary) file
-O3 Generates a highly optimized executable, generally numerically safe

-O or -O2 Generates an optimized executable that is numerically safe. (This is 
also the default if no -O flag is used.)

-pg Generates profile information suitable for the analysis program 
pathprof



2 – Compiler Quick Reference
Memory Model Support

 2-9

To link with static libraries instead of shared libraries, use the -static option. For 
example the following code is linked using the shared libraries.

$ pathcc -o hello hello.c 
$ ldd hello

libpscrt.so.1 => /opt/pathscale/lib/2.3.99/libpscrt.so.1
(0x0000002a9566d000)

libmpath.so.1 => /opt/pathscale/lib/2.3.99/libmpath.so.1
(0x0000002a9576e000)

libc.so.6 => /lib64/libc.so.6
(0x0000002a9588b000)

libm.so.6 => /lib64/libm.so.6
(
0x0000002a95acd000)

/lib64/ld-linux-x86-64.so.2 => /lib64/ld-linux-x86-64.so.2 
(0x0000002a95556000)
$

If you use the -static option, notice that the shared libraries are no longer 
required.

$ pathcc -o hello hello.c -static 
$ ldd hello

not a dynamic executable
$

2.8
Large File Support

The Fortran runtime libraries are compiled with large file support. PathScale does 
not provide any runtime libraries for C or C++ that do I/O, so large file support is 
provided by the libraries in the Linux distribution being used.

2.9
Memory Model Support

The PathScale compilers currently support two memory models: small and medium.

The default memory model on x86_64 systems, and the default for the compilers, 
is small (equivalent to GCC’s -mcmodel=small). This means that offsets of code 
and data within binaries are represented as signed 32-bit quantities. In this model, 
all code in an executable must total less than 2GB, and all the data must also be 
less than 2GB. Note that by data, we mean the static and unlimited static data (BSS) 
that are compiled into an executable, not data allocated dynamically on the stack 
or from the heap.

Pointers are 64-bits however, so dynamically allocated memory may exceed 2GB. 
Programs can be statically or dynamically linked.

Additionally the compilers support the medium memory model with the use of the 
option -mcmodel=medium on all of the compilation and link commands. This means 



2 – Compiler Quick Reference
Memory Model Support

2-10  

that offsets of code within binaries are represented as signed 32-bit quantities. The 
offsets for data within the binaries are represented as signed 64-bit quantities. In 
this model, all code in an executable must come to less than 2GB in total size. The 
data, both static and BSS, are allowed to exceed 2GB in size.

As with the small memory model, pointers are also signed 64-bit quantities and may 
exceed 2 GB in size.

NOTE: The PathScale compilers do not support the use of the -fPIC option flag 
in combination with the -mcmodel=medium option. The code model 
medium is not supported in PIC mode.

The PathScale compilers support -mcmodel=medium and -fPIC in the same way 
that GCC does. When building shared libraries, only -fPIC should be used. The 
option-mcmodel=medium but not -fPIC when compiling and linking the main 
program.

The reasoning behind this is that because the shared library is self-contained, it 
does not know about the fixed addresses of the data in the program that it is linked 
with. The library will only access the program data through pointers, and such pointer 
data accesses are not affected by the value of the mcmodel option. The mcmodel 
value only affects the addressing of data with fixed addresses. When these 
addresses are larger than 2GB, the compiler has to generate longer sequences of 
instructions. Thus, it does not want to do that unless the -mcmodel=medium flag 
is given.

See 10.4 for more information on using large objects, and your GCC 3.3.1 
documentation for more information on this topic.

2.9.1
Support for "Large" Memory Model

At this time the PathScale compilers do not support the large memory model. The 
significance is that the code offsets must fit within the signed 32-bit address space. 
To determine if you are close to this limit, use the Linux size command.

$ size bench
text data bss dec hex filename

910219 1448 3192 914859 df5ab bench

If the total value of the text segment is close to 2GB, then the size of the memory 
model may be an issue for you. We believe that codes that are this large are 
extremely rare and would like to know if you are using such an application.

The size of the bss and data segments are addressed by using the medium 
memory model.



2 – Compiler Quick Reference
Profiling: Locate Your Program’s Hot Spots

 2-11

2.10
Debugging

The flag -g tells the PathScale compilers to produce data in the DWARF 2.0 format 
used by modern debuggers such as GDB and PathScale’s debugger, pathdb. This 
format is incorporated directly into the object files.

The -g option automatically sets the optimization level to -O0 unless an explicit 
optimization level is provided on the command line. Debugging of higher levels of 
optimization is possible, but the code transformation performed by the optimizations 
may make it more difficult.

See the individual sections on the PathScale Fortran and C /C++ compilers for more 
language-specific debugging information, and section 10 for debugging and 
troubleshooting tips. See the PathScale Debugger User Guide for more information 
on pathdb.

2.11
Profiling: Locate Your Program’s Hot Spots

Often a program has "hot spots," a few routines or loops that are responsible for 
most of the execution time. Profilers are a common tool for finding these hot spots 
in a program.To figure out where and how to tune your code, use the time tool to 
get a rough estimate and determine if the issue is system load, application load, or 
a system resource that is slowing down your program. Then use the pathprof tool 
to find the programs’ hot spots. Once you find the hot spots in your program, you 
can improve your code for better performance, or use the information to help choose 
which compiler flags are likely to lead to better performance.

The time tool provides the elapsed (or wall) time, user time, and system time of 
your program. Its usage is typically: time ./<program args>. Elapsed time is 
usually the measurement of interest, especially for parallel programs, but if your 
system is busy with other loads, then user time might be a more accurate estimate 
of performance than elapsed time. If there is substantial system time being used 
and you don’t expect to be using substantial non-compute resources of the system, 
you should use a kernel profiling tool to see what is causing it.

The pathprof and pathcov programs included with the compilers are symbolic 
links to your system’s gcov and gprof executables. There are more details and 
an example using pathprof later in section 9, but the following steps are all that 
are needed to get started in profiling:

1. Add the -pg flag to both the compile and link steps with the PathScale 
compilers. This generates an instrumented binary.

2. Run the program executable with the input data of interest. This creates a 
gmon.out file with the profile data.

3. Run pathprof <program-name> to generate the profiles. The standard 
output of pathprof includes two tables:



2 – Compiler Quick Reference
taskset: Assigning a Process to a Specific CPU

2-12  

a. A flat profile with the time consumed in each routine and the number of times 
it was called, and

b. A call-graph profile that shows, for each routine, which routines it called and 
which other routines called it. There is also an estimate of the inclusive time 
spent in a routine and all of the routines called by that routine.

NOTE: The pathprof tool will generate a segmentation fault when used with 
OpenMP applications that are run with more than one thread. There is 
no current workaround for pathprof (or gprof).

See section 9 for a more detailed example of profiling.

2.12
taskset: Assigning a Process to a Specific CPU

To improve the performance of your application on multiprocessor machines, it is 
useful to assign the process to a specific CPU. The tool used to do this is taskset, 
which can be used to retrieve or set a process’ affinity. This command is part of the 
schedutils package/RPM. 

NOTE: Some of the Linux distributions supported by the PathScale compilers do 
not contain the schedutils package/RPM.

The CPU affinity is represented as a bitmask, typically given in hexadecimal. 
Assigning a process to a specific CPU prevents the Linux scheduler from moving 
or splitting the process.

Example:

$ taskset 0x00000001

This would assign the process to processor #0.

If an invalid mask is given, an error is returned, so when taskset returns, it is 
guaranteed that the program has been scheduled on a valid and legal CPU. See 
the taskset(1) man page for more information.



 3-1

Section 3      
The PathScale Fortran Compiler

The PathScale Fortran compiler supports Fortran 77, Fortran 90, Fortran 95 and 
an evolving subset of Fortran 2003. The PathScale Fortran compiler:

• Partial comformance with ISO/IEC 1539-1:2004 Programming Languages - 
Fortran - Part 1: Base Language (Fortran 2003)

• Conforms to the more recent ISO/IEC 1539-1:1997 Programming 
languages–Fortran (Fortran 95)

• Conforms to ISO/IEC TR 15580: Fortran: Floating point exception handling. See 
also section 14 of ISO/IEC 1539-1:2004, the Fortran 2003 standard, for a 
complete description.

• Conforms to ISO/IEC TR 15581: Fortran: Enhanced data type facilities

• Conforms to ISO/IEC 1539-2: Varying length character strings (section 3.6.3)

• Conforms to ISO/IEC 1539-3: Conditional compilation (section 3.6.4)

• Conforms to ISO/IEC 1539:1991 Programming languages–Fortran (Fortran 90)

• Supports legacy FORTRAN 77 (ANSI X3.9-1978) programs

• Provides support for common extensions to the above language definitions

• Links binaries generated with the GNU Fortran 77 compiler

• Generates code that complies with the x86_64 ABI and the 32-bit x86 ABI

3.1
Using the Fortran Compiler

To invoke the PathScale Fortran compiler, use this command:

$ pathf95

By default, the compiler will treat input files with an .F suffix or .f suffix as 
fixed-form files. Files with an .F90, .f 90, .F95, or .f95 suffix are treated as 
free-form files. This behavior can be overridden using the -fixedform and 
-freeform switches. See section 3.1.1 for more information on fixed-form and 
free-form files.

By default, all files ending in .F, . F90, or .F95 are first preprocessed using the 
C preprocessor (-cpp). If you specify the -ftpp option, all files are preprocessed 
using the Fortran preprocessor (-ftpp), regardless of suffix. See section 3.6.1 for 
more information on preprocessing.



3 – The PathScale Fortran Compiler
Using the Fortran Compiler

3-2  

Invoking the compiler without any options instructs the compiler to use optimization 
level -O2. These three commands are equivalent:

$ pathf95 test.f90
$ pathf95 -O test.f90
$ pathf95 -O2 test.f90

Using optimization level -O0 instructs the compiler to do no optimization. 
Optimization level -O1 performs only local optimization. Level -O2, the default, 
performs extensive optimizations that will always shorten execution time, but may 
cause compile time to be lengthened. Level -O3 performs aggressive optimization 
that may or may not improve execution time. See section 7.1 for more information 
about the -O flag.

Use the -ipa switch to enable inter-procedural analysis:

$ pathf95 -c -ipa matrix.f90
$ pathf95 -c -ipa prog.f90
$ pathf95 -ipa matrix.o prog.o -o prog

Note that the link line also specifies the -ipa option. This is required to perform the 
IPA link properly.

See section 7.3 for more information on IPA.

NOTE: The compiler typically allocates data for Fortran programs on the stack 
for best performance. Some major Linux distributions impose a relatively 
low limit on the amount of stack space a program can use. When you 
attempt to run a Fortran program that uses a large amount of data on 
such a system, it will print an informative error message and abort. You 
can use your shell’s "ulimit" (bash) or "limit" (tcsh) command to 
increase the stack size limit to a point where the program no longer 
crashes, or remove the limit entirely. See section 3.13 for more 
information on Fortran compiler stack size.

3.1.1
Fixed-form and Free-form Files

Fixed-form files follow the obsolete Fortran standard of assigning special meaning 
to the first 6 character positions of each line in a source file.

If a C, ! or * character is present in the first character position on a line, that specifies 
that the remainder of the line is to be treated as a comment. If a ! is present at any 
character position on a line except for the 6th character position, then the remainder 
of that line is treated as a comment. Lines containing only blank characters or empty 
lines are also treated as comments.

If any character other than a blank character is present in the 6th character position 
on a line, that specifies that the line is a continuation from the previous line. The 
Fortran standard specifies that no more than 19 continuation lines can follow a line, 
but the PathScale compiler supports up to 499 continuation lines.



3 – The PathScale Fortran Compiler
Modules

 3-3

Source code appears between the 7th character position and the 72nd character 
position in the line, inclusive. Semicolons are used to separate multiple statements 
on a line. A semicolon cannot be the first non-blank character between the 7th 
character position and the 72nd character position.

Character positions 1 through 5 are for statement labels. Since statement labels 
cannot appear on continuation lines, the first five entries of a continuation line must 
be blank.

Free-form files have fewer limitations on line layout. Lines can be arbitrarily long, 
and continuation is indicated by placing an ampersand (&) at the end of the line 
before the continuation line. Statement labels can be placed at any character 
position in a line, as long as it is preceded by blank characters only. Comments start 
with a ! character anywhere on the line.

3.2
Modules

When a Fortran module is compiled, information about the module is placed into a 
file called MODULENAME.mod. The default location for this file is in the directory 
where the command is executed. This location can be changed using -module 
option. The MODULENAME.mod file allows other Fortran files to use procedures, 
functions, variables, and any other entities defined in the module. Module files can 
be considered similar to C header files.

Like C header files, you can use the -I option to point to the location of module files:

$ pathf95 -I/work/project/include -c foo.f90

This instructs the compiler to look for .mod files in the /work/project/include 
directory. If foo.f90 contains a ’use arith’ statement, the following locations 
would be searched:

/work/project/include/ARITH.mod
./ARITH.mod

3.2.1
Order of Appearance

If a module and the "use" statements referring to that module appear in the same 
source file, the module must appear first.

If a module appears in one source file and the "use" statements referring to that 
module appear in other source files, the file containing the module must be compiled 
first. 

If a single command compiles all the files, the file containing the module must appear 
on the command line before the files containing the "use" statements:

pathf95 mymodule.f95 myprogram.f95 



3 – The PathScale Fortran Compiler
Linking When the Main Program Is In a Library

3-4  

3.2.2
Linking Object Files to the Rest of the Program

A source file containing a module generates an object (.o) file as well as a 
module-information (.mod) file, even if the source file contains nothing other than 
the module. That object file must be linked with the rest of the program. If a single 
command compiles and links the entire program, this will happen automatically, but 
if you use a separate command to link objects together, you must be careful not to 
omit object files resulting from source files which contain only modules. The order 
of object files in such a command does not matter. For example:

pathf95 -c mymodule.f95
pathf95 -c myprogram.f95
pathf95 myprogram.o mymodule.o

Notice that a source file containing multiple modules will generate one object (.o) 
file which takes its name from the source file plus multiple module-information (.mod) 
files which take their names from the names of the modules themselves. For 
example, generate MYMODULE1.mod, MYMODULE2.mod, MYMODULE3.mod, 
and my3modules.o:

$ pathf95 -c my3modules.f95

Then generate the main program which uses modules:

$ pathf95 -c myprogram.f95
$ pathf95 my3modules.o myprogram.o

3.3
Linking When the Main Program Is In a Library

When workling with a long list of object files, it is possible to put them all into a single 
library, then specify the library in place of the object files when linking the program.

If the main program is coded in Fortran, however, its linker symbol is MAIN__ rather 
than main, and when you link the program with pathf95, the linker will not 
automatically import it from a library. 

The usual symptom is a program which links without error but then prints:

Someone linked a Fortran program with no MAIN__!

The solution is to tell the linker explicitly to import the symbol MAIN__ (with two 
underscores):

$ pathf90 -Wl,--undefined=MAIN__ mylibrary.a

3.3.1
Module-related Error Messages

Error messages report the error as the first line in the module, even if the real error 
is further inside the module. The real error is reported after this first standard 
message. An example is given below.



3 – The PathScale Fortran Compiler
Fortran 2003 Support

 3-5

Here is a program, hellow.f95, which contains this module:

MODULE HELLOW
CONTAINS
SUBROUTINE HELLO( )
  SPRINTZ *,"Hello, World!"
END SUBROUTINE HELLO
END MODULE HELLOW

Next compile the program containing the module, and look at the error that is 
generated:

$ pathf95 hellow.f95

MODULE HELLOW
       ^
pathf95-855 pathf95: ERROR HELLOW, File = hellow.f95, Line = 1, 
Column = 8
The compiler has detected errors in module "HELLOW".  No module 
information file will be created for this module.

  SPRINTZ *,"Hello, World!"

          ^

pathf95-724 pathf95: ERROR HELLO, File = hellow.f95, Line = 5, 
Column = 11
  Unknown statement.  Expected assignment statement but found "*" 
instead of "=" or "=>".

pathf95: PathScale(TM) Fortran Version 2.1.99 (f14) Tue Nov 21, 
2006  14:22:16
pathf95: 9 source lines
pathf95: 2 Error(s), 0 Warning(s), 0 Other message(s), 0 ANSI(s)
pathf95: "explain pathf95-message number" gives more information 
about each message

Note that the real error is pointed out after the first error on line 1 is reported.

3.4
Fortran 2003 Support

This section discusses a number of the Fortran 2003 features that have been 
implemented in the PathScale Fortran Compiler. 

3.4.1
Syntax Improvements

• Names may have as many as 63 characters.

• Statements may have as many as 256 lines.



3 – The PathScale Fortran Compiler
Fortran 2003 Support

3-6  

• An array constructor may use "[" and "]" instead of "(/" and "/)": for example, 
"[1, 2, 3]" and "(/1, 2, 3/)" are synonymous.

• A complex constant may use a named constant as its real or imaginary part. For 
example:

        real, parameter :: limit = 1.2e10
        complex :: rlimit = (upper_limit, 0.0)
        complex :: ilimit = (0.0, upper_limit)

• In an I/O format, the comma after a P edit descriptor is optional: for example, 
"1P2E12.4" and "1P,E12.4" are synonymous.

3.4.2
Intrinsic Procedures

(See also the intrinsic modules for IEEE Floating Point and for C interoperability.)

• COMMAND_ARGUMENT_COUNT

      integer function command_argument_count()

Retrieve the number of command-line arguments, not counting the command 
name itself.

• GET_COMMAND

      subroutine get_command(command, length, status)
        character*(*), intent(out), optional :: command
        integer, intent(out), optional :: length
        integer, intent(out), optional :: status

Retrieve the entire command line: "command" is set to the command line; 
"length" is set to the number of characters in the command line; and "status" is 
set to 0 if the procedure succeeds, -1 if the actual argument corresponding to 
"command" is too short, or a positive number if retrieval failed.

• GET_COMMAND_ARGUMENT

      subroutine get_command_argument(number, value, &
length, status)

        integer, intent(in) :: number
        character*(*), intent(out), optional :: value
        integer, intent(out), optional :: length
        integer, intent(out), optional :: status

Retrieve one command-line argument: "number" specifes the desired argument 
(with 0 being the command name itself, 1 the first argument, and so on); "value" 
returns the argument; "length" returns the length of the argument; and "status" 
returns 0 if the procedure succeeds, -1 if the actual argument corresponding to 
"value" is too short, or a positive number if retrieval failed.



3 – The PathScale Fortran Compiler
Fortran 2003 Support

 3-7

• GET_ENVIRONMENT_VARIABLE

      subroutine get_environment_variable(name, value, length, &
status, trim_name)

        character*(*), intent(in) :: name
        character*(*), intent(out), optional :: value
        integer, intent(out), optional :: length
        integer, intent(out), optional :: status
        logical, intent(in), optional :: trim_name

Retrieve an environment variable: "name" is the name of the variable; "value" is 
its value (blank if the variable does not exist or has no value); "length" is the 
length of the value (zero if the variable does not exist or has no value); "status" 
is 0 if the procedure succeeds, -1 if the actual argument corresponding to "value" 
was too short, 1 if the variable does not exist, 2 if the environment does not 
support environment variables, or another positive number if the retrieval failed 
for another reason; "trim_name" is false if trailing blanks in the "name" should 
be considered significant, and true otherwise (the usual case.)

• NEW_LINE

        character function new_line(a)

Return a CHARACTER*1 variable containing the newline character. A is a scalar 
or array of type CHARACTER.

• Binary, octal, and hex (BOZ) constants may appear as the "A" argument of the 
intrinsic functions INT, REAL, or DBLE, and as the "X" or "Y" argument of the 
intrinsic function CMPLX. Historically, the compiler allowed this as an extension, 
with the REAL, DBLE, and CMPLX intrinsics converting the BOZ value from 
integer to floating point. Instead, Fortran 2003 requires those intrinsics to return 
the floating point value whose bit pattern matches the BOZ constant. The 
command line option "-ffortran2003" enables the new interpretation. With 
"-ffortran2003", the following program prints "3.14150"; without it, the program 
prints "1078529664":

      print '(f25.5)', real(z'40490E56')! Bit pattern for pi
      end

3.4.3
Pointer INTENT

A dummy argument with the POINTER attribute may also use the INTENT attribute 
(section 5.1.2.7 of the Fortran 2003 standard):



3 – The PathScale Fortran Compiler
Fortran 2003 Support

3-8  

subroutine s(arg0, arg1, arg2)
  integer, pointer, intent(in) :: arg0
  integer, pointer, dimension(:), intent(out) :: arg1
  real, pointer, intent(inout) :: arg2
  ! Illegal: arg0 => null()
  arg0 = 5 ! Legal
end subroutine s

When used with a pointer, the INTENT attribute refers to the pointer itself, not to 
the target of the pointer. Therefore, in the preceding example, it would be illegal to 
nullify "arg0" or to associate "arg0" with a different target, but it is legal to use "arg0" 
to change the value of the target.

3.4.4
VOLATILE Attribute and Statement

The VOLATILE attribute tells the compiler that a variable might change in ways 
outside the ambit of the Fortran language itself.

For example, suppose that a function "remember" written in C takes the address of 
its argument and stores it in a C global variable; and suppose that a function 
"assignit" uses that stored address to change the value of the variable:

  interface
    subroutine remember(a) bind(c)
      real :: a
    end subroutine remember
    subroutine assignit
    end subroutine assignit
  end interface
  real :: rvalue
  call remember(rvalue)
  rvalue = 5.0
  call assignit() ! Changes rvalue to something besides 5
  print *, rvalue
end

The Fortran optimizer is allowed to assume that the value of "rvalue" cannot change 
between the assignment and PRINT statements, and might decide to eliminate the 
assignment and simply print a constant "5". The "volatile" attribute prevents this:

real, volatile :: rvalue

The old-fashioned Fortran declaration syntax is also available:



3 – The PathScale Fortran Compiler
Fortran 2003 Support

 3-9

real rvalue
volatile rvalue

Unlike most old-fashioned declaration statements, the VOLATILE statement does 
not necessarily create a local variable: if a variable is available via host association, 
VOLATILE merely adds an attribute to that variable:

subroutine local
  volatile rvalue! Implicitly declares local variable
end subroutine local
subroutine outer
  rvalue = 5.0
contains
  subroutine inner
    volatile rvalue

! Adds attribute to variable obtained from "outer"
  end subroutine inner
end subroutine outer

When used with a pointer, VOLATILE refers to the pointer rather than the target 
(usually it makes sense to apply VOLATILE to both the pointer and its target(s).) 
When used with an allocatable variable, VOLATILE refers to both the allocation 
status and the value. When used with an equivalenced variable, it refers only to 
accesses via that variable (usually it makes sense to apply VOLATILE to all variables 
in an equivalence group.)

3.4.5
IMPORT Statement

Fortran 2003 provides an IMPORT statement for use within an interface body. By 
default, a procedure within an INTERFACE block cannot access identifiers in the 
host, so the following example gives an error:

  type t
    integer :: component
  end type t
  integer, parameter :: n = 8
  interface
    subroutine s(a)
      implicit none
      type(t) :: a(n) ! Type t and integer n are undefined here
    end subroutine s
  end interface
end

Adding an "import" statement solves the problem:



3 – The PathScale Fortran Compiler
Fortran 2003 Support

3-10  

  type t
    integer :: component
  end type t
  integer, parameter :: n = 8
  interface
    subroutine s(a)
      import :: t, n
      implicit none
      type(t) :: a(n) ! Type t and integer n are imported from the 
host
    end subroutine s
  end interface
end

If you omit the list of identifiers, the IMPORT statement allows the interface body to 
access any identifier in the host, subject to the rules that would apply to an internal 
procedure (for example, a local declaration overrides a declaration in the host 
environment):

  type t
    integer :: component
  end type t
  integer n
  interface
    subroutine s(a)
      import
      implicit none
      integer, parameter :: n = 8
      type(t) :: a(n) 

! Type t is imported from host, but n is local
    end subroutine s
  end interface
end

3.4.6
Intrinsic Module ISO_FORTRAN_ENV

The intrinsic module ISO_FORTRAN_ENV provides information about the 
program's environment. Unlike traditional intrinsic procedures, the declarations in 
these module are available only if you employ the "use" statement to access the 
module.

These constants are all scalar default-kind integers.

• CHARACTER_STORAGE_SIZE

The number of bits in a character (for our compiler, 8.)

• ERROR_UNIT

The logical unit for error reporting (for our compiler, 0.)



3 – The PathScale Fortran Compiler
Fortran 2003 Support

 3-11

• FILE_STORAGE_SIZE

The number of bits in a file storage unit which is used to specify the record length 
of an unformatted file (for our compiler, 8.)

• INPUT_UNIT

The logical unit corresponding to "*" in a READ statement (for our compiler, 5.)

• IOSTAT_END

The value which IOSTAT= returns for a normal end-of-file during I/O (for our 
compiler, -4001.)

• IOSTAT_END

The value which IOSTAT= returns for a normal end-of-record during I/O (for our 
compiler, -4006.)

• NUMERIC_STORAGE_UNIT

The number of bits in a numeric storage unit (for our compiler, 32.) Notice that 
the "-i8" and "-r8" command-line options do not change this: they cause "integer" 
and "real" declarations without explicit kind type parameters to use kind "8", which 
corresponds to two numeric storage units. A single numeric storage unit remains 
available via "integer(kind=4)" or "real(kind=4)" declarations.

• OUTPUT_UNIT

The logical unit corresponding to "*" in a WRITE statement (for our compiler, 6.)

3.4.7
IEEE Floating Point

Three intrinsic modules IEEE_EXCEPTIONS, IEEE_ARITHMETIC, and 
IEEE_FEATURES provide control over IEEE floating point behavior such as:

• Enabling and disabling IEEE exceptions.

• Accessing the IEEE flag bits.

• Generating IEEE special symbols like NaN and testing for them.

• Selecting the IEEE rounding mode.

• Enabling and disabling gradual underflow (IEEE denormalized numbers.)

The specification of these three modules is available at:

http://www.nag.co.uk/sc22wg5/TR15580.html

Unlike traditional intrinsic procedures, the declarations in these modules are 
available only if you employ the "use" statement to access them. A compiler is 
allowed to support only a part of the IEEE functionality (or none at all), and the user 
program is expected to call the procedures in IEEE_FEATURES to determine which 
functionality is available. Our compiler will return TRUE for all of the 



3 – The PathScale Fortran Compiler
Fortran 2003 Support

3-12  

"IEEE_SUPPORT" query functions in IEEE_FEATURES except for 
IEEE_SUPPORT_GRADUAL_UNDERFLOW. For that procedure, it will return 
FALSE for the IA32 architecture if the compiler has been told via the "-mnosse2" 
command-line switch not to use SSE instructions.

The standard calls for certain behavior which imposes overhead on the program:

• On entry, each procedure must save a copy of the IEEE flags and rounding 
modes. It must then clear the flags.

• On return, each procedure must restore the saved copy of the flags and rounding 
modes. 

As the standard allows, our compiler does not do this in any procedure which does 
not access the IEEE intrinsic modules. We also provide a command-line option 
"-LANG:IEEE_save=OFF" which disables the saving and restoring of IEEE state 
even in procedures which access the intrinsic modules.

3.4.7.1
Gradual Underflow

Fortran 2003 adds one feature not described in the TR15581 document mentioned 
earlier: control over gradual underflow (IEEE denormalized numbers.)

Most IEEE floating point implementations execute faster if they are allowed to "flush 
to zero" instead of generating denormalized numbers when a computation 
underflows. Our compiler disables gradual underflow by default when the 
optimization level is -O3 or greater. You can also query and set it explicitly with 
procedures provided in the IEEE_ARITHMETIC module:

use, intrinsic :: ieee_arithmetic
logical :: gradual
call ieee_get_underflow_mode(gradual)
print *, gradual
call ieee_set_underflow_mode(.false.)! Flush to zero for speed

Gradual underflow cannot be disabled (by -O3 or via these procedures) on the IA32 
architecture when SSE instructions are not available.

3.4.8
Allocatable Components and Dummy Arguments

Fortran 2003 allows dummy variables, function results, and structure components 
to have the ALLOCATABLE attribute, which in Fortran 95 was restricted to ordinary 
variables.

The specification of this extension is available at:

http://www.nag.co.uk/SC22WG5/TR15581.html

In brief, allocatable components behave much like ordinary allocatable variables, 
except that when a structure contains allocatable components, an assignment to a 



3 – The PathScale Fortran Compiler
Fortran 2003 Support

 3-13

variable of that type automatically deallocates and reallocates the components of 
the target as need be to match the source of the assignment, and then copies the 
components from the source to the target. If you deallocate a variable containing 
(directly or indirectly) an allocatable component, the compiler automatically 
deallocates the component as well.

If a procedure has an allocatable dummy argument or function result, the procedure 
interface must be explicit (that is, the caller must obtain a declaration of the interface 
via a "use" statement, by nesting the function under "contains", or via an interface 
block.)

When a dummy variable has the allocatable attribute, the actual argument 
associated with it must also have the allocatable attribute. The behavior of an 
allocatable dummy variable depends on its intent:

• On entry to a procedure, an allocatable dummy variable with intent(in) or 
intent(inout) has the allocation status and value (if any) of the associated actual 
argument; an allocatable dummy variable with intent(out) is deallocated.

• During execution, a procedure may not change the allocation status of an 
allocatable dummy variable with intent(in), but it may allocate or deallocate a 
variable with intent(inout) or intent(out).

• On return from a procedure, the actual argument associated with an allocatable 
dummy variable has the same allocation status and value as the dummy variable, 
regardless of intent.

An allocatable function result is unallocated at the beginning of the function, but 
must be allocated and defined before the function returns. The result is deallocated 
automatically at the end of the statement which calls the function.

Fortran 2003 adds to the TR15581 document mentioned earlier a requirement that 
an assignment to an ordinary allocatable variable must automatically deallocate 
and reallocate the target to match the source (whereas Fortran 95 requires the 
programmer to ensure that the target is allocated and has the same shape as the 
source.) This makes the behavior of ordinary allocatable variables consistent with 
that of allocatable components of structures. Our compiler does not yet provide this 
feature.

3.4.9
Fortran 2003 C Interoperability

A number of Fortran 2003 features allow procedures and variables coded in Fortran 
to interoperate with functions and variables coded in C (and, thanks to the C++ 
declaration 'extern "C"', with functions and variables coded in C++.) These appear 
in sections 15, 4.6, 5.1.2.15 of the standard.

The features address these issues:



3 – The PathScale Fortran Compiler
Fortran 2003 Support

3-14  

• The "language binding labels" which the linker uses to represent procedures and 
global variables must be consistent with the external linker symbols generated 
by pathcc.

• When a variable is accessable from both languages, its data type must be 
compatible.

• The representation of a pointer in one language must be converted to that of the 
other language.

• The Fortran interface for a procedure must agree with the C prototype for a 
function with regard to whether arguments are passed by value.

• Enumeration constants must have consistent values in both languages.

3.4.9.1
BIND attribute

The BIND attribute tells the Fortran compiler that a procedure, type, variable, 
common block, or enumeration must be compatible with C. For procedures, 
module-level variables, and common blocks, it can also alter the "language binding 
label" used by the linker so as to be compatible with the external symbol generated 
by pathcc.

The simplest use of the BIND attribute simply declares that a variable, type, or 
procedure must be compatible with C:

module m
  type, bind(c) :: t
    integer :: icomponent
    real :: rcomponent
  end type t
  type(t), bind(c) :: mvar
contains
  subroutine s() bind(c)
    common /c/ i
    bind(c) :: /c/
  end subroutine s
end module m

In the preceding example, pathf90 will arrange the components of type "t" in memory 
with the same alignment and padding that pathcc would use for a similar C "struct". 
It will use the same linker external symbols for "mvar", "c", and "s" that pathcc would 
use for variables named "mvar" and "c", and for a function named "s".

A type cannot have both the BIND and SEQUENCE properties, but BIND behaves 
like SEQUENCE in the sense that two identical type declarations in different places 
are compatible if they have either BIND or SEQUENCE.

Notice that making the Fortran-generated symbol match the C-generated symbol 
does not necessarily mean the symbol will never be decorated with extra 



3 – The PathScale Fortran Compiler
Fortran 2003 Support

 3-15

underscores. In that example, on Linux, the subroutine "s" will generate the linker 
symbol "s" instead of the symbol "s_". But on an operating system where pathcc 
would generate the linker symbol "_s" for a C function named "s", the example 
likewise will generate the linker symbol "_s" for the Fortran procedure named "s" 
(rather than the symbol "_s_" which it would ordinarily use), so as to be compatible 
with pathcc.

For procedures, module variables, and common blocks, it is possible to specify an 
explicit binding label as well:

subroutine s1() bind(c, name='S1_name')
end subroutine s1

When you use the "name=" clause, pathf90 generates the same linker symbol that 
pathcc would generate for an entity having that name, taking into account upper 
case. Thus the preceding example would match a C function named "S1_name" 
but not a C function named "s1_name".

Finally, it is possible to use an empty string for the binding label, which tells the 
compiler to make the variable compatible with C, but to use the same linker external 
symbol that it would use in the absence of BIND. On Linux, the following procedure 
would generate the linker symbol "s2_", and therefore the corresponding C code 
would need to use "s2_" rather than "s2" to be compatible:

subroutine s2() bind(c, name='')
end subroutines s2

The Fortran 2003 standard imposes many restrictions on the use of BIND, mostly 
to avoid situations where a Fortran construct is not implementable in C or vice versa. 
Some of the incompatibilities are:

1. Fortran POINTER variables are represented differently than C pointers.

2. Fortran ALLOCATABLE variables have no counterpart in C.

3. The Fortran default LOGICAL type occupies the same storage as the Fortran 
default INTEGER type, but the C "bool" type does not occupy the same storage 
as the C "int" type.

4. C does not provide OPTIONAL arguments.

5. Fortran assumed-shape dummy arguments (like "arg(:)") are not generally 
compatible with C.

6. A C array of char corresponds more closely to a Fortran array of 
character(len=1), rather than a Fortran scalar character variable with a length 
greater than 1.

The details are described in the standard itself, but in general, a Fortran global 
variable cannot use the BIND attribute unless its data type is compatible with C, 
and a Fortran procedure cannot use the BIND attribute unless all its dummy 
arguments (and, if it is a function, its result) are compatible.



3 – The PathScale Fortran Compiler
Fortran 2003 Support

3-16  

3.4.9.2
Intrinsic Module ISO_C_BINDING

To aid in choosing compatible types, the standard provides a variety of parameters 
(named constants) for use in declarations. These are accessible from an intrinsic 
module ISO_C_BINDING which you can obtain with an ordinary "use" statement 
(adding a ", intrinsic" clause insures that you use the intrinsic version in the unlikely 
event that your program has defined its own module named ISO_C_BINDING.) For 
example, you can use "c_int" to ensure that a Fortran integer declaration is 
compatible with a C "int" declaration, and you can use "c_float" to ensure that a 
Fortran real declaration is compatible with a C "float" declaration:

module m3
use, intrinsic :: iso_c_binding
integer(c_int), bind(c) :: m3ivar! Compatible with C int
real(c_float), bind(c)  :: m3rvar! Compatible with C float
end module m3

In the earlier examples, we used default INTEGER and REAL types under the 
assumption that these are compatible with C "int" and "float" types. That assumption 
is correct for the Pathscale Fortran and C compilers, and is likely to be correct for 
most compilers, but for greatest portability one would always use the predefined 
constants to ensure the code will work correctly even under a compiler for which 
that assumption did not hold. The following table shows all the types available:

Table 3-1. Compatible Fortran and C Types
Fortran Type C Type
integer(c_int) int

integer(c_short) short int
integer(c_long) long int

integer(c_long_long) long long int
integer(c_signed_char) signed char

integer(c_size_t) size_t
integer(c_int8_t) int8_t
integer(c_int16_t) int16_t
integer(c_int32_t) int32_t
integer(c_int64_t) int64_t

integer(c_int_least8_t) int_least8_t
integer(c_int_least16_t) int_least16_t
integer(c_int_least32_t) int_least32_t
integer(c_int_least64_t) int_least64_t



3 – The PathScale Fortran Compiler
Fortran 2003 Support

 3-17

*Because our compiler does not provide real(16) and complex(16) types, 
c_long_double and c_long_double_complex are -1, and declarations using them 
are not allowed.

The standard suggests that Fortran integer variables which are compatible with C 
signed variables are equally compatible with C unsigned variables: the bit patterns 
will be correct, although obviously Fortran arithmetic would treat them as if they 
were signed.

The ISO_C_BINDING module also provides constants corresponding to some of 
the special characters defined in C:

integer(c_int_fast8_t) int_fast8_t
integer(c_int_fast16_t) int_fast16_t
integer(c_int_fast32_t) int_fast32_t
integer(c_int_fast64_t) int_fast64_t

integer(c_intmax_t) intmax_t
integer(c_intptr_t) intptr_t

real(c_float) float
real(c_double) double

real(c_long_double)* long double
real(c_float_complex) float _Complex

real(c_double_complex) double _Complex
real(c_long_double_complex)* long double _Complex

logical(c_bool) _Bool
character(kind=c_char) char

Table 3-2. Compatible Fortran and C Character Constants
Fortran Constant C Character Constant
C_NULL_CHAR '\0'

C_ALERT '\a'
C_BACKSPACE '\b'
C_FORM_FEED '\f'
C_NEW_LINE '\n'

C_CARRIAGE_RETURN '\r'
C_HORIZONTAL_TAB '\t'

C_VERTICAL_TAB '\v'

Table 3-1. Compatible Fortran and C Types
Fortran Type C Type



3 – The PathScale Fortran Compiler
Fortran 2003 Support

3-18  

3.4.9.3
Pointer Compatibility

The ISO_C_BINDING module provides two types TYPE(C_PTR) and 
TYPE(C_FUNPTR) which are compatible with C data pointers and C function 
pointers. A C pointer is typically a simple memory address, whereas a Fortran 
pointer contains not only an address, but also data type information and (for an 
array) the shape and stride.

To aid in converting between the world of Fortran pointers and the world of C pointer, 
the module also provides functions C_LOC and C_FUNLOC which obtain C pointers 
to Fortran data; a function C_ASSOCIATED which tests whether one C pointer is 
associated with data (or whether two C pointers are associated with the same data); 
and functions C_F_POINTER and C_F_PROCPOINTER to convert C pointers into 
Fortran pointers. (The function C_F_PROCPOINTER cannot yet be used in our 
compiler because the Fortran 2003 feature which allows pointers to procedures has 
not yet been added.)

Finally, there are constants C_NULL_PTR (of type C_PTR) and C_NULL_FUNPTR 
(of type C_FUNPTR) which represent C null pointers.

The standard permits C_LOC to take the address of Fortran data which isn't 
compatible with C, because it may be useful to store an opaque "handle" to such 
data within C code, even if the code cannot use the pointer to access the data itself. 
However, the standard does require that any argument to C_LOC have the TARGET 
attribute, and does restrict some arguments (for example, it requires that a pointer 
argument be scalar.)

3.4.9.4
Passing Arguments by Value

C passes arguments by value. To pass the address of a variable so that the called 
procedure can modify the variable, one generally declares the formal argument to 
be a pointer, and one explicitly passes the address of the variable as the actual 
argument.

Fortran compilers pass arguments in a variety of ways. For the kinds of arguments 
allowed in the Fortran 77 standard, they commonly pass the address of the argument 
(that is, they pass the argument by reference) although other methods are allowed. 
But for some of the kinds of arguments added in the Fortran 90 and later standards, 
a simple address is not sufficient.

The Fortran 2003 standard ensures argument-passing compatibility with C in three 
ways provided a procedure has the "bind(c)" attribute:



3 – The PathScale Fortran Compiler
Fortran 2003 Support

 3-19

• The Fortran 90 arguments which cannot be represented as simple addresses 
are generally prohibited in procedures which have the "bind(c)" attribute

• You can use the "value" attribute to pass any dummy argument by value. If a 
procedure has the "bind(c)" attribute, it must pass by reference any arguments 
that do not have the "value" attribute. 

More simply, you can achieve compatibility by using the "bind(c)" attribute on a 
Fortran procedure, and then either using the "value" attribute on a Fortran dummy 
variable to make it match the C default behavior, or using pointer arguments in the 
C code to make them match the Fortran default behavior.

The following example uses the Fortran "value" attribute to make argument "a" 
match the corresponding C argument, which is passed by value. For the argument 
"b", the C prototype uses a pointer to match the corresponding Fortran argument 
which uses call-by-reference. Argument "c" illustrates that type(c_ptr) matches a C 
void pointer.

extern long c_function(long a, long *b, void *c);

interface
  integer function c_function(a, b, c) bind(c)
    integer(c_long), value :: a
    integer(c_long) :: b
    type(c_ptr) :: c
  end function c_function bind(c)
end interface

3.4.9.5
Enumerations

A C enumeration establishes a series of named integer constants, analogous to 
Fortran declarations having the PARAMETER attribute. To aid interoperability with 
C, Fortran 2003 provides an analogous statement. By default, the first name in an 
enumeration has the value 1, and each subsequent name has a value one greater 
than its prececessor. But you can assign a specific value to any name; then the next 
name will (unless you assign a specific value to it as well ) have a value one greater 
than its predecessor:

! red = 1, blue = 2, green = 3
enum, bind(c)
  enumerator :: red, blue
  enumerator :: green
end enum
! tiger = 1, giraffe = 7, lion = 8
enum, bind(c)
  enumerator :: tiger, giraffe = 7, lion
end enum



3 – The PathScale Fortran Compiler
Fortran 2003 Support

3-20  

3.4.9.6
Example: Using C "malloc" from Fortran

The C Interoperability features can create relatively straightforward interfaces to 
Standard C library functions like "malloc" and "free", as shown in the following 
example:

program malloc_example
  use, intrinsic :: iso_c_binding
  implicit none
  interface
    type(c_ptr) function malloc(ksize) bind(c)
      use, intrinsic :: iso_c_binding
      implicit none
      integer(c_size_t), value :: ksize
    end function malloc
    subroutine free(p) bind(c)
      use, intrinsic :: iso_c_binding
      implicit none
      type(c_ptr), value, intent(in) :: p
    end subroutine free
  end interface
  real(c_float), pointer :: tmp(:,:)
  type (c_ptr) :: tmp_ptr
  integer :: r, c
  tmp_ptr = malloc(int(4*2*2,kind=c_size_t))
  call c_f_pointer(tmp_ptr, tmp, (/ 2, 2 /))
  do r = 1, ubound(tmp, 1)
    do c = 1, ubound(tmp, 2)
      tmp(r, c) = r * 10 + c
    end do
  end do
  print '(f10.5)', tmp
  call free(tmp_ptr)
end program malloc_example

3.4.9.7
Issues Unique to C++

C++ compilers normally "mangle" the names of external symbols, decorating them 
so that overloaded identifiers have unique names at link time. In addition, many 
C++ constructs such as polymorphic classes and member pointers require runtime 
implementations that aren't compatible with any Fortran or C construct. Fortran 2003 
does not attempt to interoperate with C++.

The best way to interface Fortran with C++ is to use the 'extern "C"' declaration to 
create C-compatible functions and data structures within the C++ code, and then 
to use Fortran's C interoperability features to interface with those.



3 – The PathScale Fortran Compiler
Extensions

 3-21

Linking a program which contains both Fortran and C++ code presents a special 
problem because neither language automatically uses the other's libraries. 
Generally you should use "pathCC" to link the program, specifying "-lpathfortran" 
on the command line. See section 3.7 for details.

3.4.9.8
Pitfalls

It is important that declarations are consistent in their use "bind(c)". In particular, on 
the IA32 architecture (or the X8664 architecture with the -m32 option), Fortran 
normally pads 8-byte data to force 8-byte alignment, but C (and the "bind(c)" 
attribute) requires only 4-byte alignment. If one Fortran compilation declares a 
derived type or common block with the "bind(c)" attribute but another Fortran 
compilation omits the attribute, the two compilations may use different memory 
addresses for the data.

3.5
Extensions

The PathScale Fortran compiler supports a number of extensions to the Fortran 
standard, which are described in this section.

3.5.1
Promotion of REAL and INTEGER Types

Section 5 has more information about porting code, but it is useful to mention the 
following option that you can use to help in porting your Fortran code.

-r8 -i8 Respectively promotes the default representation for REAL and INTEGER 
type from 4 bytes to 8 bytes. Useful for porting from Cray code when integer and 
floating point data is 8 bytes long by default. Watch out for type mismatches with 
external libraries.

NOTE: The -r8 and -i8 flags only affect default reals and integers, not variable 
declarations or constants that specify an explicit KIND. This can cause 
incorrect results if a 4-byte default real or integer is passed into a 
subprogram that declares a KIND=4 integer or real. Using an explicit 
KIND value like this is unportable and is not recommended. Correct usage 
of KIND (i.e. KIND=KIND (1) or KIND=KIND (0.0d0)) will not result 
in any problems.

3.5.2
Cray Pointers

The Cray pointer is a data type extension to Fortran to specify dynamic objects, 
different from the Fortran pointer. Both Cray and Fortran pointers use the POINTER 
keyword, but they are specified in such a way that the compiler can differentiate 
between them.



3 – The PathScale Fortran Compiler
Extensions

3-22  

The declaration of a Cray pointer is:

POINTER ( <pointer>, <pointee> )

Fortran pointers are declared using:

POINTER :: [ <object_name> ]

PathScale’s implementation of Cray Pointers is the Cray implementation, which is 
a stricter implementation than in other compilers. In particular, the PathScale Fortran 
compiler does not treat pointers exactly like integers. The compiler will report an 
error if you do something like p = ( (p+7) / 8) * 8 to align a pointer.

3.5.3
Directives

Directives within a program unit apply only to that program unit, reverting to the 
default values at the end of the program unit. Directives that occur outside of a 
program unit alter the default value, and therefore apply to the rest of the file from 
that point on, until overridden by a subsequent directive.

Directives within a file override the command line options by default. To have the 
command line options override directives, use the command line option:

-LNO:ignore_pragmas

Use following option to control the behavior for directives contained within 
comments:

-[no-]directives

-no-directives ignores all directives (such as !$OMP or C*$* PREFETCH_REF) 
inside comments. The default is -directives, which scans the comments for 
directives. Note that certain directives may have no effect unless additional options, 
such as -mp, are present.

For the 3.2 release, the PathScale Compiler Suite supports the following prefetch 
directives.

3.5.3.1
Prefetch Directives

C*$* PREFETCH(N [,N]) Specify prefetching for each level of the cache. The 
scope is the entire function containing the directive. N can be one of the following 
values:

0 Prefetching off (the default)

1 Prefetching on, but conservative

2 Prefetching on, and aggressive (the default when prefetch is on)



3 – The PathScale Fortran Compiler
Extensions

 3-23

C*$* PREFETCH_MANUAL(N) Specify if manual prefetches (through directives) 
should be respected or ignored. Scope: Entire function containing the directive. 
N can be one of the following values:

0 Ignore manual prefetches

1 Respect manual prefetches

C*$* PREFETCH_REF_DISABLE=A [, size=num] This directive explicitly 
disables prefetching all references to array A in the current function. The 
auto-prefetcher runs (if enabled) ignoring array A. The size is used for volume 
analysis. Scope: Entire function containing the directive.

size=num is the size of the array references in this loop, in Kbyte. This is an 
optional argument and must be a constant.

C*$* PREFETCH_REF=array-ref, [stride=[str] [,str]], 
[level=[lev] [,lev]], [kind=[rd/wr]], [size=[sz]] This directive 
generates a single prefetch instruction to the specified memory location. It 
searches for array references that match the supplied reference in the current 
loop-nest. If such a reference is found, that reference is connected to this prefetch 
node with the specified parameters. If no such reference is found, this prefetch 
node stays free-floating and is scheduled "loosely".

All references to this array in this loop-nest are ignored by the automatic 
prefetcher (if enabled).

If the size is supplied, then the auto-prefetcher (if enabled) reduces the effective 
cache size by that amount in its calculations.

The compiler tries to issue one prefetch per stride iteration, but cannot guarantee 
it. Redundant prefetches are preferred to transformations (such as inserting 
conditionals) which incur other overhead.

Scope: No scope. Just generates a prefetch instruction.

The following arguments are used with this option:

array-ref Required. The reference itself, for example, A(i, j).

str Optional. Prefetch every st r iterations of this loop. The default is 1.

lev Optional. The level in memory hierarchy to prefetch. The default is 2. If lev= 
1, prefetch from L2 to L1 cache.If lev=2, prefetch from memory to L1 cache.

rd/wr Optional. The default is read/write.

sz Optional. The size (in Kbytes) of the array referenced in this loop. This must 
be a constant.



3 – The PathScale Fortran Compiler
Compiler and Runtime Features

3-24  

3.5.3.2
Changing Optimization Using Directives

Optimization flags can now be changed via directives in the user program. In Fortran, 
the directive is used in the form:

C*$* options <”list-of-options”>

Any number of these can be specified inside function scopes. Each affects only the 
optimization of the entire function in which it is specified. The literal string can also 
contain an unlimited number of different options separated by spaces and must 
include the enclosing quotes. The compilation of the next function reverts back to 
the settings specified in the compiler command line.

In this release, there are limitations to the options that are processed in this options 
directive, and their effects on the optimization.

• There is no warning or error given for options that are not processed.

• These directives are processed only in the optimizing backend. Thus, only 
options that affect optimizations are processed.

• In addition, it will not affect the phase invocation of the backend components. 
For example, specifying -O0 will not suppress the invocation of the global 
optimizer, though the invoked backend phases will honor the specified 
optimization level.

• Apart from the optimization level flags, only flags belonging to the following option 
groups are processed: -LNO, -OPT and -WOPT.

3.6
Compiler and Runtime Features

The compiler offers three different preprocessing options; -cpp, -ftpp, and now 
-fcoco.

3.6.1
Preprocessing Source Files with -cpp

Before being passed to the compiler front-end, source files are optionally passed 
through a source code preprocessor. The preprocessor searches for certain 
directives in the file and, based on these directives, can include or exclude parts of 
the source code, include other files or define and expand macros. By default, 
Fortran .F, .F90, and .F95 files are passed through the C preprocessor -cpp.

3.6.2
Preprocessing Source Files with -ftpp

The Fortran preprocessor -ftpp accepts many of the same "#" directives as the 
C preprocessor but differs in significant details (for example, it does not allow C-style 
comments beginning with "/*" to extend across multiple lines.) You should use the 



3 – The PathScale Fortran Compiler
Compiler and Runtime Features

 3-25

-cpp option if you wish to use the C preprocessor on Fortran source files ending 
in .f, .f90, or .f95. These files will not be preprocessed unless you use either 
-ftpp (to select the Fortran preprocessor) or -cpp (to select the C preprocessor) 
on the command line.

3.6.3
Support for Varying Length Character Strings

Beginning with Release 2.5, PathScale Fortran compiler now supports ISO/IEC 
Standard 1539-2, which provides support for varying length character strings. This 
is an optional add-on to the Fortran Standard. You can download and compile this 
module. It is available from this location:

http://www.fortran.com/fortran/iso_varying_string.f95

3.6.4
Preprocessing Source Files with -fcoco

Beginning with release 2.4, the PathScale Fortran compiler now supports the 
ISO/IEC 1539-3 conditional compilation preprocessor. When you use the -fcoco 
option, the compiler runs this preprocessor on each individual source file before 
compiling that source file, overriding the default whereby files suffixed with .F, .F90, 
or .F95 are preprocessed with cpp but files suffixed with .f, .f90, or .f95 are 
not preprocessed.

The ISO/IEC standard does not specify any command-line options for the 
preprocessor, but as an extension, we pass -I and -D options to it, just as we do 
for the -cpp and -ftpp preprocessors. As with the other preprocessors, an option 
like -Isubdir (no trailing "/" is needed) tells the preprocessor to add subdir to 
the list of directories in which it will search for included files.

Unlike the -cpp and -ftpp preprocessors, this one requires that its identifiers be 
declared with a data type, so an option like -DIVAR=5 declares a constant (not a 
variable) IVAR with the type integer and the value 5, while an option like -DLVAR 
declares a constant LVAR with the type logical and the value " .true.". Only 
integer and logical constants are allowed. You can use the -D option to override the 
value of a constant declaration for that identifier which might appear in the source 
file.

The standard requires that the preprocessor read a "setfile" capable of defining 
constants, variables and modes of operation, but it does not specify how to find the 
setfile. If you use -fcoco, the preprocessor looks for coco. set in the current 
directory. If no such file exists, the preprocessor quietly proceeds without it. If you 
use an option like -fcoco=somedir/mysettings, the preprocessor looks for 
file somedir/mysettings. You cannot use the -D option to override a constant 
declaration which appears in the setfile.

The open-source package on which this feature is based does provide additional 
extensions and command-line options, described at 



3 – The PathScale Fortran Compiler
Compiler and Runtime Features

3-26  

http://users.erols.com/dnagle/coco.html. To pass those options 
through the compiler driver to the preprocessor, you can use the -Wp, <options> 
flag. For example, you can use -Wp, -m to pass the -m option to the preprocessor 
to turn off macro preprocessing. Note that the instructions given in that web page 
for passing file names to the preprocessor and identifying the setfile are not 
relevant when you use the PathScale compiler, since the compiler automatically 
passes each source file name to the preprocessor for you, captures the 
preprocessor output for compilation, and identifies the setfile as described in 
the preceding paragraphs.

More information about the -fcoco option can be found in the eko man page.

3.6.4.1
Pre-defined Macros

The PathScale compiler pre-defines some macros for preprocessing code. When 
you use the C preprocessor cpp with Fortran, or rely on the .F, .F90, and .F95 
suffixes to use the default cpp preprocessor, the PathScale compiler uses the same 
preprocessor it uses for C, with the addition of the following macros:

LANGUAGE_FORTRAN

_LANGUAGE_FORTRAN 1

_LANGUAGE_FORTRAN90 1

LANGUAGE_FORTRAN90 1

_ _unix 1

unix 1

_ _unix_ _ 1

NOTE: When using an optimization level at -O1 or higher, the compiler will set 
and use the _ _OPTIMIZE_ _ macro with cpp.

See the complete list of macros for cpp in Section 4.2.1.1.

If you use the Fortran preprocessor -ftpp, only these five macros are defined for 
you:

LANGUAGE_FORTRAN 1

_ _LANGUAGE_FORTRAN90 1

LANGUAGE_FORTRAN90 1

_ _unix 1

unix 1

NOTE: By default, Fortran uses cpp. You must specify the -ftpp command-line 
switch with Fortran code to use the Fortran preprocessor.



3 – The PathScale Fortran Compiler
Compiler and Runtime Features

 3-27

This command will print to stdout all of the “#define”s used with -cpp on a Fortran 
file:

$ echo > junk.F90; pathf95 -cpp -Wp,-dD -E junk.F90

There is no corresponding way to find out what is defined by the default Fortran 
preprocessor (-ftpp). See section 3.6.4.1 for information on how to find 
pre-defined macros in C and C++.

No macros are predefined for the -fcoco preprocessor.

3.6.5
Error Numbers: The explain Command

By default, the Fortran compiler and its runtime library print brief error messages, 
such as this one:

lib-4081 : UNRECOVERABLE library error   An unformatted read or 
write is not allowed on a formatted file.

If you set the environment variable PSC_ERR_VERBOSE, the compiler and library 
will print a longer explanation following each message, such as this:

lib-4081 : UNRECOVERABLE library error   An unformatted read or 
write is not allowed on a formatted file.

A Fortran READ or WRITE statement attempted an unformatted I/O 
operation on a file that was opened for formatted I/O.

Either change the I/O statement to formatted (add a FORMAT 
specifier) or open the file for unformatted I/O.

See the description of input/output statements in your Fortran 
reference manual.

Since the verbose messages print more slowly and take up more room on the 
screen, you may wish to unset the environment variable and instead use a tool 
called explain to print the longer message only when you need further explanation 
for a particular message.

When the Fortran compiler or runtime prints out an error message, it prefixes the 
message with a string in the format “subsystem-number”. For example, 
“pathf95-0724”. The “pathf95-0724” is the message ID string that you will give 
to explain.

When you type explain pathf95-0724, the explain program provides a more 
detailed error message:



3 – The PathScale Fortran Compiler
Compiler and Runtime Features

3-28  

$ explain pathf95-0724
Error : Unknown statement. Expected assignment statement 
but found "%s" instead of "=" or "=>".

The compiler expected an assignment statement
but could not find an assignment or pointer assignment operator at 
the correct point.

Another example:

$ explain pathf95-0700
Error : The intrinsic call "%s" is being made with illegal 
arguments.

A function or subroutine call which invokes the name of
an intrinsic procedure does not match any specific intrinsic. 
All dummy arguments without the OPTIONAL attribute must match in 
type and rank exactly.

The explain command can also be used with iostat= error numbers. When the 
iostat= specifier in a Fortran I/O statement provides an error number such 
as 4198, or when the program prints out such an error number during execution, 
you can look up its meaning using the explain command by prefixing the number 
with lib-, as in explain lib-4198.

For example:

$ explain lib-4098
A BACKSPACE is invalid on a piped file.
A Fortran BACKSPACE statement was attempted on a named or unnamed 
pipe (FIFO file) that does not support backspace.
Either remove the BACKSPACE statement or change the file so that 
it is not a pipe.
See the man pages for pipe(2), read(2), and write(2).

3.6.6
Fortran 90 Dope Vector

Modern Fortran provides constructs that permit the program to obtain information 
about the characteristics of dynamically allocated objects such as the size of arrays 
and character strings. Examples of the language constructs that return this 
information include the ubound and the size intrinsics.

To implement these constructs, the compiler may maintain information about the 
object in a data structure called a dope vector. If there is a need to understand this 
data structure in detail, it can be found in the source distribution in the file 
clibinc/cray/dopevec.h. See Appendix D for an example of a simplified 
version of that data structure, extracted from that file.



3 – The PathScale Fortran Compiler
Mixed Code

 3-29

3.6.7
Bounds Checking

The PathScale Fortran compiler can perform bounds checking on arrays. To enable 
this feature, use the -C option:

$ pathf95 -C gasdyn.f90 -o gasdyn

The generated code checks all array accesses to ensure that they fall within the 
bounds of the array. If an access falls outside the bounds of the array, you will get 
a warning from the program printed on the standard error at runtime:

$ ./gasdyn
lib-4961 : WARNING

Subscript 20 is out of range for dimension 1 for array
’X’ at line 11 in file ’t.f90’ with bounds 1:10.

If you set the environment variable F90_BOUNDS_CHECK_ABORT to YES, then the 
resulting program will abort on the first bounds check violation.

Obviously, array bounds checking will have an impact on code performance, so it 
should be enabled only for debugging and disabled in production code that is 
performance sensitive.

3.6.8
Pseudo-random Numbers

The pseudo-random number generator (PRNG) implemented in the standard 
PathScale Fortran library is a non-linear additive feedback PRNG with a 32-entry 
long seed table. The period of the PRNG is approximately 16*((2**32)-1).

3.7
Mixed Code

If you have a large application that mixes Fortran code with code written in other 
languages, and the main entry point to your application is from C or C++, you can 
optionally use pathcc or pathCC to link the application, instead of pathf95. If 
you do, you must manually add the Fortran runtime libraries to the link line.

As an example, you might do something like this:

$ pathCC -o my_big_app file1.o file2.o -lpathfstart -lpathfortran

If the main program is written in C or C++ but some procedures are written in Fortran, 
you may wish to call the function _PSC_ftn_init to initialize the Fortran runtime 
library. While standard Fortran I/O and most intrinsic functions will work correctly 
without this initialization, it is needed for runtime error messages, automatic stack 
sizing, and the intrinsics dealing with the command line arguments. You should call 
it prior to executing any Fortran-generated code, passing it the arguments argc 
and argv from the C main program:



3 – The PathScale Fortran Compiler
Mixed Code

3-30  

int main(int argc, char **argv) {
     extern void _PSC_ftn_init(int argc, char **argv);
     _PSC_ftn_init(argc, argv);

.

.

.

3.7.1
Legacy Support for Calls between C and Fortran

In calls between C and Fortran, the two issues are:

• Mapping Fortran procedure names onto C function names and
• Matching argument types

Normally a pathf90 procedure name "x" not containing an underscore creates a 
linker symbol "x_", and a pathf90 name "x_y" containing an underscore creates 
a linker symbol "x_y_ _" (note the second underscore). A pathcc function name, 
by contrast, does not append any underscores when creating a linker symbol.

You can write your C code to conform to this: use "x_" in C so that it will match 
Fortran’s "x". Or you can use the -fdecorate option, described in man pathf90, 
to provide a mapping from each Fortran name onto some (possibly quite different) 
linker symbol. Or you can use the -fno-underscoring option, but in many cases 
that will create symbols that conflict with those in the Fortran and C runtime libraries, 
so it is not the preferred choice.

Normally pathf90 passes arguments by reference, so C needs to use pointers in 
order to interoperate with Fortran. In many cases you can use the %val() intrinsic 
function in Fortran to pass an argument by value.

The programmer must be careful to match argument data types. For instance, 
pathf90 integer*4 matches C int,integer*8 matches C long long, 
real matches C float (provided the C function has an explicit prototype) and 
doubleprecision matches C double. Fortran character is problematic 
because in addition to passing a pointer to the first character, it appends an integer 
length-count argument to the end of the usual argument list. Fortran Cray pointers, 
declared with the pointer statement, correspond to C pointers, but Fortran 90 
pointers, declared with the pointer attribute, are unique to Fortran.

The sequence keyword makes it more likely that a Fortran 90 structure will use 
the same layout as a C structure, although it is wise to verify this by experiment in 
each case. For arrays, it is wise to limit the interface to the kinds of arrays provided 
in Fortran 77, since the arrays introduced in Fortran 90 add to the data structures 
information that C cannot understand.

Thus, for example, an argument "a (5, 6) " or "a (n)" or "a (1:* )" (where 
"n" is a dummy argument) will pass a simple pointer that corresponds well to a C 
array, whereas "a (:,: )" or an allocatable array or a Fortran 90 pointer array 
does not correspond to anything in C.



3 – The PathScale Fortran Compiler
Mixed Code

 3-31

NOTE: Fortran arrays are placed in memory in column-major order whereas C 
arrays use row-major order. And, of course, one must adjust for the fact 
that C array indices originate a zero, whereas Fortran array indices 
originate at 1 by default but can be declared with other origins instead.

Calls between C++ and Fortran are more difficult, for the same reason that calls 
between C and C++ are difficult: the C++ compiler must "mangle" symbol names 
to implement overloading, and the C++ compiler must add to data structures various 
information (such as virtual table pointers) that other languages cannot understand. 
The simplest solution is to use the extern "C" declaration within the C++ source 
code to tell it to generate a C-compatible interface, which reduces the problem to 
that of interfacing C and Fortran.

3.7.1.1
Example: Calls between C and Fortran

Here are three files you can compile and execute that demonstrate calls between 
C and Fortran.

This is the C source code (c_part.c):

#include <stdio.h>
#include <alloca.h>
#include <string.h>
extern void f1_(char *c, int *i, long long *ll, float *f, 

double*d, int *l, int c_len);
/* Demonstrate how to call Fortran from C */
void call_fortran() {

char *c = "hello from call_fortran";
int i = 123;
long long ll = 456ll;
float f = 7.8;

double d = 9.1;
int nonzero = 10; /* Any nonzero integer is .true. in Fortran */ 
f1_(c, &i, &ll, &f, &d, &nonzero, strlen(c));
}
/* C function designed to be called from Fortran, passing 
arguments by * reference */
void c_reference__(double *d1, float *f1, int *i1, long long *i2, 
char * c1,

int *l1, int *l2, char *c2, char *c3, int c1_len, int c2_len, 
int c3_len) {
/* A fortran string has no null terminator, so make a local copy 
and add
* a terminator. Depending on the situation, it might be preferable 
* to put the terminator in place of the first trailing blank. */ 
char *null_terminated_c1 = memcpy(alloca(c1_len + 1), c1, c1_len); 
char *null_terminated_c2 = memcpy(alloca(c2_len + 1), c2, c2_len); 



3 – The PathScale Fortran Compiler
Mixed Code

3-32  

char *null_terminated_c3 = memcpy(alloca(c3_len + 1), c3, c3_len); 
null_terminated_c1[ c1_len] = null_terminated_c2[ c2_len] =

null_terminated_c3[ c3_len] = ’\ 0’;
printf("d1=%.1f, f1=%.1f, i1=%d, i2=%lld, l1=%d, l2=%d, " 

"c1_len=%d, c2_len=%d, c3_len=%d\n",
*d1, *f1, *i1, *i2, *l1, *l2, c1_len, c2_len, c3_len); 

printf ("c1=’%s’, c2=’%s’, c3=’%s’\n",
null_terminated_c1, null_terminated_c2, null_terminated_c3); 

fflush(stdout); /* Flush output before switching languages */ 
call_fortran ();
}
/* C function designed to be called from Fortran, passing 
arguments by * value */
int c_value__(double d, float f, int i, long long i8) {

printf("d=%.1f, f=%.1f, i=%d, i8=%lld\n", d, f, i, i8);
fflush(stdout); /* Flush output before switching languages */
return 4; /* Nonzero will be treated as ".true." by Fortran */ 

}

Here is the Fortran source code (f_part.f90):

program f_part
implicit none
! Explicit interface is not required, but adds some
error-checking interface
subroutine c_reference(d1, f1, i1, i2, c1, l1, l2, c2, c3)
doubleprecision d1
real f1 
integer i1
integer*8 i2
character* (*) c1, c3
character*4 c2

logical l1, l2
end subroutine c_reference
logical function c_value(d, f, i, i8)
doubleprecision d
real f 
integer i
integer*8 i8

end function c_value
end interface
logical l
pointer (p_user, user)
character*32 user
integer*8 getlogin_nounderscore ! File decorate.txt maps this to
external getlogin_nounderscore ! "getlogin" without underscore
intrinsic char
! Demonstrate calling from Fortran a C function taking arguments 
by
! reference



3 – The PathScale Fortran Compiler
Mixed Code

 3-33

call c_reference(9.8d0, 7.6, 5, 4_8, ’hello’, .false., .true., &
’from’, ’f_part’)

! Demonstrate calling from Fortran a C function taking arguments 
by ! value. l = c_value(%val(9.8d0), %val(7.6), %val(5), 
%val(4_8))
write(6 , "(a,l8)") "l=", l
! "getlogin" is a standard C library function which returns "char 
!*".
! When a C function returns a pointer, you must use a Cray pointer 
! to receive the address and examine the data at that address,
! instead of assigning to an ordinary variable
p_user = getlogin_nounderscore()
write(6, "(3a)") "’", user(1:index(user, char(0)) - 1), "’"
end program f_part
! Subroutine to be called from C
subroutine f1(c, i, i8, f, d, l)

implicit none
intrinsic flush
character* (*) c
integer i
integer*8 i8
real f
doubleprecision d
logical l
write(6, "(3a,2i5,2f5.1,l8)") "’", c, "’", i, i8, f, d, l
call flush(6); ! Flush output before switching languages

end subroutine f1

And here is the third file (decorate.txt):

getlogin_nounderscore getlogin

Compile and execute these three files (c_part.c, f_part.f90, and 
decorate.txt) like this:

$ pathf90 -Wall -intrinsic=flush -fdecorate decorate.txt
f_part.f90 c_part.c

$ ./a.out
d1=9.8, f1=7.6, i1=5, i2=4, l1=0, l2=1, c1_len=5, c2_len=4, 
c3_len=6 c1=’hello’, c2=’from’, c3=’f_part’
’hello from call_fortran’ 123 456 7.8 9.1 T
d=9.8, f=7.6, i=5, i8=4
l= T
’johndoe’

3.7.1.2
Example: Accessing Common Blocks from C

Variables in Fortran 90 modules are grouped into common blocks, one for initialized 
data and another for uninitialized data. It is possible to use -fdecorate to access 
these common blocks from C, as shown in this example:



3 – The PathScale Fortran Compiler
Runtime I/O Compatibility

3-34  

$ cat mymodule.f90
module mymodule

public
integer :: modulevar1
doubleprecision :: modulevar2
integer :: modulevar3 = 44
doubleprecision :: modulevar4 = 55.5

end module mymodule
program myprogram

use mymodule
modulevar1 = 22
modulevar2 = 33.3
call mycfunction ()

end program myprogram
$ cat mycprogram.c
#include <stdio.h>
extern struct {

int modulevar1;
double modulevar2;
} mymodule_data;

extern struct {
int modulevar3; 
double modulevar4;
} mymodule_data_init;

void mycfunction ()
{

printf ("%d %g\n", mymodule_data.modulevar1, 
mymodule_data.modulevar2); printf ("%d %g\n",
mymodule_data_init.modulevar3,
mymodule_data_init . modulevar4);

}
$ cat dfile
.data_init.in.mymodule mymodule_data_init
.data.in.mymodule.in.mymodule mymodule_data
mycfunction mycfunction
$ pathf90 -fdecorate dfile mymodule.f90 mycprogram.c
mymodule. f90:
mycprogram. c:
$ ./a.out
22 33.3 
44 55.5

3.8
Runtime I/O Compatibility

Files generated by the Fortran I/O libraries on other systems may contain data in 
different formats than that generated or expected by codes compiled by the 
PathScale Fortran compiler. This section discusses how the PathScale Fortran 
compiler interacts with files created by other systems.



3 – The PathScale Fortran Compiler
Runtime I/O Compatibility

 3-35

3.8.1
Performing Endian Conversions

Use the assign command, or the ASSIGN()procedure, to perform endian 
conversions while doing file I/O.

3.8.1.1
The assign Command

The assign command changes or displays the I/O processing directives for a 
Fortran file or unit. The assign command allows various processing directives to 
be associated with a unit or file name. This can be used to perform numeric 
conversion while doing file I/O.

The assign command uses the file pointed to by the FILENV environment variable 
to store the processing directives. This file is also used by the Fortran I/O libraries 
to load directives at runtime.

For example:

$ FILENV=.assign
$ export FILENV
$ assign -N mips u:15

This instructs the Fortran I/O library to treat all numeric data read from or written to 
unit 15 as being MIPS-formatted data. This effectively means that the contents of 
the file will be translated from big-endian format (MIPS) to little-endian format (Intel) 
while being read. Data written to the file will be translated from little-endian format 
to big-endian format.

See the assign(1) man page for more details and information.

3.8.1.2
Using the Wildcard Option

The wildcard option for the assign command is:

assign -N mips p:%

Before running your program, run the following commands:

$ FILENV=.assign
$ export FILENV
$ assign -N mips p:%

This example matches all files.



3 – The PathScale Fortran Compiler
Runtime I/O Compatibility

3-36  

3.8.1.3
Converting Data and Record Headers

To convert numeric data in all unformatted units from big endian, and convert the 
record headers from big endian, use the following:

$ assign -F f77.mips -N mips g:su
$ assign -I -F f77.mips -N mips g:du

The su specifier matches all sequential unformatted open requests. The du specifier 
matches all direct unformatted open requests. The -F option sets the record header 
format to big endian (F77.mips).

3.8.1.4
The ASSIGN( ) Procedure

The ASSIGN() procedure provides a programmatic interface to the assign 
command. It takes as an argument a string specifying the assign command and 
an integer to store a returned error code. For example:

integer :: err
call ASSIGN("assign -N mips u:15", err)

This example has the same effect as the example in section 3.8.1.1.

3.8.1.5
I/O Compilation Flags

Two compilation flags have been added to help with I/O: -byteswapio and 
-convert conversion.

The -byteswapio flag swaps bytes during I/O so that unformatted files on a 
little-endian processor are read and written in big-endian format (or vice versa.) The 
-convert conversion flag controls the swapping of bytes during I/O so that 
unformatted files on a little-endian processor are read and written in big-endian 
format (or vice versa.) To be effective, the option must be used when compiling the 
Fortran main program.

Setting the environment variable FILENV when running the program will override 
the compiled-in choice in favor of the choice established by the command assign. 
The -convert conversion flag can take one of three arguments:

• native - no conversion, the default
• big_endian - files are big-endian
• little_endian - files are little-endian

For more details, see the pathf95 man page.



3 – The PathScale Fortran Compiler
Library Compatibility

 3-37

3.8.2
Reserved File Units

The PathScale Fortran compiler reserves Fortran file units 5, 6, and 0.

3.9
Source Code Compatibility

This section discusses our compatibility with source code developed for other 
compilers. Different compilers represent types in various ways, and this may cause 
some problems.

3.9.1
Fortran KINDs

The Fortran KIND attribute is a way to specify the precision or size of a type. Modern 
Fortran uses KINDS to declare types. This system is very flexible, but has one 
drawback. The recommended and portable way to use KINDS is to find out what 
they are like this:

integer :: dp_kind = kind(0.0d0)

In actuality, some users hard-wire the actual values into their programs:

integer :: dp_kind = 8

This is an unportable practice, because some compilers use different values for the 
KIND of a double-precision floating point value.

The majority of compilers use the number of bytes in the type as the KIND value. 
For floating point numbers, this means KIND=4 is 32-bit floating point, and KIND=8 
is 64-bit floating point. The PathScale compiler follows this convention.

Unfortunately for us and our users, this is incompatible with unportable programs 
written using GNU Fortran, g77. g77 uses KIND=1 for single precision (32 bits) and 
KIND=2 for double precision (64 bits). For integers, however, g77 uses KIND=3 for 
1 byte, KIND=5 for 2 bytes, KIND=1 for 4 bytes, and KIND=2 for 8 bytes.

We are investigating the cost of providing a compatibility flag for unportable g77 
programs. If you find this to be a problem, the best solution is to change your program 
to inquire for the actual KIND values instead of hard-wiring them.

If you are using -i8 or -r8, see section 3.5.1 for more details on usage.

3.10
Library Compatibility

This section discusses our compatibility with libraries compiled with C or other 
Fortran compilers.

Linking object code compiled with other Fortran compilers is a complex issue. 
Fortran 90 or 95 compilers implement modules and arrays so differently that it is 



3 – The PathScale Fortran Compiler
Library Compatibility

3-38  

extremely difficult to attempt to link code from two or more compilers. For Fortran 
77, run-time libraries for things like I/O and intrinsics are different, but it is possible 
to link both runtime libraries to an executable.

We have experimented using object code compiled by g77. This code is not 
guaranteed to work in every instance. It is possible that some of our library functions 
have the same name but different calling conventions than some of g77’s library 
functions. We have not tested linking object code from other compilers, with the 
exception of g77.

3.10.1
Name Mangling

Name mangling is a mechanism by which names of functions, procedures, and 
common blocks from Fortran source files are converted into an internal 
representation when compiled into object files. For example, a Fortran subroutine 
called foo gets turned into the name "foo_" when placed in the object file. We do 
this to avoid name collisions with similar functions in other libraries. This makes 
mixing code from C, C++, and Fortran easier.

Name mangling ensures that function, subroutine, and common-block names from 
a Fortran program or library do not clash with names in libraries from other 
programming languages. For example, the Fortran library contains a function 
named "access", which performs the same function as the function access in the 
standard C library. However, the Fortran library access function takes four 
arguments, making it incompatible with the standard C library access function, 
which takes only two arguments. If your program links with the standard C library, 
this would cause a symbol name clash. Mangling the Fortran symbols prevents this 
from happening.

By default, we follow the same name mangling conventions as the GNU g77 
compiler and libf2c library when generating mangled names. Names without an 
underscore have a single underscore appended to them, and names containing an 
underscore have two underscores appended to them. The following examples 
should help make this clear:

molecule -> molecule_
run_check -> run_check_ _ 
energy_ -> energy_ _ _

This behavior can be modified by using the -fno-second-underscore and the 
-fno-underscoring options to the pathf95 compiler.

The default policies for Intel ifort, PGI pgf90, Sun f90, GNU gfortran and 
g95 all correspond to our -fno-second-underscore option.

Common block names are also mangled. Our name for the blank common block is 
the same as g77 (_BLNK_ _). PGI’s compiler uses the same name for the blank 
common block, while Intel’s compiler uses _BLANK_ _.



3 – The PathScale Fortran Compiler
Library Compatibility

 3-39

3.10.2
ABI Compatibility

The PathScale compilers support the official x86_64 Application Binary Interface 
(ABI), which is not always followed by other compilers. In particular, g77 does not 
pass the return values from functions returning COMPLEX or REAL values according 
to the x86_64 ABI. (Double precision REALs are OK.) For more details about what 
g77 does, see the “info g77” entry for the -ff2c flag.

This issue is a problem when linking binary-only libraries such as Kazushige Goto’s 
BLAS library or the ACML library (AMD Core Math Library (we have not tested ACML 
on the EM64T version of the compiler suite)). Libraries such as FFTW and MPICH 
don’t have any functions returning REAL or COMPLEX, so there are no issues with 
these libraries.

For linking with g77-compiled functions returning COMPLEX or REAL values see 
section 3.10.3.

Like most Fortran compilers, we represent character strings passed to subprograms 
with a character pointer, and add an integer length parameter to the end of the call 
list.

3.10.3
Linking with g77-compiled Libraries

If you wish to link with a library compiled by g77, and if that library contains functions 
that return COMPLEX or REAL types, you need to tell the compiler to treat those 
functions differently.

Use the -ff2c-abi switch at compile time to point the PathScale compiler at a 
file that contains a list of functions in the g77-compiled libraries that return COMPLEX 
or REAL types. When the PathScale compiler generates code that calls these listed 
functions, it will modify its ABI behavior to match g77’s expectations. The 
-ff2c-abi flag is used at compile time and not at link time.

NOTE: You can only specify the -ff2c-abi switch once on the command line. 
If you have multiple g77-compiled libraries, you need to place all the 
appropriate symbol names into a single file.

The format of the file is one symbol per line. Each symbol should be as you would 
specify it in your Fortran code (i.e. do not mangle the symbol). As an example:

$ cat example-list
sdot
cdot
$

You can use the fsymlist program to generate a file in the appropriate format. 
For example:

$ fsymlist /opt/gnu64/lib/mylibrary.a > mylibrary-list



3 – The PathScale Fortran Compiler
Library Compatibility

3-40  

This will find all Fortran symbols in the mylibrary.a library and place them into 
the mylibrary-2.0-list file. You can then use this file with the -ff2c-abi 
switch.

NOTE: The fsymlist program generates a list of all Fortran symbols in the 
library, including those that do not return COMPLEX or REAL types. The 
extra symbols will be ignored by the compiler.

3.10.3.1
AMD Core Math Library (ACML)

The AMD Core Math Library (ACML) incorporates BLAS, LAPACK, and FFT routines, 
and is designed to obtain maximum performance from applications running on AMD 
platforms. This highly optimized library contains numeric functions for mathematical, 
engineering, scientific, and financial applications. ACML is available both as a 32-bit 
library (for compatibility with legacy x86 applications), and as a 64-bit library that is 
designed to fully exploit the large memory space and improved performance offered 
by the x86_64 architecture (we have not tested ACML on the EM64T version of the 
compiler suite).

To use ACML 1.5 with the PathScale Fortran compiler, use the following:

$ pathf95
foo.f bar.f -lacml

To use ACML 2.0 with the PathScale Fortran compiler, use the following:

$ pathf95 -L<path_to_acml_lib>
foo.f bar.f -lacml

ACML 2.5.1 and later, built with the PathScale compilers, is available from the 
AMD website at http://developer.amd.com/acml.aspx. With these later 
versions of ACML, the workarounds described above are unnecessary.

3.10.4
List Directed I/O and Repeat Factors

By default, when list directed I/O is used and two or more consecutive values are 
identical, the output uses a repeat factor.

For example:

real :: a(5)=88.0
write (*,*) a
end

This example generates the following output:

5*88.



3 – The PathScale Fortran Compiler
Library Compatibility

 3-41

This behavior conforms to the language standard. However, some users prefer to 
see multiple values instead of the repeat factor:

88., 88., 88., 88., 88.

There are two ways to accomplish this, using an environment variable and using 
the assign command.

3.10.4.1
Environment Variable

If the environment variable FTN_SUPPRESS_REPEATS is set before the program 
starts executing, then list-directed "write" and "print" statements will output multiple 
values instead of using the repeat factor.

To output multiple values when running within the bash shell:

export FTN_SUPPRESS_REPEATS=yes

To output multiple values when running within the csh shell:

setenv FTN_SUPPRESS_REPEATS yes

To output repeat factors when running within the bash shell:

unset FTN SUPPRESS REPEATS

To output repeat factors when running within the csh shell:

unsetenv FTN SUPPRESS REPEATS

3.10.4.2
assign Command

Using the -y on option to the assign command will cause all list directed output 
to the specified file names or unit numbers to output multiple values; using the -y 
off option will cause them to use repeat factors instead.

For example, to output multiple values on logical unit 6 and on any logical unit which 
is associated with file test2559.out, type these commands before running the 
program:

export FILENV=myassignfile
assign -I -y on u:6
assign -I -y on f:test2559.out

The following program would then use no repeat factors, because the first write 
statement refers explicitly to unit 6, the second write statement refers implicitly to 



3 – The PathScale Fortran Compiler
Porting Fortran Code

3-42  

unit 6 (by using "*" in place of a logical unit), and the third is bound to file 
test2559.out:

real :: a(5)=88.0
write (6,*) a
write (*,*) 77.0, 77.0, 77.0, 77.0, 77.0
open(unit=17, file=’test2559.out’)
write (17,*) 99.0, 99.0, 99.0, 99.0, 99.0 
end

3.11
Porting Fortran Code

The following option can help you fix problems prior to porting your code.

-r8 -i8 Respectively promotes the default representation for REAL and INTEGER 
type from 4 bytes to 8 bytes. Useful for porting from Cray code when integer and 
floating point data is 8 bytes long by default. Watch out for type mismatches with 
external libraries.

These sections contain helpful information for porting Fortran code:

• Section 3.9.1 has information on porting code that includes KINDS, sometimes 
a problem when porting Fortran code

• Section 3.9 has information on source code compatibility

• Section 3.10 has information on library compatibility

3.12
Debugging and Troubleshooting Fortran

The flag -g tells the PathScale compilers to produce data in the form used by modern 
debuggers, such as PathScale’s pathdb, GDB, Etnus’ TotalView®, Absoft Fx2™, 
and Streamline’s DDT™. This format is known as DWARF 2.0 and is incorporated 
directly into the object files. Code that has been compiled using -g will be capable 
of being debugged using pathdb, GDB, or other debuggers.

The -g option automatically sets the optimization level to -O0 unless an explicit 
optimization level is provided on the command line. Debugging of higher levels of 
optimization is possible, but the code transforming performed by the optimizations 
many make it more difficult.

Bounds checking is quite a useful debugging aid. This can also be used to debug 
allocated memory.

If you are noticing numerical accuracy problems, see section 7.7 for more 
information on numerical accuracy.

See section 10 for more information on debugging and troubleshooting. See the 
PathScale Debugger User Guide for more information on pathdb.



3 – The PathScale Fortran Compiler
Debugging and Troubleshooting Fortran

 3-43

3.12.1
Writing to Constants Can Cause Crashes

Some Fortran compilers allocate storage for constant values in read-write memory. 
The PathScale Fortran compiler allocates storage for constant values in read-only 
memory. Both strategies are valid, but the PathScale compiler’s approach allows it 
to propagate constant values aggressively.

This difference in constant handling can result in crashes at runtime when Fortran 
programs that write to constant variables are compiled with the PathScale Fortran 
compiler. A typical situation is that an argument to a subroutine or function is given 
a constant value such as 0 or .FALSE., but the subroutine or function tries to assign 
a new value to that argument.

We recommend that where possible, you fix code that assigns to constants so that 
it no longer does this. Such a change will continue to work with other Fortran 
compilers, but will allow the PathScale Fortran compiler to generate code that will 
not crash and will run more efficiently.

If you cannot modify your code, we provide an option called -LANG:rw_const=on 
that will change the compiler’s behavior so that it allocates constant values in 
read-write memory. We do not make this option the default, as it reduces the 
compiler’s ability to propagate constant values, which makes the resulting 
executables slower.

You might also try the -LANG:formal_deref_unsafe option. This option tells 
the compiler whether it is unsafe to speculate a dereference of a formal parameter 
in Fortran. The default is OFF, which is better for performance. See the eko man 
page for more details on these two flags.

3.12.2
Runtime Errors Caused by Aliasing Among Fortran Dummy Arguments

The Fortran standards require that arguments to functions and subroutines not alias 
each other. As an example, this is illegal:

program bar
...
call foo(c,c)
...
subroutine foo (a,b)
integer i
real a(100), b(100)
do i = 2, 100

a(i) = b(i) - b(i-1) 
enddo

Because a and b are dummy arguments, the compiler relies on the assumption that 
a and b are in non-overlapping areas of memory when it optimizes the program. 
The resulting program when run will give wrong results.



3 – The PathScale Fortran Compiler
Debugging and Troubleshooting Fortran

3-44  

Programmers occasionally break this aliasing rule, and as a result, their programs 
get the wrong answer only under high levels of optimization. This sort of bug 
frequently is thought to be a compiler bug, so we have added this option to the 
compiler for testing purposes. If your failing program gets the right answer with 
-OPT:alias=no_parm or -WOPT:fold=off, then it is likely that your program 
is breaking this Fortran aliasing rule.

3.12.3
Fortran malloc Debugging

The PathScale Compiler Suite includes a feature to debug Fortran memory 
allocations. By setting the environment variable PSC_FDEBUG_ALLOC, memory 
allocations will be initialized during execution to the following values:

PSC FDEBUG ALLOC Value
-----------------------
ZERO 0
NaN 0xffa5a5a5 (4 byte NaN)
NaN8 0xffa5a5a5fff5a5a5ll (8 byte NaN)

For example, to initialize all memory allocations to zeroes, set 
PSC_FDEBUG_ALLOC=ZERO before running the program. The four-byte and 
eight-byte NaNs will only initialize arrays that are aligned with their width (32 and 
64 bits, respectively).

3.12.4
Arguments Copied to Temporary Variables

In some situations, the Fortran standard requires that actual arguments to procedure 
calls be copied to and from temporary variables. Often this occurs because a 
program employs array features introduced in the Fortran 90 standard along with 
procedures having traditional Fortran 77 style implicit interfaces. In particular, 
Fortran 77 style procedures expect all arrays to be contiguous in memory, but 
Fortran 90 permits arrays whose elements are scattered or strided.

The copying takes time, but contiguous arrays may better use the processor cache 
memory. Whether the program runs faster or slower depends on whether one of 
those factors dominates the other, and that depends on the details of the program.

Because unintended copying can slow program execution, the compiler provides 
optional warnings about it. The example below shows two out of many situations in 
which copying takes place: one in which copying is conditional on the nature of the 
array, and another in which copying is unconditional.



3 – The PathScale Fortran Compiler
Debugging and Troubleshooting Fortran

 3-45

$ cat cico.f90
subroutine possible(a, n)
  implicit none
  integer :: n
  integer, dimension(n) :: a
  print ’(a,25i5)’, "possible:", a
end subroutine possible

program copier
  implicit none
  logical :: l
  integer :: i
  integer, target :: a(5,5) = reshape((/ (i, i=1,25) /), (/ 5, 5 
/))
  integer, pointer, dimension(:,:) :: p
  read *, l
  if (l) then
    p => a
  else
    p => a(1:5:2, 1:5:2)
  endif

! Because "possible" does not have an explicit interface, it
! expects a contiguous array. Therefore, the compiler generates a 
! runtime test to check a "contiguous" bit belonging to the 
! pointer "p", and if the target is not contiguous, the values are
! copied to a temporary array before the call and copied back
! after the call
call possible(p, size(p))

! The compiler must always copy this sequence array to a
! temporary variable to make it contiguous
call possible(a((/1,2,5/),(/2,3,5/)),size(a((/1,2,5/),(/2,3,5/))))

end program copier

$ pathf90 -fullwarn -c cico.f90

  call possible(p, size(p))
                ^
pathf95-1438 pathf90: CAUTION COPIER, File = cico.f90, Line = 26, 
Column = 17
  This argument produces a possible copy in and out to a temporary 
variable.

  call possible(a((/1,2,5/),(/2,3,5/)), 
size(a((/1,2,5/),(/2,3,5/))))
                 ^
pathf95-1438 pathf90: CAUTION COPIER, File = cico.f90, Line = 30, 



3 – The PathScale Fortran Compiler
Fortran Compiler Stack Size

3-46  

Column = 18
  This argument produces a copy in to a temporary variable.

pathf95: PathScale(TM) Fortran Version 2.9.99 (f14) Thu Dec  7, 
2006  06:03:17
pathf95: 32 source lines
pathf95: 0 Error(s), 0 Warning(s), 2 Other message(s), 0 ANSI(s)
pathf95: "explain pathf95-message number" gives more information 
about each message

One way to minimize copying, while still taking advantage of Fortran 90 features, 
is to use Fortran 90 style assumed-shape and deferred-shape arrays (that is, arrays 
whose bounds look like "(:,:)" rather than "(2,3)" or "(n,m)") for all dummy array 
arguments, so that procedure calls pass a bit indicating whether the array is 
contiguous. This requires that the program use explicit interfaces for all procedures, 
with interface blocks, with module use statements, or by nesting one procedure 
inside another with contains. Each of those methods provides the compiler with 
an explicit interface from the viewpoint of the Fortran standard.

NOTE: Redundant interfaces are incorrect: don’t provide an interface block 
for a procedure whose interface is already imported via a use statement.

The compiler will also copy noncontiguous arrays to temporary variables in some 
situations where the standard does not require it, but where heuristics suggest that 
this will improve performance by better using the cache. To disable this category of 
copying, use the command-line option "-LANG:copyinout=off".

3.13
Fortran Compiler Stack Size

The Fortran compiler allocates data on the stack by default. Some environments 
set a low limit on the size of a process’s stack, which may cause Fortran programs 
that use a large amount of data to crash shortly after they start.

If the PathScale Fortran runtime environment detects a low stack size limit, it will 
automatically increase the size of the stack allocated to a Fortran process before 
the Fortran program begins executing.

By default, it automatically increases this limit to the total amount of physical memory 
on a system, less 128 megabytes per CPU. For example, when run on a 4-CPU 
system with 1G of memory, the Fortran runtime will attempt to raise the stack size 
limit to 1G - (128M * 4), or 640M.

To have the Fortran runtime tell you what it is doing with the stack size limit, set the 
PSC_STACK_VERBOSE environment variable before you run a Fortran program. 
You can control the stack size limit that the Fortran runtime attempts to use using 
the PSC_STACK_LIMIT environment variable.



3 – The PathScale Fortran Compiler
Fortran Compiler Stack Size

 3-47

If this is set to the empty string, the Fortran runtime will not attempt modify the stack 
size limit in any way.

Otherwise, this variable must contain a number. If the number is not followed by 
any text, it is treated as a number of bytes. If it is followed by the letter "k" or "K", it 
is treated as kilobytes (1024 bytes). If "m" or "M", it is treated as megabytes (1024K). 
If "g" or "G", it is treated as gigabytes (1024M). If "%", it is treated as a percentage 
of the system’s physical memory.

If the number is negative, it is treated as the amount of memory to leave free, i.e. 
it is subtracted from the amount of physical memory on the machine. If all of this 
text is followed by " /cpu", it is treated as a "per cpu" number, and that number is 
multiplied by the number of CPUs on the system. This is useful for multiprocessor 
systems that are running several processes concurrently. The value specified 
(implicitly or explicitly) is the memory value per process.

Here are some sample stack size settings (on a 4 CPU system with 1G of memory):

If the Fortran runtime encounters problems while attempting to modify the stack 
size limit, it will print some warning messages, but will not abort.

Value Meaning
100000 100000 bytes

820K 820K (839680 bytes)

-0.25g all but 0.25G, or 0.75G total

128M/cpu 128M per CPU, or 512M total

-10M/cpu all but 10M per CPU (all but 40M total), or 0.96G total



3 – The PathScale Fortran Compiler
Fortran Compiler Stack Size

3-48  



 4-1

Section 4      
The PathScale C/C++ Compiler

The PathScale C and C++ compilers conform to the following set of standards and 
extensions.

The C compiler:

• Conforms to ISO/IEC 9899:1990, Programming Languages - C standard

• Supports extensions to the C programming language as documented in "Using 
GCC: The GNU Compiler Collection Reference Manual," October 2003, for GCC 
version 3.3.1

• Refer to section 4.4 of this document for the list of extensions that are currently 
not supported

• Complies with the C Application Binary Interface as defined by the GNU C 
compiler (gcc) as implemented on the platforms supported by the PathScale 
Compiler Suite

• Supports most of the widely used command-line options supported by gcc

• Generates code that complies with the x86_64 ABI and the 32-bit x86 ABI

The C++ compiler:

• Conforms to ISO/IEC 14882:1998(E), Programming Languages - C++ standard

• Supports extensions to the C++ programming language as documented in "Using 
GCC: The GNU Compiler Collection Reference Manual," October 2003, for GCC 
version 3.3.1

• Refer to section 4.4 of this document for the list of extensions that are currently 
not supported

• Complies with the C Application Binary Interface as defined by the GNU C++ 
compiler (g++) as implemented on the platforms supported by the PathScale 
Compiler Suite

• Supports most of the widely used command-line options supported by g++

• Generates code that complies with the x86_64 ABI and the 32-bit x86 ABI

To invoke the PathScale C and C++ compilers, use these commands:

• pathcc - invoke the C compiler
• pathCC - invoke the C++ compiler



4 – The PathScale C/C++ Compiler
Using the C/C++ Compilers

4-2  

The command-line flags for both compilers are compatible with those taken by the 
GCC suite. See section 4.1 for more discussion of this.

4.1
Using the C/C++ Compilers

If you currently use the GCC compilers, the PathScale compiler commands will be 
familiar. Makefiles that presently work with GCC should operate with the PathScale 
compilers effortlessly–simply change the command used to invoke the compiler and 
rebuild. See section 5.7.1 for information on modifying existing scripts

The invocation of the compiler is identical to the GCC compilers, but the flags to 
control the compilation are different. We have sought to provide flags compatible 
with GCC’s flag usage whenever possible and also provide optimization features 
that are absent in GCC, such as IPA and LNO.

Generally speaking, instead of being a single component as in GCC, the PathScale 
compiler is structured into components that perform different classes of 
optimizations. Accordingly, compilation flags are provided under group names like 
-IPA, -LNO, -OPT, -CG, etc. For this reason, many of the compilation flags in our 
compiler will differ from those in GCC. See the eko man page for more information.

The default optimization level is 2. This is equivalent to passing -O2 as a flag. The 
following three commands are identical in their function:

$ pathcc hello.c
$ pathcc -O hello.c 
$ pathcc -O2 hello.c

See section 7.1 for information about the optimization levels available for use with 
the compiler.

To run with -Ofast or with -ipa, the flag must also be given on the link command.

$ pathCC -c -Ofast warpengine.cc
$ pathCC -c -Ofast wormhole.cc
$ pathCC -o ftl -Ofast warpengine.o wormhole.o

See section 7.3 for information on -ipa and -Ofast.

4.1.1
Accessing the GCC 4.x Front-ends for C and C++

This release is compatible with version 4.2.0 of the GNU C/C++ compiler in terms 
of the source language constructs they support. This is the default on Linux 
distributions whose compiler is GNU 4.x. On systems with GNU 3.x compilers, 
pathcc/pathCC will generate code compitable with GNU 3.x. You can use the "-gnu4" 
option to direct pathcc/pathCC to be compitable with GNU 4.x. A sample command 
for C is:

$ pathcc -gnu4 world.c 



4 – The PathScale C/C++ Compiler
Compiler and Runtime Features

 4-3

This default behavior can be changed in your compiler.defaults file by adding 
this line:

-gnu4 

See section 2.3 for an example compiler.defaults file.

The option has no effect on pathf90 or pathf95.

There are currently some limitations when using this option. Please see the Release 
Notes for more information.

4.2
Compiler and Runtime Features
4.2.1
Preprocessing Source Files

Before being passed to the compiler front-end, source files are optionally passed 
through a source code preprocessor. The preprocessor searches for certain 
directives in the file and, based on these directives, can include or exclude parts of 
the source code, include other files, or define and expand macros.

All C and C++ files are passed through the the C preprocessor unless the -noccp 
flag is specified.



4 – The PathScale C/C++ Compiler
Compiler and Runtime Features

4-4  

4.2.1.1
Pre-defined Macros

The PathScale compiler pre-defines some macros for preprocessing code. These 
include the following:

Table 4-1. Pre-defined Macros
Macro Remarks

__linux 1 These macros specify the type of operating 
system.__linux__ 1

linux 1

__unix 1

__unix__ 1

unix 1

__gnu_linux__ 1

__GNUC__ 4 The _ _GNU* and _ _PATH* values are 
derived from the respective compiler version 
numbers, and will change with each release.

__GNUC_MINOR__ 1

__GNUC_PATCHLEVEL__ 1

__PATHSCALE__ "3.1"

__PATHCC__ 3

__PATHCC_MINOR__ 1

__PATHCC_PATCHLEVEL__ 0

_LANGUAGE_FORTRAN 1 These Fortran macros will also be used if the 
source file is Fortran, but cpp is used.LANGUAGE_FORTRAN 1

_LANGUAGE_FORTRAN90 1 

LANGUAGE_FORTRAN90 1

__i386 1 The macros specify32-bit x86 compilation.
__i386__ 1

i386 1

__x86_64__ 1 These macros specify 64-bit x86 compilation.
__x86_64 1

__LP64__ 1 These macros specify that /long/ and 
/pointer/ are 64-bit, while /int/ is 32-bit._LP64 1

__OPTIMIZE__ 1 When using an optimization level at -O1 or 
higher, the compiler will use this macro.

_mips 1 MIPS-specific. 
Indicates the target is a MIPS processor.__mips__ 1

mips 1



4 – The PathScale C/C++ Compiler
Compiler and Runtime Features

 4-5

A quick way to list all the predefined cpp macros would be to compile your program 
with the flags -dD -keep. You can find all the defines (or predefined macros) in 
the resulting .i file. Here is an example for C:

$ cat hello.c
main(){
printf ("Hello World\n");
}
$ pathcc -dD -keep hello.c
$
$ wc hello.i

94 278 2606 hello.i
$ cat hello.i

The hello.i file will contain the list of pre-defined macros.

NOTE: Generating an .i file doesn’t work well with Fortran, because if the 
preprocessor sends the “#define”s to the .i file, Fortran can’t parse 
them. See section 3.6.4.1 for information on finding pre-defined macros 
in Fortran.

__mips64 1 MIPS-specific.
The target MIPS processor has 64-bit 
capability

_MIPS_SIM _ABIN32 MIPS-specific.
For the _MIPS_SIM macro, _ABIN32 
indiates the -n32 ABI and _ABI64 
indicates the -64 ABI.

_MIPS_SIM _ABI64

_MIPS_ISA _MIPS_ISA_MIPS3 MIPS-specific.
Indicates that the target supports the 
MIPS3 instruction set

_MIPS_ARCH_MIPS3 1

_MIPS_ARCH "mips3"

_MIPS_TUNE "mips3"

_MIPS_TUNE_MIPS3 1

__mips 3

__MIPSEL__ 1 MIPS-specific.
Indicates that the target is little-endian__MIPSEL 1

_MIPSEL 1

MIPSEL 1

_MIPS_SZPTR 32 MIPS-specific.
Size of pointer,int, and long,in bits._MIPS_SZINT 32

_MIPS_SZLONG 32

Table 4-1. Pre-defined Macros
Macro Remarks



4 – The PathScale C/C++ Compiler
Compiler and Runtime Features

4-6  

4.2.2
Pragmas

4.2.2.1
Pragma pack

In this release, we have tested and verified that the pragma pack is supported. The 
syntax for this pragma is:

#pragma pack (n) This pragma specifies that the next structure should have 
each of their fields aligned to an alignment of n bytes if its natural alignment is 
not smaller than n.

4.2.2.2
Changing Optimization Using Pragmas

Optimization flags can now be changed via directives in the user program.

In C and C++, the directive is of the form:

#pragma options <list-of-options>

Any number of these can be specified inside function scopes. Each affects only the 
optimization of the entire function in which it is specified. The literal string can also 
contain an unlimited number of different options separated by space.The 
compilation of the next function reverts back to the settings specified in the compiler 
command line.

In this release, there are limitations to the options that are processed in this options 
directive, and their effects on the optimization.

• There is no warning or error given for options that are not processed.

• These directives are processed only in the optimizing backend. Thus, only 
options that affect optimizations are processed.

• In addition, it will not affect the phase invocation of the backend components. 
For example, specifying -O0 will not suppress the invocation of the global 
optimizer, though the invoked backend phases will honor the specified 
optimization level.

• Apart from the optimization level flags, only flags belonging to the following option 
groups are processed: -LNO, -OPT and -WOPT.

4.2.2.3
Code Layout Optimization Using Pragmas

This pragma is applicable to C/C++. The user can provide a hint to the compiler 
regarding which branch of an IF-statement is more likely to be executed at runtime. 
This hint allows the compiler to optimize code generated for the different branches.



4 – The PathScale C/C++ Compiler
Debugging and Troubleshooting C/C++

 4-7

The directive is of the form:

#pragma frequency_hint <hint>

where <hint> is a choice from:

• never: The branch is rarely or never executed.
• init: The branch is executed only during initialization.
• frequent: The branch is executed frequently.

The branch of the IF-statement that contains the pragma will be affected.

4.2.3
Mixing Code

If you have a large application that mixes Fortran code with code written in other 
languages, and the main entry point to your application is from C or C++, you can 
optionally use pathcc or pathCC to link the application, instead of pathf95. If 
you do, you must manually add the Fortran runtime libraries to the link line.

See section 3.7 for details. To link object files that were generated with pathCC 
using pathcc or pathf95, include the option -lstdc++.

4.2.4
Linking

Note that the pathcc (C language) user needs to add -lm to the link line when 
calling libm functions. The second pass of feedback compilation may require an 
explicit -lm.

4.3
Debugging and Troubleshooting C/C++

The flag -g tells the PathScale C and C++ compilers to produce data in the form 
used by modern debuggers, such as pathdb or GDB. This format is known as 
DWARF 2.0 and is incorporated directly into the object files. Code that has been 
compiled using -g will be capable of being debugged using pathdb, GDB, or other 
debuggers.

The -g option automatically sets the optimization level to -O0 unless an explicit 
optimization level is provided on the command line. Debugging of higher levels of 
optimization is possible, but the code transformation performed by the optimizations 
may make it more difficult.

See section 10 for more information on troubleshooting and debugging. See the 
PathScale Debugger User Guide for more information on pathdb.



4 – The PathScale C/C++ Compiler
Unsupported GCC Extensions

4-8  

4.4
Unsupported GCC Extensions

The PathScale C and C++ Compiler Suite supports most of the C and C++ 
extensions supported by the GCC version 4.2.0 suite. In this release, we do not 
support the following extensions:

For C:

• Nested functions

• Complex integer data type: Complex integer data types are not supported.

• Although the PathScale Compiler Suite fully supports floating point complex 
numbers, it does not support complex integer data types, such as _Complex 
int.

• SSE3 intrinsics

• Many of the __builtin functions

• A goto outside of the block. PathScale compilers do support taking the address 
of a label in the current function and doing indirect jumps to it.

• The compiler generates incorrect code for structs generated on the fly (a GCC 
extension).

• Java-style exceptions

• java_interface attribute

• init_priority attribute



4 – The PathScale C/C++ Compiler
Unsupported GCC Extensions

 4-9

Notes



4 – The PathScale C/C++ Compiler
Unsupported GCC Extensions

4-10  



 5-1

Section 5      
Porting and Compatibility

5.1
Getting Started

Here are some tips to get you started compiling selected applications with the 
PathScale Compiler Suite.

5.2
GNU Compatibility

The PathScale Compiler Suite C, C++, and Fortran compilers are compatible with 
gcc and g77. Some packages will check strings like the gcc version or the name 
of the compiler to make sure you are using gcc; you may have to work around these 
tests. See section 5.7.1 for more information.

Some packages continue to use deprecated features of gcc. While gcc may print 
a warning and continue compilation, the PathScale Compiler Suite C, C++, and 
Fortran compilers may print an error and exit. Use the instructions in the error to 
substitute an updated flag. For example, some packages will specify the deprecated 
"-Xlinker" gcc flag to pass arguments to the linker, while the PathScale Compiler 
Suite uses the modern -Wl flag.

Some gcc flags may not yet be implemented. These will be documented in the 
release notes.

If a configure script is being used, PathScale provides wrapper scripts for gcc that 
are frequently helpful. See section 5.7.1 for more information.

5.3
Compatibility with Other Fortran Compilers

For Fortran, the term "compatibility" can mean two different things:

• Do two compilers accept the same source code?

• Can object files generated by two different compilers be linked together?

With respect to source code, Pathscale Fortran is compatible with all other compilers 
provided the program conforms strictly to the Fortran 95 standard. It is compatible 
with g77 (with relatively few exceptions, such as the meaning of kind= type 
parameters) even if the program uses extensions (such as additional intrinsic 
functions which g77 implements.)

With respect to linking, the PathScale Fortran compiler is not generally compatible 
with other Fortran compilers (such as gfortran, g95, or commercial compilers) when 



5 – Porting and Compatibility
Compatibility with Other Fortran Compilers

5-2  

source code makes use of language features beyond Fortran 77, although careful 
programming may make linking possible. Pathscale Fortran is compatible with g77 
with respect to linking, provided you use the command line option -ff2c-abi.

There are five major issues affecting linking compatibility:

1. ABI (application binary interface) and data representation: the size and 
encoding of each data type, and how each data type is passed as an argument 
in a procedure call. For example, one compiler might use an integer 1 to 
represent .true. while another might use -1; one compiler might interpret 
integer(kind=2) as a two-byte integer and another interpret that as a 
two-word integer.

2. Each compiler may use a different runtime library to perform tasks such as I/O, 
string manipulation, and certain other operations which are too bulky to perform 
in line. For example, in contrast with the C language, where the standard 
dictates that the runtime library will provide functions named strcpy, strcmp, 
and fputs to copy, compare, and write strings, the Fortran standard merely 
describes the behavior of assignment using "=", operators like ".ge.", and 
statements like "write" and "format". The Fortran standard leaves it to the 
implementation to choose names for any runtime library functions used to 
implement that behavior.

3. Each compiler may use a different data structure (often called a "dope vector") 
to implement an assumed-shape array argument, allocatable array, or Fortran 
pointer. In contrast with the C language, the data structure is more elaborate 
than a simple hardware pointer, because it must be capable of describing the 
shape, element type, and stride of an array or a section of an array.)

4. Each compiler uses a different strategy to "mangle" or "decorate" module level 
identifiers to generate symbols which will not collide in the "flat" namespace of 
the linker. For example, two modules M1 and M2 may each define a public 
procedure named x, and the program may define a third Fortran-77 style 
external procedure which is also named x: all three must have different names 
from the point of view of the linker. One compiler might use ___M1__x to 
represent procedure x belonging to module M1, where another might use 
X.in.M1.

5. Each compiler pursues a different strategy to implement the use statement. 
Even if two compilers both expect to employ a .mod file to communicate module 
information from one compilation to another, the compilers generally assume 
different formatting of data inside the .mod file.

For the special case of the g77 compiler, Pathscale addresses issue (1) by using 
the same data representation for default data types, and by providing the 
-ff2c-abi option to address a situation where g77 deviates from the Linux 
standard ABI for the x8664 machine. We address issue (2) by including the g77 
runtime library in the PathScale library. Issues (3), (4), and (5) do not arise because 



5 – Porting and Compatibility
Porting Fortran

 5-3

g77 does not support any of the Fortran 90/95 features which require a dope vector, 
the decoration of identifiers, or the generation of a .mod file.

For compilers other than g77, it may nevertheless be possible to link their object 
files with those generated by Pathscale Fortran, even if the program uses features 
from Fortran 90 and later standards, provided one manages to circumvent 
incompatibilities when coding. Some tips:

1. When code generated by one compiler calls a procedure generated by another, 
use the Fortran 77 style of procedure call, avoiding any of the sorts of dummy 
arguments which would require the calls to be "explicit" in Fortran 90 and later 
standards. Do not use a module generated by one compiler in a procedure 
generated by another.

2. Use options like -fno-second-underscore and -fdecorate as needed. 
The gfortran, g95, ifort, pgf90, and Sun f90 compilers all behave like our 
-fno-second-underscore; g77 behaves like our 
-fsecond-underscore. These options are meant to address the 
name-mangling problems for Fortran 77 style external identifiers, not for Fortran 
90 style module-level identifiers.

3. When linking with one compiler, specify explicitly the additional runtime library 
or libraries needed by the other compiler. If you need additional control over 
the order in which the linker scans libraries, run the linker directly, specifying 
the startup object file which the first compiler would use, and the union of the 
sets of libraries which the two compilers would use. For Pathscale Fortran, 
running pathf95 with the command-line option -show will print the names of 
these objects and libraries.

4. If possible, perform all I/O in code generated by one compiler. If that is not 
possible, make sure that all I/O related to a particular logical unit and file occurs 
within code generated by one compiler.

5.4
Porting Fortran

If you are porting Fortran code, see section 3.11 for more information about 
Fortran-specific issues.

5.4.1
Intrinsics

The PathScale Fortran compiler supports many intrinsics and also has many unique 
intrinsics of its own. See Appendix C for the complete list of supported intrinsics.



5 – Porting and Compatibility
Porting to x86_64

5-4  

5.4.1.1
An Example

Here is some sample output from compiling Amber 8 using only ANSI intrinsics. You get 
this series of error messages:

$ pathf95 -O3 -msse2 -m32 -o fantasian
fantasian.o . ./.. /lib/random.o . ./.. /lib/mexit.o 
fantasian.o: In function ‘simplexrun_’:
fantasian.o(. text+0xaad4): undefined reference to ‘rand_’ 
fantasian.o (.text+0xab0e): undefined reference to ‘rand_’ 
fantasian.o (.text+0xab48): undefined reference to ‘rand_’ 
fantasian.o(. text+0xab82): undefined reference to ‘rand_’ 
fantasian.o (.text+0xabbf): undefined reference to ‘rand ’ 
fantasian.o (.text+0xee0a): more undefined references to ‘rand_’ 
follow collect2: ld returned 1 exit status

The problem is that RAND is not ANSI. The solution is to build the code with the flag 
-intrinsic=PGI.

5.4.2
Name-mangling

Name mangling ensures that function, subroutine, and common-block names from 
a Fortran program or library do not clash with names in libraries from other 
programming languages. This makes mixing code from C, C++, and Fortran easier. 
See section 3.10.1 for details on name mangling.

5.4.3
Static Data

Some codes expect data to be initialized to zero and allocated in the heap. If this 
is the case with your code use the -static flag when compiling.

5.5
Porting to x86_64

Keep these things in mind when porting existing code to x86_64:

• Some source packages make assumptions about the locations of libraries and 
fail to look in lib64-named directories for libraries resulting in unresolved 
symbols at during the link.

• For the x86 platform, use the -mcpu flag x86any to specify the x86 platform, 
like this: -mcpu=x86_64.



5 – Porting and Compatibility
Compatibility

 5-5

5.6
Migrating from Other Compilers

Here is a suggested step-by-step approach to migrating code from other compilers 
to the PathScale compilers:

1. Check the compiler name in your makefile; is the correct compiler being called?

For example, you may need to add a line like this:

$ CC=pathcc ./configure <options>

Change the compiler in your makefile to pathcc or pathf95.

2. Check any flags that are called to be sure that the PathScale Compiler Suite 
supports them. See the eko man page in Appendix E for a complete listing of 
supported flags.

3. If you plan on using IPA, see section 7.3 for suggestions.

4. Compile your code and look at the results.

a. Did the program compile and link correctly? Are there missing libraries that 
were previously linked automatically?

b. Look for behavior differences; does the program behave correctly? Are you 
getting the right answer (for example, with numerical analysis)?

5.7
Compatibility

5.7.1
gcc Compatibility Wrapper Script

Many software build packages check for the existence of gcc, and may even require 
the compiler used to be called gcc in order to build correctly. To provide complete 
compatibility with gcc, we provide a set of gcc compatibility wrapper scripts in 
/opt/pathscale/compat-gcc/bin (or 
<install_directory>/compat-gcc/bin).

This script can be invoked with different names:

• gcc, cc - to look like the GNU C compiler, and call pathcc
• g++, c++ - to look like the GNU C++ compiler, and call pathCC
• g77, f77 - to look like the GNU Fortran compiler, and call pathf95

To use this script, you must put the path to this directory in your shell’s search path 
before the location of your system’s gcc (which is usually /usr/bin). You can 
confirm the order in the search path by running "which gcc" after modifying your 
search path. The output should print the location of the gcc wrapper, not 
/usr/bin/gcc.



5 – Porting and Compatibility
Compatibility

5-6  

Notes



 6-1

Section 6      
Tuning Quick Reference

This section provides some ideas for tuning your code’s performance with the 
PathScale compiler.

The following sections describe a small set of tuning options that are relatively easy 
to try, and often give good results. These are tuning options that do not require 
Makefile changes, or risk the correctness of your code results. More detail on these 
flags can be found in the next section and in the man pages. A comprehensive list 
of the options for the PathScale compiler can be found in the eko man page.

6.1
Basic Optimization

Here are some things to try first when optimizing your code.

The basic optimization flag-O is equivalent to -O2. This is the first flag to think about 
using when tuning your code. Try:

O2 

then,

O3

and then,

O3 -OPT:Ofast.

For more information on the -O flags and -OPT:Ofast, see section 7.1.

6.2
IPA

Inter-Procedural Analysis (IPA), invoked most simply with -ipa, is a compilation 
technique that analyzes an entire program. This allows the compiler to do 
optimizations without regard to which source file the code appears in. IPA can 
improve performance significantly.

IPA can be used in combination with the other optimization flags. -O3 -ipa or -O2 
-ipa will typically provide increased performance over the -O3 or -O2 flags alone. 
-ipa needs to be used both in the compile and in the link steps of a build. See 
section 7.3 for more details on how to use -ipa.



6 – Tuning Quick Reference
Feedback Directed Optimization (FDO)

6-2  

6.3
Feedback Directed Optimization (FDO)

Feedback directed optimization uses a special instrumented executable to collect 
profile information about the program that is then used in later compilations to tune 
the executable.

See section 7.6 for more information.

6.4
Aggressive Optimization

The PathScale compilers provide an extensive set of additional options to cover 
special case optimizations. The ones documented in section 7 contain options that 
may significantly improve the speed or performance of your code.

This section briefly introduces some of the first tuning flags to try beyond -O2 or 
-O3. Some of these options require knowledge of what the algorithms are and what 
coding style of the program require, otherwise they may impact the program’s 
correctness. Some of these options depend on certain coding practices to be 
effective.

One word of caution: The PathScale Compiler Suite, like all modern compilers, 
has a range of optimizations. Some produce identical program output to the 
non-optimized, some can change the program’s behavior slightly. The first class of 
optimizations is termed "safe" and the second "unsafe". See for section 7.7 for more 
information on these optimizations.

-OPT:Olimit=0 is a generally safe option but may result in the compilation taking 
a long time or consuming large quantities of memory. This option tells the compiler 
to optimize the files being compiled at the specified levels no matter how large they 
are.

The option -fno-math-errno bypasses the setting of ERRNO in math functions. 
This can result in a performance improvement if the program does not rely on IEEE 
exception handling to detect runtime floating point errors.

-OPT:roundoff=2 also allows for fairly extensive code transformations that may 
result in floating point round-off or overflow differences in computations. Refer to 
section 7.7.4.2 and section 7.7.4 for more information.

The option -OPT:div_split=ON allows the conversion of x/y into 
x*(recip (y)), which may result in less accurate floating point computations. 
Refer to section 7.7.4.2 and section 7.7.4 for more information.

The -OPT:alias settings allow the compiler to apply more aggressive 
optimizations to the program. The option -OPT:alias=typed assumes that the 
program has been coded in adherence with the ANSI/ISO C standard, which states 
that two pointers of different types cannot point to the same location in memory. 
Setting -OPT:alias=restrict allows the compiler to assume that points refer 



6 – Tuning Quick Reference
Compiler Flag Recommendations

 6-3

to distinct, non-overlapping objects. If the these options are specified and the 
program does violate the assumptions being made, the program may behave 
incorrectly. Refer to section 7.7.1 for more information.

There are several shorthand options that can be used in place of the above options. 
The option -OPT:Ofast is equivalent to 
-OPT:roundoff=2:Olimit=0:div_split=ON:alias=typed. -Ofast is 
equivalent to -O3 -ipa -OPT:Ofast -fno-math-errno. When using this 
shorthand options, make sure the impact of the option is understood by stepwise 
building up the functionality by using the equivalent options.

There are many more options that may help the performance of the program. These 
options are discussed elsewhere in the User Guide and in the associated man 
pages.

6.5
Compiler Flag Recommendations

As a general methodology, we usually recommend that you start tuning with -O2, 
then -O3, then -O3 -OPT:Ofast and then -Ofast.

With -O3 -OPT:Ofast and -Ofast, you should look to see if the results are 
accurate.

The -OPT:Ofast flag uses optimizations selected to maximize performance. 
Although the optimizations are generally safe, they may affect floating point 
accuracy due to rearrangement of computations. This effectively turns on the 
following optimizations:

-OPT:ro=2:Olimit=0:div_split=ON:alias=typed

If there are numerical problems with -O3 -OPT:Ofast, then try either of the 
following:

-O3 -OPT:Ofast:ro=1 
-O3 -OPT:Ofast:div_split=OFF

Note that ’ro’ is short for roundoff.

-Ofast is equivalent to -O3 -ipa -OPT:Ofast -fno-math-errno 
-ffast-math so similar cautions apply to it as to -O3 -OPT:Ofast.

To use interprocedural analysis without the "Ofast-type" optimizations, use either 
of the following:

-O3 -ipa 
-O2 -ipa

Testing different optimizations can be automated by pathopt2. This program 
compiles and runs your program with a variety of compiler options and creates a 
sorted list of the execution times for each run.



6 – Tuning Quick Reference
Performance Analysis

6-4  

The try5 target tests five flag combinations, which is easily done using pathopt2. 
The combinations are:

-O2, 
-O3, 
-O3 -ipa, 
-O3 -OPT:Ofast
-Ofast.  

For more information on using pathopt2, see section 7.9. 

6.6
Performance Analysis

In addition to these suggestions for optimizing your code, here are some other ideas 
to assist you in tuning. Section 2.11 discusses figuring out where to tune your code, 
using time to get an overview of your code, and using pathprof to find your 
program’s hot spots.

6.7
Optimize Your Hardware

Make sure you are optimizing your hardware as well. section 7.8 discusses getting 
the best performance out of x86_64-based hardware (Opteron, Athlon™64, 
Athlon™64 FX, and Intel®EM64T). Hardware configuration can have a significant 
effect on the performance of your application.



 7-1

Section 7      
Tuning Options

This section discusses in more depth some of the major groups of flags available 
in the PathScale Compiler Suite.

7.1
Basic Optimizations: The -O flag

The -O flag is the first flag to think about using. See table 7-3 showing the default 
flag settings for various levels of optimization.

-O0 (O followed by a zero) specifies no optimization–this is useful for debugging. 
The -g debugging flag is fully compatible with this level of optimization.

NOTE: Using -g by itself without specifying -O will change the default 
optimization level from -O2 to -O0 unless explicitly specified.

-O1 specifies minimal optimizations with no noticeable impact on compilation time 
compared with -O0. Such optimizations are limited to those applied within 
straight-line code (basic blocks), like peephole optimizations and instruction 
scheduling. The -O1 level of optimization minimizes compile time.

-O2 only turns on optimizations which always increase performance and the 
increased compile time (compared to -O1) is commensurate with the increased 
performance. This is the default, if you don’t use any of the -O flags. The 
optimizations performed at level 2 are:

• For inner loops, perform:

• Loop unrolling
• Simple if-conversion
• Recurrence-related optimizations

• Two passes of instruction scheduling

• Global register allocation based on first scheduling pass

• Global optimizations within function scopes:

• Partial redundancy elimination
• Strength reduction and loop termination test replacement
• Dead store elimination
• Control flow optimizations
• Instruction scheduling across basic blocks



7 – Tuning Options
Syntax for Complex Optimizations (-CG, -IPA, -LNO -OPT, -WOPT)

7-2  

• -O2 implies the flag -OPT:goto=on, which enables the conversion of GOTOs 
into higher level structures like FOR loops.

• -O2 also sets -OPT:Olimit=6000

-O3 turns on additional optimizations which will most likely speed your program up, 
but may, in rare cases, slow your program down. The optimizations provided at this 
level includes all -O1 and -O2 optimizations and also includes but is not limited to 
the flags noted below:

• -LNO:opt=1 Turn on Loop Nest Optimization (for more details, see section 7.4)

• -OPT with the following options in the OPT group: (see the -opt man pages for 
more information)

• OPT:roundoff=1 (see section 7.7.4.2)
• OPT:IEEE_arith=2 (see section 7.7.4)
• OPT:Olimit=9000 (see section 6.3)
• OPT:reorg_common=1 (see the eko(7) man page)

NOTE: In our in-house testing, we have noticed that several codes which are 
slower at -O3 than -O2 are fixed by using -O3 -LNO:prefetch=0. This 
seems to mainly help codes that fit in cache.

7.2
Syntax for Complex Optimizations (-CG, -IPA, -LNO -OPT, -WOPT)

The group optimizations control a variety of behaviors and can override defaults. 
This section covers the syntax of these options.

The group options allow for the setting of multiple sub-options in two ways:

• Separating each sub-flag by colons, or
• Using multiple flags on the command line.

For example, the following command lines are equivalent:

pathcc -OPT:roundoff=2:alias=restrict wh.c
pathcc -OPT:roundoff=2 -OPT:alias=restrict wh.c

Some sub-options either enable or disable the feature. To enable a feature, either 
specify only the subflag name or with =1, =ON, or =TRUE. Disabling a feature, is 
accomplished by adding =0, =OFF, or =FALSE. The following command lines mean 
the same thing:

pathf95 -OPT:div_split:fast_complex=FALSE:IEEE_NaN_inf=OFF wh.F
pathf95 -OPT:div_split=1:fast_complex=0:IEEE_NaN_inf=false wh.F



7 – Tuning Options
Inter-Procedural Analysis (IPA)

 7-3

7.3
Inter-Procedural Analysis (IPA)

Software applications are normally written and organized into multiple source files 
that make up the program. The compilation process, usually defined by a Makefile, 
invokes the compiler to compile each source file, called compilation unit, separately. 
This traditional build process is called separate compilation. After all 
compilation units have been compiled into .o files, the linker is invoked to produce 
the final executable.

The problem with separate compilation is that it does not provide the compiler with 
complete program information. The compiler has to make worst-case assumptions 
at places in the program that access external data or call external functions. In whole 
program optimization, the compiler can collect information over the entire program 
so it can make better decision on whether it is safe to perform various optimizations. 
Thus, the same optimization performed under whole program compilation will 
become much more effective. In addition, more types of optimization can be 
performed under whole program compilation than separate compilation.

This section presents the compilation model that enables whole program 
optimization in the PathScale compiler and how it relates to the -ipa flag that 
invokes it at the user level. Various analyses and optimizations performed by IPA 
are described. How IPA improves the quality of the backend optimization is also 
explained. Various IPA-related flags that can be used to tune for program 
performance are presented and described. Finally, we have an example of the 
difference that IPA makes in the performance of the SPEC CPU2000 benchmark 
suite.

7.3.1
The IPA Compilation Model

Inter-procedural compilation is the mechanism that enables whole program 
compilation in the PathScale compiler. The mechanism requires a different 
compilation model than separate compilation. This new mode of compilation is used 
when the -ipa flag is specified.

Whole program compilation requires the entire program to be presented to the 
compiler for analysis and optimization. This is possible only after a link step is 
applied. Ordinarily, the link step is applied to .o files, after all optimization and code 
generation have been performed. In the IPA compilation model, the link step is 
applied very early in the compilation process, before most optimization and code 
generation. In this scenario, the program code being linked are not in the object 
code format. Instead, they are in the form of the intermediate representation (IR) 
used during compilation and optimization. After the program has been linked at the 
IR level, inter-procedural analysis and optimization are applied to the whole 
program. Subsequently, compilation continues with the backend phases to generate 
the final object code.



7 – Tuning Options
Inter-Procedural Analysis (IPA)

7-4  

The IPA compilation model (see Figure 7.1) has been implemented with ease-of-use 
as one of its main objectives. At the user level, it is sufficient to just add the -ipa 
flag to both the compile line and the link line. Thus, users can avoid having to 
re-structure their Makefiles to use IPA. In order to do this, we have to introduce a 
new kind of .o files that we call IPA .o’s. These are .o files in which the program 
code is in the form of IR, and are different from ordinary .o files that contain object 
code. IPA .o files are produced when a file is compiled with the flags -ipa -c. 
IPA .o files can only be linked by the IPA linker. The IPA linker is invoked by adding 
the -ipa flag to the link command. This appears as if it is the final link step. In 
reality, this link step performs the following tasks:

1. Invokes the IPA linker
2. Performs inter-procedural analysis and optimization on the linked program
3. Invokes the backend phases to optimize and generate the object code
4. Invokes the real linker to produce the final executable.

Under IPA compilation, the user will notice that the compilation of separate files 
proceeds very fast, because it does not involve the backend phases. On the other 
hand, the linking phase will appear much slower because it now encompasses the 
compilation and optimization of the entire program.

7.3.2
Inter-procedural Analysis and Optimization

We call the phase that operates on the IR of the linked program IPA, for 
Inter-Procedural Analysis, but its tasks can be divided into two categories:

• Analysis to collect information over the entire program
• Optimization to transform the program so it can run faster

7.3.2.1
Analysis

IPA first constructs the program call graph. Each node in the call graph corresponds 
to a function in the program. The call graph represents the caller-callee relationship 
in the program.

Once the call graph is built, based on different inlining heuristics, IPA prepares a 
list of function calls where it wants to inline the callee into the caller.

Based on the call graph, IPA computes the mod-ref information for the program 
variables. This represents the information as to whether a variable is modified or 
referenced inside a function call.

IPA also computes alias information for all the program variables. Whenever a 
variable has its address taken, it can potentially be pointed to by a pointer. Places 
that dereference or store through the pointer potentially access the variable. IPA’s 
alias analysis keeps track of this information so that in the presence of pointer 



7 – Tuning Options
Inter-Procedural Analysis (IPA)

 7-5

accesses, as few variables are affected as possible so they can be optimized more 
aggressively.

The mod-ref and alias information collected by IPA are not just used by IPA itself. 
The information is also recorded in the program representation so the optimizations 
in the backend phases also benefit.

7.3.3
Optimization

The most important optimization performed by IPA is inlining, in which the call to a 
function is replaced by the actual body of the function. Inlining is most versatile in 
IPA because all the user function definitions are visible to it. Apart from eliminating 
the function call overhead, inlining increases optimization opportunities of the 
backend phases by letting them work on larger pieces of code. For instance, inlining 
may result in the formation of a loop nest that enables aggressive loop 
transformations.

Inlining requires careful benefit analysis because overdoing it may result in 
performance degradation. The increased program size can cause higher instruction 
cache miss rate. If a function is already quite large, inlining may result in the compiler 
running out of registers, so it has to use memory more often, which causes program 
slow-down. In addition, too much inlining can slow down the later phases of the 
compilation process.

Many function calls pass constants (including addresses of variables) as 
parameters. Replacing a formal parameter by its known constant value helps in the 
optimization of the function body. Very often, part of the code of the function can be 
determined useless and deleted. Function cloning creates different clones of a 
function with its parameters customized to the forms of the calls. It provides a subset 
of the benefits of inlining without increasing the size of the function that contains 
the call. Like inlining, it also increases the total size of the program.

If IPA can determine that all the calls pass the same constant parameter, it will 
perform constant propagation for the parameter. This has the same benefit as



7 – Tuning Options
Inter-Procedural Analysis (IPA)

7-6  

Figure 7-1. IPA Compilation Model

function cloning but does not increase the size of the program. Constant propagation 
also applies to global variables. If a global variable is found to be constant throughout 
the entire program execution, IPA will replace the variable by the constant value.

Dead variable elimination finds global variables that are never used over the 
program and deletes them. These variables are often exposed due to IPA’s constant 
propagation.

Dead function elimination finds functions that are never called and deletes them. 
They can be the by-product of inlining and cloning.

Common padding applies to common blocks in Fortran programs. Ordinarily, 
compilers are incapable of changing the layout of the user variables in a common 
block, because this has to be co-ordinated among all the subroutines that use the 
same common block, and the subroutines may belong to different compilation units. 
But under IPA, all the subroutines are available. The padding improves the 

Source Source

Language 
Front-end

IPA .o

IPA

Backend

.o

ld

a.out

Other .o’s, 
.a’s, .so’s

Language 
Front-end

IPA .o

Backend

.o

pathcc -ipa -c

pathcc -ipa *.o



7 – Tuning Options
Inter-Procedural Analysis (IPA)

 7-7

alignments of the arrays so they can be accessed more efficiently and even 
vectorized. The padding can also reduce data cache conflicts during execution.

Common block splitting also applies to common blocks in Fortran programs. This 
splits a common block into a number of smaller blocks which also reduces data 
cache conflicts during execution.

Procedure re-ordering lays out the functions of the program in an order based on 
their call relationship. This can reduce thrashing in the instruction cache during 
execution.

7.3.4
Controlling IPA

Although the compiler tries to make the best decisions regarding how to optimize 
a program, it is hard to make the optimal choice in general. Thus, the compiler 
provides many compilation options so the user can use them to tune for the peak 
performance of his program. This section presents the IPA-related compilation 
options that are useful in tuning programs.

But first, it is worthwhile to mention that IPA is one of the compilation phases that 
can benefit substantially from feedback compilation. In feedback compilation, a 
feedback data file containing a profile of a typical run of the program is presented 
to the compiler. This enables IPA to make better decisions regarding what functions 
to inline and clone. By ensuring that busy callers and callees are placed next to 
each other, IPA’s procedure re-ordering can also be more effective. Feedback 
compilation is enabled by the -fb-create and -fb-opt options. See section 7.6 
for more details.

7.3.4.1
Inlining

There are actually two incarnations of the inliner in the PathScale compiler, 
depending on whether -ipa is specified. This is because inlining is nowadays a 
language feature, and has to be performed independent of IPA. The inliner invoked 
when -ipa is not specified is the lightweight inliner, and it can only operate on a 
single compilation unit. The lightweight inliner does not do automatic inlining. It 
inlines strictly according to the C++ language requirement, C inline keyword or any 
-INLINE options specified by the user. It may be invoked by default. The basic 
options to control inlining in the lightweight inliner are:

-inline or -INLINE causes the lightweight inliner to be invoked when -ipa is not 
specified.

-INLINE:=off suppresses the invocation of the lightweight inliner. The options 
below are applicable to both the lightweight inliner and IPA’s inliner:

-INLINE:all performs all possible inlining. Since this results in code bloat, this 
should only be used if the program is small.



7 – Tuning Options
Inter-Procedural Analysis (IPA)

7-8  

-INLINE:list=ON makes the inliner list its actions on the fly. This is an useful 
option for the user to find out which functions are getting inlined, which functions 
are not being inlined and why. Thus, if the user wants to inline or not inline a function, 
tweaking the inlining controls based on the reasons specified by the output of this 
flag should help.

-INLINE:must=name1[ ,name2,...] forces inlining for the named functions.

-INLINE:never=name1[ ,name2, . . .] suppresses inlining for the named 
functions.

When -ipa is specified, IPA will invoke its own inliner and the lightweight inliner is 
not invoked. IPA’s inliner automatically determines additional functions to inline in 
addition to those that are required. Small callees or callers are favored over larger 
ones. If profile data is available, calls executed more frequently are preferred. 
Otherwise, calls inside loops are preferred. Leaf routines (functions containing no 
call) are also favored. Inlining continues until no more call satisfies the inlining 
criteria, which can be controlled by the inlining options:

-IPA:inline=OFF turns off IPA’s inliner, and the lightweight inliner is also 
suppressed since IPA is invoked. Default is ON.

-INLINE:none turns off automatic inlining by IPA but required inlining implied by 
the language or specified by the user are still performed. By default, automatic 
inlining is turned ON.

IPA:specfile=filename directs the compiler to open the given file to read more 
-IPA: or -INLINE: options.

The following options can be used to tune the aggressiveness of the inliner. Very 
aggressive inlining can cause performance degradation as discussed in 
section 7.3.3.

-OPT:Olimit=N specifies the size limit N, where N is computed from the number 
of basic blocks that make up a function; inlining will never cause a function to exceed 
this size limit. The default is 6000 under -O2 and 9000 under -O3. The value 0 
means no limit is imposed.

-IPA:space=N specifies that inlining should continue until a factor of N% increase 
in code size is reached. The default is 100%. If the program size is small, the value 
of N could be increased.

-IPA:plimit =N suppresses inlining into a function once its size reaches N, 
where N is measured in terms of the number of basic blocks and the number of 
calls inside a function. The default is 2500.

-IPA:small_pu=N specifies that a function with size smaller than N basic blocks 
is not subject to the -IPA:plimit restriction. The default is 30.

-IPA:callee_limit=n specifies that a function whose size exceeds this limit 
will never be automatically inlined by IPA. The default is 500.



7 – Tuning Options
Inter-Procedural Analysis (IPA)

 7-9

-IPA:min hotness =N is applicable only under feedback compilation. A call 
site’s invocation count must be at least N before it can be inlined by IPA. The default 
is 10.

-INLINE:aggressive=ON increases the aggressiveness of the inlining, in which 
more non-leaf and out-of-loop calls are inlined. Default is OFF.

We mentioned that leaf functions are good candidates to be inlined. These functions 
do not contain calls that may inhibit various backend optimizations. To amplify the 
effect of leaf functions, IPA provides two options that exploit its call-tree-based 
inlining feature. This is based on the fact that a function that calls only leaf functions 
can become a leaf function if all of its calls are inlined. This in turn can be applied 
repeatedly up the call graph. In the description of the following two options, a function 
is said to be at depth N if it is never more than N edges from a leaf node in the call 
graph. A leaf function has depth 0.

-IPA:maxdepth=N causes IPA to inline all routines at depth N in the call graph 
subject to space limitation.

-IPA:forcedepth=N causes IPA to inline all routines at depth N in the call graph 
regardless of space limitation.

7.3.5
Cloning

There are two options for controlling cloning:

-IPA:multi_clone=N specifies the maximum number of clones that can be 
created from a single function. The default is 0, which implies that cloning is turned 
OFF by default.

-IPA:node_bloat=N specifies the maximum percentage growth in the number 
of procedures relative to the original program that cloning can produce. The default 
is 100.

7.3.6
Other IPA Tuning Options

The following are options un-related to inlining and cloning, but useful in tuning:
-IPA:common_pad_size=N specifies that common block padding should use pad 
size of up to N bytes. The default value is 0, which specifies that the compiler will 
determine the best padding size.

-IPA:linear=ON enables linearization of array references. When inlining Fortran 
subroutines, IPA tries to map formal array parameters to the shape of the actual 
parameters. The default is OFF, which means IPA will suppress the inlining if it cannot 
do the mapping. Turning this option ON instructs IPA to still perform the inlining but 
linearizes the array references. Such linearization may cause performance 
problems, but the inlining may produce more performance gain.



7 – Tuning Options
Inter-Procedural Analysis (IPA)

7-10  

-IPA:pu_reorder=N controls IPA’s procedure reordering optimization. A value 
of 0 disables the optimization. N = 1 enables reordering based on the frequency 
in which different procedures are invoked. N = 2 enables procedure reordering 
based on caller-callee relationship. The default is 0.

-IPA:field_reorder=ON enables IPA’s field reordering optimization to minimize 
data cache misses. This optimization is based on reference patterns of fields in 
large structs, learned during feedback compilation. The default is OFF.

-IPA:ctype=ON optimizes interfaces to constructs defined in the standard header 
file ctype.h by assuming that the program will not run in a multi-threaded 
environment. The default is OFF.

7.3.6.1
Disabling Options

The following options are for disabling various optimizations in IPA. They are useful 
for studying the effects of the optimizations.

-IPA:alias=OFF disables IPA’s alias and mod-ref analyses

-IPA:addressing=OFF disables IPA’s address-taken analysis, which is a 
component of the alias analysis

-IPA:cgi=OFF disables the constant propagation for global variables (constant 
global identification)

-IPA:cprop=OFF disables the constant propagation for parameters

-IPA:dfe=OFF disables dead function elimination

-IPA:dve=OFF disables dead variable elimination

-IPA:split=OFF disables common block splitting 

7.3.7
Case Study on SPEC CPU2000

This section presents experimental data to show the importance of IPA in improving 
program performance. Our experiment is based on the SPEC CPU2000 benchmark 
suite compiled using release 1.2 of the PathScale compiler. The compiled 
benchmarks are run on a 1.4 GHz Opteron system. Two sets of data are shown 
here. The first set studies the effects of using the single option -ipa. The second 
set shows the effects of additional IPA-related tuning flags on the same files.
Table 7-1. Effects of IPA on SPEC CPU 2000 Performance 

Benchmark Time w/o -ipa Time with -ip
 

Improvement%
164.gzip 170.7 s  164.7 s  3.5%
175.vpr  202.4 s  192.3 s  5%
176.gcc  113.6 s  113.2 s  0.4%



7 – Tuning Options
Inter-Procedural Analysis (IPA)

 7-11

Table 7-1 shows how -ipa effects the base runs of the CPU2000 benchmarks. IPA 
improves the running times of 17 out of the 26 benchmarks; the improvements range 
from 1.3% to 26.6%. There are six benchmarks that improve by less than 0.5%, 
which is within the noise threshold. There are three FP benchmarks that slow down 
from 1.2% to 4.5% due to -ipa. The slowdown indicates that the benchmarks do 
not benefit from the default settings of the IPA parameters. By using additional IPA 

181.mcf 391.9 s 390.8 s 0.3%
186.crafty 83.5 s  83.4 s 0.1%
197.parser  301.4 s 289.3 s  4%
252.eon 152.8 s 126.8 s 17%
253.perlbmk 196.2 s 192.3 s 2%
254.gap 153.5 s 128.6 s 16.2%
255.vortex 175.2 s 132.1 s 24.6%
256.bzip2  210.2 s  181.0 s  13.9%
300.twolf  376.5 s 362.2 s 3.8%
168.wupwise 220.0 s 161.5 s  26.6%
171.swim 181.4 s 180.7 s 0.4%
172.mgrid 184.7 s 182.3 s 1.3%
173.applu  282.5 s  245.2 s  13.2%
177.mesa 155.4 s 131.5 s  15.4%
178.galgel  150.4 s 149.9 s 0.3%
179.art 245.7 s 221.1 s  10%
183.equake  143.7 s 143.2 s  0.3%
187.facerec 154.3 s 147.4 s 4.5%
188.ammp  266.5 s  261.7 s  1.8%
189.lucas  165.9 s 167.9 s  -1.2%
191.fma3d 239.6 s 244.6 s  -2.1%
200.sixtrack  265.0 s 276.9 s  -4.5%
301.apsi 280.7 s 273.7 s 2.5%

Table 7-1. Effects of IPA on SPEC CPU 2000 Performance (Continued)

Benchmark Time w/o -ipa Time with -ip
 

Improvement%



7 – Tuning Options
Inter-Procedural Analysis (IPA)

7-12  

tuning flags, such slowdown can often be converted to performance gain. The 
average performance improvement over all the benchmarks listed in table 7-1 is 6%.

Table 7-2 shows the effects of using additional IPA tuning flags on the peak runs of 
the CPU2000 performance. In the peak runs, each benchmark can be built with its 
own combination of any number of tuning flags. We started with the peak flags of 
the benchmarks used in PathScale’s SPEC CPU2000 submission, and we found 
that five of the benchmarks are using IPA tuning flags. Table 7-1 lists these five 
benchmarks. The second column gives the running times if the IPA-related tuning 
flags are omitted. The third column gives the running times with the IPA-related 
tuning flags. The fifth column lists their IPA-related tuning flags. As this second table 
shows, proper IPA tuning can produce major improvements in applications.

7.3.8
Invoking IPA

Inter-procedural analysis is invoked in several possible ways: -ipa, -IPA, and 
implicitly via -Ofast. IPA can be used with any optimization level, but gives the 
biggest potential benefit when combined with -O3. The -Ofast flag turns on -ipa 
as part of its many optimizations.

When compiling with -ipa the .o files that are created are not regular .o files. IPA 
uses the .o files in its analysis of your program, and then does a second compilation 
using that information to optimize the executable.

The IPA linker checks to see if the entire program is compiled with the same set of 
optimization options. If different optimization options are used, IPA will give a 
warning:

Warning: Inconsistent optimization options detected between files 
involved in

For example, the following invocation will generate this warning for two C files a.c 
and b.c.

Table 7-2. Effects of IPA tuning on some SPEC CPU2000 benchmarks

Bench-
mark

Time: Peak 
flags w/o IPA 

tuning

Time: Peak 
flags with IPA 

tuning
Improve-
ment% IPA Tuning Flags

181.mcf 325.3 s 275.5 s 15.3% -IPA:_eld_reorder=on
197.parser  296.5 s 245.2 s 17.3% -IPA:ctype=on
253.perlbmk 195.1 s  177.7 s 8.9% -IPA:min_hotness=5:

plimit=20000
168.wupwise 147.7 s 129.7 s  12.2% -IPA:space=1000:linear=on 

-IPA:plimit=50000:
callee_limit=5000 
-INLINE:aggressive=on

187.facerec 144.6 s  141.6 s  2.1% -IPA:plimit=1800



7 – Tuning Options
Inter-Procedural Analysis (IPA)

 7-13

~ $ pathcc -O2 -ipa -c a.c
~ $ pathcc -O3 -ipa -c b.c
~ $ pathcc -ipa a.o b.o

The user can pass consistent optimization options to the individual compilations to 
remove the warning. In the above example, the user can either pass -O2 or pass 
-O3 to both the files.

The -ipa flag implies -O2 -ipa because -O2 is the default. Flags like -ipa can 
be used in combination with a very large number of other flags, but some typical 
combinations with the -O flags are shown below:

-O3 -ipa or -O2 -ipa is a typical additional attempt at improved performance 
over the -O3 or -O2 flag alone. -ipa needs to be used both in the compile and in 
the link steps of a build.

Using IPA with your program is usually straightforward. If you have only a few source 
files, you can simply use it like this:

pathf95 -O3 -ipa main.f subs1.f subs2.f

If you compile files separately, the *.o files generated by the compiler do not actually 
contain object code; they contain a representation of the source code. Actual 
compilation happens at link time. The link command also needs the -ipa flag 
added.

For example, you could separately compile and then link a series of files like this:

pathf95 -c -O3 -ipa main.f
pathf95 -c -O3 -ipa subs1.f 
pathf95 -c -O3 -ipa subs2.f
pathf95 -O3 -ipa main.o subs1.o subs2.o

Currently, there is a restriction that each archive (for example libfoo.a) must 
contain either .o files compiled with -ipa or .o files compiled without -ipa, but 
not both.

Note that, in a non-IPA compile, most of the time is incurred with compiling all the 
files to create the object files (the .o’s) and the link step is quite fast. In an IPA 
compile, the creating of . o files is very fast, but the link step can take a long time. 
The total compile time can be considerably longer with IPA than without.

When invoking the final link phase with -ipa (for example, pathcc -ipa -o foo 
*.o), significant portions of this process can be done in parallel on a system with 
multiple processing units. To use this feature of the compiler, use the 
-IPA:max_jobs flag.

Here are the options for the -IPA:max_jobs flag:

-IPA:max_jobs=N This option limits the maximum parallelism when invoking the 
compiler after IPA to (at most) N compilations running at once. The option can take 
the following values:



7 – Tuning Options
Loop Nest Optimization (LNO)

7-14  

0 = The parallelism chosen is equal to either the number of CPUs, the number of 
cores, or the number of hyperthreading units in the compiling system, whichever is 
greatest.

1 = Disable parallelization during compilation (default)

>1 = Specifically set the degree of parallelism

7.3.9
Size and Correctness Limitations to IPA

IPA often works well on programs up to 100,000 lines, but is not recommended for 
use in larger programs in this release.

7.4
Loop Nest Optimization (LNO)

If your program has many nests of loops, you may want to try some of the Loop 
Nest Optimization group of flags. This group defines transformations and options 
that can be applied to loop nests.

One of the nice features of the PathScale compilers is that its powerful Loop Nest 
Optimization feature is invoked by default at -O3. This feature can provide up to a 
10-20x performance advantage over other compilers on certain matrix operations 
at -O3.

In rare circumstances, this feature can make things slower, so you can use 
-LNO:opt=0 to disable nearly all loop nest optimization. Trying to make an -O2 
compile faster by adding -LNO:opt=0 will not work because the -LNO feature is 
only active with -O3 (or -Ofast which implies -O3).

Some of the features that one can control with the -LNO: group are:

• Loop fusion and fission
• Blocking to optimize cache line reuse
• Cache management
• TLB (Translation Lookaside Buffer) optimizations
• Prefetch

In this section we will highlight a few of the LNO options that have frequently been 
valuable.

7.4.1
Loop Fusion and Fission

Sometimes loop nests have too few instructions and consecutive loops should be 
combined to improve utilization of CPU resources. Another name for this process 
is loop fusion.

Sometimes a loop nest will have too many instructions, or deal with too many data 
items in its inner loop, leading to too much pressure on the registers, resulting in 



7 – Tuning Options
Loop Nest Optimization (LNO)

 7-15

spills of registers to memory. In this case, splitting loops can be beneficial. Like 
splitting an atom, splitting loops is termed fission. These are the LNO options to 
control these transformations:

-LNO:fusion=n Perform loop fusion, n: 0 off, 1 conservative, 2 aggressive. Level 
2 implies that outer loops in consecutive loop nests should be fused, even if it is 
found that not all levels of the loop nests can be fused. The default level is 1 (standard 
outer loop fusion), but 2 has been known to benefit a number of well-known codes.

-LNO:fission=n Perform loop fission, n: 0 off, 1 standard, 2 try fission before 
fusion. The default level is 0, but 2 has been known to benefit a number of 
well-known codes.

Be careful with mixing the above two flags, because fusion has some precedence 
overfission: if -LNO:fission=[1 or 2] and -LNO:fusion=[1 or 2] then 
fusion is performed.

-LNO:fusion_peeling_limit=n controls the limit for the number of iterations 
allowed to be peeled in fusion, where n has a default of 5 but can be any 
non-negative integer.

Peeling is done when the iteration counts in consecutive loops is different, but close, 
and several iterations are replicated outside the loop body to make the loop counts 
the same.

7.4.2
Cache Size Specification

The PathScale compilers are primarily targeted at the Opteron CPU currently, so 
they assume an L2 cache size of 1MB. Athlon 64 can have either a 512KB or 1MB 
L2 cache size. If your target machine is Athlon 64 and you have the smaller cache 
size, then setting -LNO:cs2=512k could help. You can also specify your target 
machine instead, using -march=athlon 64. That would automatically set the 
standard machine cache sizes.

Here is the more general description of some of what is available.

-LNO:cs1=n,cs2=n,cs3=n,cs4=n
This option specifies the cache size. n can be 0 or a positive integer followed by 
one of the following letters: k, K, m, or M. These letters specify the cache size in 
Kbytes or Mbytes.

Specifying 0 indicates there is no cache at that level. 

cs1 is the primary cache

cs2 refers to the secondary cache

cs3 refers to memory

cs4 is the disk



7 – Tuning Options
Loop Nest Optimization (LNO)

7-16  

Default cache size for each type of cache depends on your system. Use 
-LIST:options=ON to see the default cache sizes used during compilation.

With a smaller cache, the cache set associativity is often decreased as well. The 
flagset: -LNO:assoc1=n,assoc2=n,assoc3=n,assoc4=n can define this 
appropriately for your system.

Once again, the above flags are already set appropriately for Opteron.

7.4.3
Cache Blocking, Loop Unrolling, Interchange Transformations

Cache blocking, also called ’tiling’, is the process of choosing the appropriate loop 
interchanges and loop unrolling sizes at the correct levels of the loop nests so that 
cache reuse can be optimized and memory accesses reduced. This whole LNO 
feature is on by default, but can be turned off with: -LNO:blocking=off. 
-LNO:blocking_size=n specifies a block size that the compiler must use when 
performing any blocking, where n is a positive integer that represents the number 
of iterations.

-LNO:interchange is on by default, but setting this =0 can disable the loop 
interchange transformation in the loop nest optimizer.

The LNO group controls outer loop unrolling, but the -OPT: group controls inner 
loop unrolling. Here are the major -LNO: flags to control loop unrolling:

-LNO:outer_unroll_max,ou_max=n specifies that the compiler may unroll 
outer loops in a loop nest by up to n per loop, but no more. The default is 10.

-LNO:ou_prod_max=n
Indicates that the product of unrolling levels of the outer loops in a given loop nest 
is not to exceed n, where n is a positive integer. The default is 16.

To be more specific about how much unrolling is to be done, use 
-LNO:outer_unroll,ou=n. This indicates that exactly n outer loop iterations 
should be unrolled, if unrolling is legal. For loops where outer unrolling would cause 
problems, unrolling is not performed.

7.4.4
Prefetch

The LNO group can provide guidance to the compiler about the level and type of 
prefetching to enable. General guidance on how aggressively to prefetch is specified 
by -LNO:prefetch=n, where n=1 is the default level. n=0 disables prefetching in 
loop nests, while n=2 means to prefetch more aggressively than the default.

-LNO:prefetch_ahead=n defines how many cache lines ahead of the current 
data being loaded should be prefetched. The default is n=2 cache lines.



7 – Tuning Options
Code Generation (-CG:)

 7-17

7.4.5
Vectorization

Vectorization is an optimization technique that works on multiple pieces of data at 
once. For example, the compiler will turn a loop computing the mathematical 
function sin() into a call to the vsin() function, which is twice as fast.

The use of vectorized versions of functions in the math library like sin(), cosin() 
is controlled by the flag -LNO:vintr=0|1|2. 0 will turn off vectorization of math 
intrinsics, while 1 is the default. Under -LNO:vintr=2 the compiler will vectorize 
all math functions. Note that vintr=2 could be unsafe in that the vector forms of 
some of the functions could have accuracy problems.

Vectorization of user code (excluding these mathematical functions) is controlled 
by the flag -LNO:simd[=(0|1|2)], which enables or disables inner loop 
vectorization. 0 turns off the vectorizer, 1 (the default) causes the compiler to 
vectorize only if it can determine that there is no undesirable performance impact 
due to sub-optimal alignment, and 2 will vectorize without any constraints (this is 
the most aggressive).

-LNO:simd_verbose=ON prints vectorizer information (from vectorizing user 
code) to stdout. -LNO:vintr_verbose=ON prints information about whether or 
not the math intrinsic functions were vectorized.

See the eko man page for more information.

7.5
Code Generation (-CG:)

The code generation group governs some aspects of instruction-level code 
generation that can have benefits for code tuning.

-CG:gcm=OFF turns off the instruction-level global code motion optimization phase. 
The default is ON.

-CG:load_exe=n specifies the threshold for subsuming a memory load operation 
into the operand of an arithmetic instruction. The value of 0 turns off this 
subsumption optimization. By default this subsumption is performed only when the 
result of the load has only one (n=1) use. This subsumption is not performed if the 
number of times the result of the load is used exceeds the value n, a non-negative 
integer. We have found that load_exe=2 or 0 are occasionally profitable. The 
default for 64-bit ABI and Fortran is n=2; otherwise the default is n=1.

-CG:use_prefetchnta=ON means for the compiler to use the prefetch operation 
that assumes that data is Non-Temporal at All (NTA) levels of the cache hierarchy. 
This is for data streaming situations in which the data will not need to be re-used 
soon. Default is OFF.



7 – Tuning Options
Feedback Directed Optimization (FDO)

7-18  

7.6
Feedback Directed Optimization (FDO)

Feedback directed optimization uses a special instrumented executable to collect 
profile information about the program; for example, it records how frequently every 
if () statement is true. This information is then used in later compilations to tune 
the executable.

FDO is most useful if a program’s typical execution is roughly similar to the execution 
of the instrumented program on its input data set; if different input data has 
dramatically different if () frequencies, using FDO might actually slow down the 
program. This section also discusses how to invoke this feature with the 
-fb-create and -fb-opt flags.

NOTE: If the -fb-create and -fb-opt compiles are done with different 
compilation flags, it may or may not work, depending on whether the 
different compilation flags cause different code to be seen by the phase 
that is performing the instrumentation/feedback. We recommend using 
the same flags for both instrumentation and feedback.

FDO requires compiling the program at least twice. In the first pass:

pathcc -O3 -ipa -fb-create fbdata -o foo foo.c

The executable foo will contain extra instrumentation library calls to collect 
feedback information; this means foo will actually run a bit slower than normal. We 
are using fbdata for the file name in this example; you can use any name for your 
file.

Next, run the program foo with an example dataset:

./foo <typical_input_data>

During this run, a file with the prefix "fbdata" will be created, containing feedback 
information. The file name you use will become the prefix for your output file. For 
example, the output file from this example dataset might be named 
fbdata.instr0.ab342. Each file will have a unique string as part of its name so 
that files can’t be overwritten.

To use this data in a subsequent compile:

pathcc -O3 -ipa -fb-opt fbdata -o foo foo.c

This new executable should run faster than a non-FDO foo, and will not contain 
any instrumentation library calls.

Experiment to see if FDO provides significant benefit for your application.

More details on feedback compilation with the PathScale compilers can be found 
under the -fb-create and -fb-opt options in the eko man page.



7 – Tuning Options
Aggressive Optimizations

 7-19

7.7
Aggressive Optimizations

The PathScale Compiler Suite, like all modern compilers, has a range of 
optimizations. Some produce identical program output to the original, some can 
change the program’s behavior slightly. The first class of optimizations is termed 
"safe" and the second "unsafe". As a general rule, our -O1,-O2,-O3 flags only 
perform "safe" optimizations. But the use of "unsafe" optimizations often can 
produce a good speedup in a program, while producing a sufficiently accurate result.

Some “unsafe” optimizations may be “safe” depending on the coding practices used. 
We recommend first trying "safe" flags with your program, and then moving on to 
"unsafe" flags, checking for incorrect results and noting the benefit of unsafe 
optimizations.

Examples of unsafe optimizations include the following.

7.7.1
Alias Analysis

Both C and Fortran have occasions where it is possible that two variables might 
occupy the same memory. For example, in C, two pointers might point to the same 
location, such that writing through one pointer changes the value of the variable 
pointed to by another. While the C standard prohibits some kinds of aliasing, many 
real programs violate these rules, so the aliasing behavior of the compiler is 
controlled by the -OPT:alias flag. See section 7.7.4.2 for more information.

Aliases are hidden definitions and uses of data due to:

• Accesses through pointers
• Partial overlap in storage locations (e.g. unions in C)
• Procedure calls for non-local objects
• Raising of exceptions

The compiler normally has to assume that aliasing will occur. The compiler does 
alias analysis to identify when there is no alias, so later optimizations can be 
performed. Certain C and C++ language rules allow some levels of alias analysis. 
Fortran has additional rules which make it possible to rule out aliasing in more 
situations: subroutine parameters have no alias, and side effects of calls are limited 
to global variables and actual parameters.

For C or C++, the coding style can help the compiler make the right assumptions. 
Using type qualifiers such as const, restrict, or volatile can help the 
compiler. Furthermore, if you supply some assumptions to make concerning your 
program, more optimizations can then be applied. The following are some of the 
various aliasing models you can specify, listed in order of increasingly stringent, 
and potentially dangerous, assumptions you are telling the compiler to make about 
your program:



7 – Tuning Options
Aggressive Optimizations

7-20  

-OPT:alias=any the default level, which implies that any two memory references 
can be aliased.

-OPT:alias=typed means to activate the ANSI rule that objects are not aliased 
it they have different base types. This option is activated by -Ofast.

-OPT:alias=unnamed assumes that pointers never to point to named objects.

-OPT:alias=restrict tells the compiler to assume that all pointers are restricted 
pointers and point to distinct non-overlapping objects. This allows the compiler to 
invoke as many optimizations as if the program were written in Fortran. A restricted 
pointer behaves as though the C ’restrict’ keyword had been used with it in the 
source code.

-OPT:alias=disjoint says that any two pointer expressions are assumed to 
point to distinct, non-overlapping objects.

To make the opposite assertion about your program’s behavior, put ’no_’ before the 
value. For example, -OPT:alias=no_restrict means that distinct pointers 
may point to overlapping storage.

Additional -OPT:alias values are relevant to Fortran programmers in some 
situations:

-OPT:alias=cray_pointer asserts that an object pointed to by a Cray pointer 
is never overlaid on another variable’s storage. This flag also specifies that the 
compiler can assume that the pointed-to object is stored in memory before a call to 
an external procedure and is read out of memory at its next reference. It is also 
stored before a END or RETURN statement of a subprogram.

OPT:alias=parm promises that Fortran parameters do not alias to any other 
variable. This is the default. no_parm asserts that parameter aliasing is present in 
the program.

7.7.2
Numerically Unsafe Optimizations

Rearranging mathematical expressions and changing the order or number of 
floating point operations can slightly change the result. Example:

A = 2. * X
B = 4. * Y
C = 2. * (X + 2. * Y)

A clever compiler will notice that C = A + B. But the order of operations is different, 
and so a slightly different C will be the result. This particular transformation is 
controlled by the -OPT:roundoff flag, but there are several other numerically 
unsafe flags.

Some options that fall into this category are:

The options that control IEEE behavior such as -OPT:roundoff=N and 
-OPT:IEEE_arithmetic=N. Here are a couple of others:



7 – Tuning Options
Aggressive Optimizations

 7-21

-OPT:div_split=(ON |OFF) This option enables or disables transforming 
expressions of the form X/Y into X* (1/Y). The reciprocal is inherently less 
accurate than a straight division, but may be faster.

-OPT:recip=(ON |OFF) This option allows expressions of the form 1/X to be 
converted to use the reciprocal instruction of the computer. This is inherently 
less accurate than a division, but will be faster.

These options can have performance impacts. For more information, see the e ko 
manual page. You can view the manual page by typing man eko at the command 
line.

7.7.3
Fast-math Functions

When -OPT:fast_math=on is specified, the compiler uses fast versions of math 
functions tuned for the processor. The affected math functions include log, exp, 
sin, cos, sincos, expf, and pow. In general, the accuracy is within 1 ulp of the 
fully precise result, though the accuracy may be worse than this in some cases. 
The routines may not raise IEEE exception flags. They call no error handlers, and 
denormal number inputs/outputs are typically treated as 0, but may also produce 
unexpected results. -OPT:fast_math=on is effected when -OPT:roundoff is 
set to 2 or above,

A different flag -ffast-math improves FP speed by relaxing ANSI & IEEE rules. 
-fno-fast-math tells the compiler to conform to ANSI and IEEE math rules at 
the expense of speed. -ffast-math implies -OPT:IEEE_arithmetic=2 
-fno-math-errno, while -fno-fast-math implies 
-OPT:IEEE_arithmetic=1 -fmath-errno. These flags apply to all languages.

Both -OPT:fast_math=on and -ffast-math are implied by -Ofast.

7.7.4
IEEE 754 Compliance

It is possible to control the level of IEEE 754 compliance through options. Relaxing 
the level of compliance allows the compiler greater latitude to transform the code 
for improved performance. The following subsections discuss some of those 
options.

7.7.4.1
Arithmetic

Sometimes it is possible to allow the compiler to use operations that deviate from 
the IEEE 754 standard to obtain significantly improved performance, while still 
obtaining results that satisfy the accuracy requirements of your application.



7 – Tuning Options
Aggressive Optimizations

7-22  

The flag regulating the level of conformance to ANSI/IEEE 754-1985 floating 
pointing roundoff and overflow behavior is:

-OPT:IEEE_arithmetic=N (where N= 1, 2, or 3).

-OPT:IEEE_arithmetic

=1 Requires strict conformance to the standard

=2 Allows use of any operations as long as exact results are produced. This allows 
less accurate inexact results. For example, X*0 may be replaced by 0, and X/X 
may replaced by 1 even though this is inaccurate when X is +inf, -inf, or NaN. 
This is the default level at -O3.

=3 Means to allow any mathematically valid transformations. For example, 
replacing x/y by x*(recip (y) ).

For more information on the defaults for IEEE arithmetic at different levels of 
optimization, see Table 7.3.

7.7.4.2
Roundoff

Use -OPT:roundoff= to identify the extent of roundoff error the compiler is allowed 
to introduce:

0 No roundoff error

1 Limited roundoff error allowed

2 Allow roundoff error caused by re-associating expressions

3 Any roundoff error allowed

The default roundoff level with -O0, -O1, and -O2 is 0. The default roundoff level 
with -O3 is 1.

Listing some of the other -OPT: sub-options that are activated by various roundoff 
levels can give more understanding about what the levels mean.

- OPT:roundoff=1 implies:

• -OPT:fast_exp=ON This option enables optimization of exponentiation by 
replacing the run-time call for exponentiation by multiplication and/or square root 
operations for certain compile-time constant exponents (integers and halves).

• -OPT:fast_trunc implies inlining of the NINT, ANINT, AINT, and AMOD Fortran 
intrinsics.

-OPT:roundoff=2 turns on the following sub-options:

• -OPT:fold_reassociate which allows optimizations involving re-association 
of floating-point quantities.



7 – Tuning Options
Aggressive Optimizations

 7-23

-OPT:roundoff=3 turns on the following sub-options:

• -OPT:fast_complex When this is set ON, complex absolute value (norm) and 
complex division use fast algorithms that overflow for an operand (the divisor, in 
the case of division) that has an absolute value that is larger than the square 
root of the largest representable floating-point number.

• -OPT:fast_nint uses a hardware feature to implement single and 
double-precision versions of NINT and ANINT

7.7.5
Other Unsafe Optimizations

A few advanced optimizations intended to exploit some exotic instructions such as 
CMOVE (conditional move) result in slightly changed program behavior, such as 
programs which write into variables guarded by an if () statement. For example:

if (a .eq. 1) then
a=3

endif

In this example, the fastest code on an x86 CPU is code which avoids a branch by 
always writing a; if the condition is false, it writes a’s existing value into a, else it 
writes 3 into a. If a is a read-only value not equal to 1, this optimization will cause 
a segmentation fault in an odd but perfectly valid program.

7.7.6
Assumptions About Numerical Accuracy

See the following table for the assumptions made about numerical accuracy at 
different levels of optimization.

Table 7-3. Numerical Accuracy with Options
-OPT: option name -O0 -O1 -O2 -O3 -Ofast Notes

div_split off off off off on onif IEEE_a=3

fast_complex off off off off off onifroundoff=3

fast_exp off off off on on onifroundoff>=1

fast_nint off off off off off onifroundoff=3

fast_s qrt off off off off off

fast_trunc off off off on on onifroundoff>=1

fold_reassociate off off off off on onifroundoff>=2

fold_unsafe_relops on on on on on

fold_unsigned_relops off off off off off

IEEE_arithmetic 1 1 1 2 2



7 – Tuning Options
Hardware Performance

7-24  

For example, if you use -OPT:IEEE_arithmetic at -O3, the flag is set to 
IEEE_arithmetic=2 by default.

7.7.6.1
Flush-to-Zero Behavior

The processor hardware which implements IEEE floating point arithmetic generally 
runs faster if it is allowed to generate zero rather than a denormalized number when 
an arithmetic operation underflows. Therefore, at optimization level -O3, the 
PathScale compiler allows this behavior, which is commonly known as flush to zero.

The flush-to-zero behavior is controlled by the -OPT:IEEE_arith= flag. Setting 
it to either 2 or 3 will result in flush-to-zero. The -OPT:IEEE_arith= flag defaults 
to 1 under -O0/-O1/-O2 and it defaults to 2 under -O3, as seen in the table above.

The compilation flag works by generating instructions to do the setting at the entry 
to main().

During runtime, it can be further set by the IEEE_SET_UNDERFLOW_MODE Fortran 
intrinsic found in the intrinsic module IEEE_ARITHMETIC:

! Gradual underflow means "produce denormalized numbers"
USE,INTRINSIC :: IEEE_ARITHMETIC
CALL IEEE_SET_UNDERFLOW_MODE(GRADUAL=.TRUE.)

7.8
Hardware Performance

Although the x86_64 platform has excellent performance, there are a number of 
subtleties in configuring your hardware and software that can each cause substantial 
performance degradations. Many of these are not obvious, but they can reduce 
performance by 30% or more at a time. We have collected a set of techniques for 
obtaining best performance described below.

7.8.1
Hardware Setup

There is no "catch all" memory configuration that works best across all systems. 
We have seen instances where the number, type, and placement of memory 
modules on a motherboard can each affect the memory latency and bandwidth that 
you can achieve.

IEEE_NaN_inf off off off off off

recip off off off off on onifroundoff>=2
roundoff 0 0 0 1 2
fast_math off off off off off onifroundoff>=2

rsqrt 0 0 0 0 1 1 ifroundoff>=2

Table 7-3. Numerical Accuracy with Options



7 – Tuning Options
Hardware Performance

 7-25

Most motherboard manuals have tables that document the effects of memory 
placement in different slots. We recommend that you read the table for your 
motherboard, and experiment.

If you fail to set up your memory correctly, this can account for up to a factor-of-two 
difference in memory performance. In extreme cases, this can even affect system 
stability.

7.8.2
BIOS Setup

Some BIOSes allow you to change your motherboard’s memory interleaving 
options. Depending on your configuration, this may have an effect on performance.

For a discussion of memory interleaving across nodes, see section 7.8.3 below.

7.8.3
Multiprocessor Memory

Traditional small multiprocessor (MP) systems use symmetric multiprocessing 
(SMP), in which the latency and bandwidth of memory is the same for all CPUs.

This is not the case on Opteron multiprocessor systems, which provide non-uniform 
memory access, known as NUMA. On Opteron MP systems, each CPU has its own 
direct-attached memory. Although every CPU can access the memory of all others, 
memory that is physically closest has both the lowest latency and highest bandwidth. 
The larger the number of CPUs, the higher will be the latency and the lower the 
bandwidth between the two CPUs that are physically furthest apart.

Most multiprocessor BIOSes allow you to turn on or off the interleaving of memory 
across nodes. Memory interleaving across nodes masks the NUMA variation in 
behavior, but it imposes uniformly lower performance. We recommend that you turn 
node interleaving off.

7.8.4
Kernel and System Effects

To achieve best performance on a NUMA system, a process or thread and as much 
as possible of the memory that it uses must be allocated to the same single CPU. 
The Linux kernel has historically had no support for setting the affinity of a process 
in this way.

Running a non-NUMA kernel on a NUMA system can result in changes in 
performance while a program is running, and non-reproducibility of performance 
across runs. This occurs because the kernel will schedule a process to run on 
whatever CPU is free without regard to where the process’s memory is allocated.

Recent kernels have some degree of NUMA support. They will attempt to allocate 
memory local to the CPU where a process is running, but they still may not prevent 
that process from later being run on a different CPU after it has allocated memory. 



7 – Tuning Options
Hardware Performance

7-26  

Current NUMA-aware kernels do not migrate memory across NUMA nodes, so if a 
process moves relative to its memory, its performance will suffer in unpredictable 
ways.

Note that not all vendors ship NUMA-aware kernels or C libraries that can interface 
to them. If you are unsure of whether your kernel supports NUMA, check with your 
distribution vendor.

7.8.5
Tools and APIs

Recent Linux distributions include tools and APIs that allow you to bind a thread or 
process to run on a specific CPU. This provides an effective workaround for the 
problem of the kernel moving a process away from its memory.

Your Linux distribution may come with a package called schedutils, which 
includes a program called taskset. You can use taskset to specify that a 
program must run on one particular CPU.

For low-level programming, this facility is provided by the sched_setaffinity 
(2) call in the C library. You will need a recent C library to be able to use this call.

On systems that lack NUMA support in the kernel, and on runs that do not set 
process affinity before they start, we have seen variations in performance of 30% 
or more between individual runs.

7.8.6
Testing Memory Latency and Bandwidth

To test your memory latency and bandwidth, we recommend two tools.

For memory latency, the LMbench package provides a tool called lat_mem_rd. 
This provides a cryptic, but fairly accurate, view of your memory hierarchy latency.

LMbench is available from http://www.bitmover.com/lmbench/

For measuring memory bandwidth, the STREAM benchmark is a useful tool. 
Compiling either the Fortran or C version of the benchmark with the following 
command lines will provide excellent performance:

$ pathf95 -Ofast stream_d.f second_wall.c -DUNDERSCORE
$ pathcc -Ofast -lm stream_d.c second_wall.c

(If you do not compile with at least -O3, performance may drop by 40% or more.)

The STREAM benchmark is available from http://www. streambench.org/

For both of these tools, we recommend that you perform a number of identical runs 
and average your results, as we have observed variations of more than 10% 
between runs.



7 – Tuning Options
The pathopt2 Tool

 7-27

7.9
The pathopt2 Tool

The pathopt2 tool is used to iteratively test different options and option 
combinations by compiling a set of application source code files, measuring the 
performance of the executable and tracking the results. The best options are 
obtained from the output of these runs and are used to adaptively tune successive 
runs, yielding the best set of compiler options for a given combination of application 
code, data set, hardware, and environment. A sorted list of execution times is 
produced for each run.

The tool uses an XML option configuration file that defines one or more execution 
targets. Each execution target specifies options to try and indicates how they are 
to be combined into a series of tests. In general, using pathopt2 involves these 
steps:

1. Run pathopt2 using an execution target in the supplied option configuration 
file.

2. Interpret the results.

3. Choose a more detailed execution target based on the results from the first run, 
and repeat the process until the best compiler options are found.

The pathopt2 tool can be completely driven from its command line, or it can 
alternatively use scripts to build and test the programs. Scripts are useful for more 
complex runs, for interfacing to existing build and test mechanisms, and for 
automating the process. For a standard installation, the program pathopt2 is located 
in:

/opt/pathscale/bin

This is the same directory that contains pathcc, pathCC, pathf95, pathf90, 
and so on.

An option configuration file, pathopt2.xml, is provided. The default location is:

/opt/pathscale/share/pathopt2/pathopt2.xml

See section 7.9.3 for details on this file format. Sample programs are found in:

/opt/pathscale/share/pathopt2/examples

In the following sections we review the command syntax, the option configuration 
file structure, and general usage information. Step-by-step examples show how to 
use the different features of pathopt2.



7 – Tuning Options
The pathopt2 Tool

7-28  

7.9.1
A Simple Example

An example is provided here to show basic usage of pathopt2. In this example 
you will copy a test program into your working directory, and then run pathopt2 
with the options file and the test program.

Copy the program factorial.c from 
/opt/pathscale/share/pathopt2/examples into your own working 
directory. factorial.c is a program that calculates a table of 50,000 factorials, 
from 1! to 50000! You can now run this simple example by typing:

$ pathopt2 -f pathopt2.xml -t try5 \
-r ./factorial pathcc @ -o factorial factorial.c

NOTE: If you do not have ’.’ set in your PATH, you need to use ’./factorial’ 
to run this command from the current working directory. The PATH for the 
program pathopt2 is the same as for pathcc, etc., and should already 
be set correctly. See the PathScale Compiler Suite and Subscription 
Manager Install Guide for general information on setting your PATH.

You should see a list of output summarizing the result of all the runs. The first set 
of flags are listed in the order in which they were run. This is followed by a summary 
table which sorts the same output by time, from fastest to slowest. Sample output 
from this run is shown below:

From these results, we see that the best option from this run is -O3 -OPT:Ofast. 
The next sections will discuss details on usage, command line options, and the 
configuration file format.

Flagsb Build Test Real User System

-O2 PASS PASS 2.83 2.82 0.00

-O3 PASS PASS 2.39 2.39 0.00

-O3 -ipa PASS PASS 2.40 2.40 0.01

-O3 -OPT:Ofast PASS PASS 2.37 2.38 0.00

-Ofast PASS PASS 2.38 2.38 0.00

Sorted summary from all runs:

Flags Build Test Real User System

-O3 -OPT:Ofast PASS PASS 2.37 2.38 0.00

-Ofast PASS PASS 2.38 2.38 0.00

-O3 PASS PASS 2.39 2.39 0.00

-O3 -ipa PASS PASS 2.40 2.40 0.01

-O2 PASS PASS 2.83 2.82 0.00



7 – Tuning Options
The pathopt2 Tool

 7-29

7.9.2
pathopt2 Usage

Basic usage is as follows:

pathopt2 [-n num_iterations] [-f configfile] [-t execute_target]
[-r test_command] [-S real|user|system] build_command @ [args] ...

The command line above shows the most commonly used options; for the complete 
list of options, see Table 7.4. The pathopt2 tool runs build_command with the 
provided arguments and using additional options as specified in configfile. The build 
command can be an PathScale invocation command (pathcc, pathf 95, pathCC), 
a make command, or a script which eventually invokes the compiler, perhaps via a 
make command. The character @ is replaced in the command with the list of options 
from the configfile being considered. The configfile is typically the provided 
pathopt2.xml file, although you can write your own. The execute_target 
parameter specifies the execution target from the configfile. The 
test_command parameter is the command to run the program and can be replaced 
with a script. The program is expected to return a status value of 0 to indicate 
success, or a non-zero status to indicate failure.

The -S option specifies the metric used for comparing performance:

• real: the elapsed real time (this is the default).
• user: the CPU time spent executing in user mode.
• system: the CPU time spent executing in system mode.
• timing-file: to use a file containing a timing value.
• rate-file: to use a file containing a rate value.

The chosen metric is used to guide the choices made by the pathopt2 algorithms 
when selecting options for the best performance, and is used to sort the final output.

The interpretation of real, user and system time is the same as the time( 1) 
command. real is equivalent to wall-clock time. An application may switch back 
and forth between user and kernel mode so these components are factored 
separately into user and system times. Since the O/S is typically time-slicing 
between many processes, the sum of user and system does not necessarily equal 
real since other processes could also have run. The default metric used when 
comparing the performance of one set of options with another is real time. All 3 
times will be displayed in the output.

Additionally, pathopt2 allows arbitrary performance metrics to be used to guide 
option selection using the timing-file and rate-file choices. When either of these 
options is used, pathopt2 sets an environment variable called 
PSC_METRIC_FILE with the name of a temporary file before running the command. 
The run command is required to write the performance metric into this file before it 
terminates. The pathopt2 tool then opens this file, reads a value from the file as 
a double-precision floating-point number, and deletes the temporary file. The only 
interpretation placed on these values is that smaller is better for timing, and that 



7 – Tuning Options
The pathopt2 Tool

7-30  

larger is better for rate. The actual units of the values do not matter as far as 
pathopt2 is concerned since it just performs comparisons on the values.

Using the above usage as a guide, we can now summarize the simple command 
from the previous section:

$ pathopt2 -f pathopt2.xml -t try5 \
-r ./factorial pathcc @ -o factorial factorial.c

This example directs pathopt2 to use pathopt2.xml as the configuration file. 
The build command pathcc @ -o factorial factorial.c is used for the 
building phase where option “@” is iteratively replaced with the rules specified in 
the try5 subset within the configuration file pathopt2.xml. The “@” character 
must be included somewhere in the build command since this is the mechanism by 
which the chosen optimization options are propagated to the build command. Finally, 
. /factorial is used as the test_command.

For simple cases, the -o flag can be omitted, and the default executable output 
a.out can be used as the test_command:

$ pathopt2 -f pathopt2.xml -t try5 \
-r ./a.out pathcc @ factorial.c

NOTE: The order of the options in the command line does not matter. However, 
the required build_command comes last since it may have an arbitrary 
number of options and arguments of its own. When the -f option is not 
specified pathopt2 will use the file pathopt2.xml if it is present in the 
current working directory, otherwise it will use the default pathopt2.xml 
that ships with the software.

The pathopt2 available options are given in Table7.4. You can also type:

$ pathopt2 -h

on the command line to get usage information.

Table 7-4. pathopt2 Options 
Option Description Default

-D Do not redirect I/O to 
/dev/null

This is useful for 
debugging problems 
with the compilation, 
the run, or the build 
and test scripts.

All I/O from the build and 
test commands will be sent 
to /dev/null under the 
assumption that the 
program will build and run 
cleanly.



7 – Tuning Options
The pathopt2 Tool

 7-31

-f con figfile The -f option is used to 
specify the filename of 
the pathopt2 XML 
configuration file.

If it is not specified the tool 
will first check for a file 
called pathopt2.xml in 
the current working 
directory and use it if 
present, otherwise the tool 
will use the file 
<install_path> 
/pathscale/share/pa
thopt2 /pathopt2.xml

-g external_con figfile Loads in additional 
user-defined 
configfile(s). This 
allows a user to extend 
the pathopt2.xml 
file without having to 
modify it.

-h Show usage
-j Number of jobs 1
-k Keep temporary 

directory (with -T)
Remove temporary 
directory

-M Directory name ’pwd’
-n num_iterations Number of iterations to 

run on each option
1

-r test_command Test script If this option is not specified 
then there is no test run, 
and the performance of the 
build command is used. 
This is useful when the 
program is built and run in 
one step, and the timing-file 
or rate-file mechanism is 
used to report the 
performance.

-S|real |user |system |

timing_file

|rate_file

Selects the 
performance metric for 
choosing options and 
for sorting the results

real

-t execute_target Use 
execute_target, 
which corresponds to 
an <execute> tag 
found in configfile.

The first target in 
configfile

Table 7-4. pathopt2 Options (Continued)



7 – Tuning Options
The pathopt2 Tool

7-32  

7.9.3
Option Configuration File

The PathScale Compiler Suite includes pathopt2.xml, a pre-configured option 
configuration file found in /opt/pathscale/share/pathopt2/ that contains 
about 200 test flags and options. This XML file specifies a tree of options to try. A 
small set of tags and attributes are used. The file supports many common 
combinations of options in a framework that enables pathopt2 to adapt as it runs. 
pathopt2.xml can be used on its own, or as a framework for creating a custom 
configuration file. More than one configuration can be described in a single file.

A single configuration in pathopt2.xml consists of two parts:

• A list of options. This list is contained within a <define> tag. This list can also 
contain any number of <option>, <choose>, or <append> tags.

• An execute target. This is a set of rules that accesses the named options list via 
the <source/> tag. The execute target can use multiple <source/> tags in 
order to combine different lists of options. It can also contain <option> or 
<append> tags.

An execute target can be addressed on the command line using the -t option. By 
default, pathopt2 runs only the first execute target in a configuration file. The 
following is a listing of the try5_list and the try5 execute target in the default 
pathopt2.xml file. try5 is typically the first target to use when testing options 
with pathopt2.

<define name="try5_list"> 
<option> -O2 </option> 
<option> -O3 </option>

<choose k="1">
<append>
<option> -O3 </option>
<choose k="1">
<option> -ipa </option> 
<option> -OPT:Ofast </option>

</choose>

-T Run script in 
temporary directory

Do not use a temporary 
directory

-v Generate more 
verbose output

-w columns Number of columns to 
use in formatting 
output

40

-X Don’t print out a 
summary table

Table 7-4. pathopt2 Options (Continued)



7 – Tuning Options
The pathopt2 Tool

 7-33

</append>
</choose>
<option> -Ofast </option>

</define>

<execute name="try5">
<choose k="1">
<source from="try5_list"/>
</choose>

</execute>

The first two options, -02 and -03 are run in order. Next, the -03 option is appended 
to both -ipa and -OPT:Ofast. Finally, -Ofast is used. This ordering is shown in 
the first part of the pathopt2 output when try5 is the target:

Flags Build Test Real User System

-O2 PASS PASS 2.83 2.82 0.00

-O3 PASS PASS 2.39 2.39 0.00

-O3 -ipa PASS PASS 2.40 2.40 0.01

-O3 -OPT:Ofast PASS PASS 2.37 2.38 0.00

-Ofast PASS PASS 2.38 2.38 0.00



7 – Tuning Options
The pathopt2 Tool

7-34  

Table 7.5: Tags for option configuration file

Table 7-5. Tags for Option Configuration Fle 
Tag Description

<config>

...

</config>

Main body tag describing the configuration. All other 
tags and attributes must reside inside this tag.

<execute name="name">

...

</execute

Specifies an execute target, and must contain at 
least one <source/> tag that references a 
previously defined <define> tag. May also contain 
<option> or <append> tags. Specify execute 
targets on the command line using -t name.

<option> ... </option> Describes a single option. Surround the content for 
this option in space characters to ensure 
differentiation, e.g.
<option> -Ofast </option>

rather than
<option>-Ofast< /option>

<choose k=" k"

[hoist="true"]>

...

</choose>

Choose the best option among those provided within 
this tag. The k="k" attribute specifies the number 
of choices to run iteratively. If k is given as a range 
separated by a colon, e.g. k="0:2" pathopt2 
chooses among that number of options, inclusive, 
e.g. between 0 and 2 options. The optional 
hoist="true" attribute merges the lists returned 
by the children of the <execute> tag into the list for 
that tag. By default, <choose> picks combinations 
only from directly-related children.

<append>

<option>.. . < /option>

...

</append>

The first option described within this tag is appended 
to the test stream for the remaining options. The 
following instructs pathopt2 to find the best option 
between "-O3 -ipa" and "-O3 -OPT:Ofast", but not 
any of these options singly:
<append>

<option> -O3 </option>

<choose k="1">

<option> -ipa </option>

<option> -OPT:Ofast </option>

</choose>

</append>



7 – Tuning Options
The pathopt2 Tool

 7-35

NOTE: All tags other than <source/> require an end tag (e.g. <append> 
requires a corresponding </append>).

7.9.4
Testing Methodology

Typically, the execute target try5 in pathopt2.xml is used first with the 
pathopt2 command. After the results of the run are available, you can look for the 
fastest result of the 5 options, and then run pathopt2 again with a new execute 
target. The next set of refinements in the execute targets are the options with the 
“peak_” prefix. For example, if the best results were obtained with -O2, then the 
next target to try will be peak_02. Here is a summary of the target usage:

This progressive refinement is shown in more detail in section 7.9.8.3 and 
section 7.9.8.4.

7.9.5
Using an External Configuration File to Modify pathopt2.xml

It is possible to build hierarchies of lists and to construct new execution targets by 
combining existing ones. The way to do this without modifying pathopt2.xml is 
to create an external configuration file, then use the -g option in the pathopt2 

<define name="name">

...

</define>

Defines a block of options that can be later included 
using the <source from="name"/> tag. Note that 
this block can include any number of <option>, 
<choose>, or <append> tags.

<source from="name"/> Includes a block of options previously defined with 
<define>.

<bestof k="k">

<context>... </context>

<option>...< /option>

<option>...</option>

</bestof>

Choose the best option in the list, referenced by run 
time and chosen in the context of the option listed in 
the <context> tag. The k option is used as 
described for the <choose> tag. <context> 
specifies an option to use as a basis for testing, but 
not to propagate to outside tags.

<!-- comment --> Standard XML comment tag, ignored by the parser.

Option in try5 with best results Use this target for next run
-O2 peak_O2

-O3 peak_O3

-O3 -OPT:Ofast peak_O3

-O3 -ipa peak_O3

-Ofast peak_Ofast

Table 7-5. Tags for Option Configuration Fle (Continued)



7 – Tuning Options
The pathopt2 Tool

7-36  

command line to load it in. The XML files are processed in order as if they were 
concatenated. The -g option can be repeated to load in more than one file. The 
-t option chooses the execution target as before. The rules for using the -f option 
remain the same. Here is an example of an external configuration file that extends 
the try5_list with a 6th possibility:

<config>
<execute name="try6">
<choose k="1">
<source from="try5_list"/>
<option> -O1 </option>
</choose>

</execute>
</con fig>

7.9.6
PSC_GENFLAGS Environment Variable

The pathopt2 tool arranges that the specified options are passed through as 
arguments to the build command using the expansion of the “@” character on the 
pathopt2 command line. Usually these options will then be explicitly passed to the 
compiler, either directly or via a Makefile variable such as CFLAGS or FFLAGS. 
Alternatively, the PathScale compilers will also process options from the 
PSC_GENFLAGS environment variable. This provides a way to implicitly pass the 
pathopt2 selected options to the compiler through existing scripts and Makefiles 
without their modification. Note that pathopt2 itself does not set the value of 
PSC_GENFLAGS but it can be easily achieved using a shell script as the build 
command and using the syntax:

export PSC_GENFLAGS="$*"

7.9.7
Using Build and Test Scripts

The first example was run without build or test scripts. However, scripts provide 
added flexibility to pathopt2. Here are three common reasons for using a build 
script:

• You might need to cd to another directory before issuing the make command.

• There may be several directories you need to go to to complete the build.

• There may be no ’make clean’ target, so you need a ’rm * . o’ command 
before the make command.



7 – Tuning Options
The pathopt2 Tool

 7-37

There are several reasons for using a test script:

• pathopt2 can’t handle a complicated program run command with whitespace 
in it.

• You may need to cd to another directory before running the program.

• You want to take advantage of the -S rate-file or -S timing-file feature; 
that requires some grep and sed commands to isolate the number in the output 
to use as the performance metric of interest: e.g. a megaflops number in the 
rate-file case.

The next sections provide examples of a Makefile, build and test scripts and the 
rate and timing files.

7.9.8
The NAS Parallel Benchmark Suite

Next is a concrete example with measurable results. The NAS Parallel Benchmark 
(NPB) suite is commonly used for both serial and parallel benchmarking. It consists 
of a set of dissimilar pieces of applications illustrating the various numerical 
techniques used by NASA’s high performance applications. The benchmark comes 
with several data set sizes, with W being a "workstation" size (smallest), and A and 
B being two sizes appropriate to a cluster or supercomputer-size problem. Thes 
examples uses the Class A data set.

Several examples will be provided, showing usage in a step-by-step mannner. By 
following these steps, you will get a better idea of how pathopt2 works.

7.9.8.1
Set Up the Workarea

The NAS Parallel Benchmark Suite (NPB) can be downloaded by going to:

http: //www/nas/nasa . gov/Software/NPB
and following the links to the file. Download the file to a writable working directory. 
Then:

$ tar zxf NPB2.3.tar.gz
$ cd NPB2.3/NPB2.3-SER/config
$ cp /opt/pathscale/share/pathopt2/examples/make.def .
$ cd ..

7.9.8.2
Example 1-Run with Makefile

This shows the simplest use of the application with a Makefile. There are no 
optimization flags in the make.def file we supply. All optimization flags are sent 
from pathopt2 to the compiler by propagating the value of“@” from the pathopt2 
command line to the CFLAGS and FFLAGS Makefile variables.



7 – Tuning Options
The pathopt2 Tool

7-38  

The command will now look like this:

$ pathopt2 -t try5 -r bin/ft.A \
make clean ft CLASS=A FFLAGS="@"

Note that we omitted the - f pathopt2.xml option in this example. As mentioned 
previously, when this option is omitted, pathopt2 will use the file pathopt2.xml 
if it is present in the current working directory, otherwise it will use the default 
pathopt2.xml that ship with the software.

Output from the run should be similar to the following. Only the sorted summary is 
shown here:

7.9.8.3
Example 2-Use Build/Run Scripts and a Timing File

Next, let’s assume that we want to do our pathopt2 work in a sub-directory of 
NPB2 .3-SER to avoid littering the top-level directory with scripts and, possibly, 
output files.

$ mkdir pathopt2 
$ cd pathopt2
$ mkdir logs

logs is where we will keep a copy of the last run of the ft.A executable. Copy the 
two scripts, psc_build and psc_test from 
/opt/pathscale/share/pathopt2/examples into the pathopt2 directory. 
The scripts are shown below:

For psc_build:

#! /bin/sh
cd ..
make clean
code=$ 1 si z e= $2 shift 2
make $code CLASS=$size FFLAGS="$*"
cd pathopt2

For psc_test:

#! /bin/sh
../bin/ft.A > logs/ft.A.txt

Sorted summary from all runs:

Flags Build Test Real User System

-O3 -OPT:Ofast PASS PASS 12.74 12.38 0.36

-O3 -ipa PASS PASS 12.77 12.31 0.45

-O3 PASS PASS 12.79 12.42 0.37

-Ofast PASS PASS 13.66 13.19 0.47

-O2 PASS PASS 14.50 14.12 0.38



7 – Tuning Options
The pathopt2 Tool

 7-39

Make the files executable and then run pathopt2:
$ chmod +x psc_*

$ pathopt2 -t try5 -r ./psc_test ./psc_build ft A @

Note that the first argument to the psc_build script is the name of the code, the 
second argument is the problem size and all remaining arguments are the 
optimization options. This matches the code in the psc_build script that interprets 
the arguments.

The output will be similar to the following:

It is useful to check the output in logs/ft .A. txt:

:

Since -Ofast runs last in the try5 target, the output in this file corresponds to the 
12.68 real or 12.27 user times from the -Ofast run. The reason the "Time in 
seconds" output by NPB is considerably lower than 12.68 is that it measures the 
time for the main work section of the program, ignoring the start-up and array 
initialization time. For the parallel versions of NPB, it is appropriate to ignore the 
initialization since that time does not improve when more processes are used in the 
computation.

This “Time in seconds” and “Mop/s total” (millions of operations per 
second) from the NPB benchmarks turn out to be useful metrics for testing 
optimization. The -S timing-file and rate-file features can be used to 
search for the “Time in seconds” or the “Mop/s total” metrics. In this next 

Sorted summary from all runs:

Flags Build Test Real User System

-O3 -ipa PASS PASS 12.67 12.23 0.44

-Ofast PASS PASS 12.68 12.27 0.40

-O3 -OPT:Ofast PASS PASS 12.83 12.39 0.44

-O3 PASS PASS 13.86 12.46 0.40

-O2 PASS PASS 14.53 14.14 0.39

FT Benchmark completed:

Class = A

Size = 256x256x128

Iterations = 6

Time in seconds = 10.78

Mop/s total = 662 .05

Operation type = floating point

Verification = SUCCESSFUL

Version = 2.3



7 – Tuning Options
The pathopt2 Tool

7-40  

example we will use the timing-file option. See section 7.9.8.4 for information on 
the rate-file option.

This "Time in seconds" output can be used as pathopt2’s sorting criterion, 
by using the -S timing-file option. However, the psc_build script has to be 
enhanced to be able to isolate the number after the "Time in seconds =" part 
of the output. Here is how to do this in a script (found in 
/opt/pathscale/share/pathopt2/examples) called psc_test2:

#! /bin/sh
../bin/ft.A > logs/ft.A.txt
grep "in sec" logs/ft.A.txt > secs.log
sed -e ’s/Time in seconds = //’ secs.log > $PSC_METRIC_FILE grep 
SUCCESSFUL logs/ft.A.txt

NOTE: pathopt2 checks the result status of the build command/script and of 
the run command/script. A zero status indicates that the build or run was 
successful, while a non-zero status indicates failure. If running the 
program indicates its status in some other way, this must be detected by 
a script and reflected in the script’s return status. In the example above, 
the grep SUCCESSFUL line is a way to pass the NPB correctness test 
results to pathopt2. The grep will have a status of 0 if the output contains 
this phrase, and this will be the status of the whole shell script since this 
is the last command.

Next, make the file executable and run pathopt2:

$ chmod +x psc_test2

$ pathopt2 -S timing-file -t try5 -r ./psc_test2 \ 

./psc_build ft A @

The sorted summary will be similar to the following:

Since -O3 -ipa was the fastest in the try5 target, we can run pathopt2 again 
with the peak_O3 target:
$ pathopt2 -S timing-file -t peak_O3 -r ./psc_test2 \ 

./psc_build ft A @

Sorted summary from all runs:

Flags Build Test Time

-O3 -ipa PASS PASS 10.87

-Ofast PASS PASS 10.87

-O3 -OPT:Ofast PASS PASS 11.01

-O3 PASS PASS 11.02

-O2 PASS PASS 11.82



7 – Tuning Options
The pathopt2 Tool

 7-41

In the truncated sorted summary, we can see that there is some improvement with 
the new options:

7.9.8.4
Example 3-Using a Single Script with the rate-file

With some applications or benchmarks, it is more convenient to combine building 
and testing into one script. In this case, you must use the -S 
timing-file|rate-file feature, so that you don’t use the combined compile 
and run time as your sorting criterion to find the best solutions. Sometimes, the 
options that produce the fastest executable take more compile time.

One advantage of using a single script is that it is easier to parameterize, and 
requires less editing. For example, you can pass in another benchmark executable 
name from the command line rather than having to edit the name in the psc_test 
script.

We will use -S rate-file this time rather than timing-file. The use of rate-file 
means that we need to use grep/sed commands in the script below that differ 
from those in psc_test2 above.

You can copy the file compile-go-rate from 
/opt/pathscale/share/pathopt2/examples into your working directory. It 
is show here:

#! /bin/sh
cd ..
make clean
code=$1
size=$2
shift 2
make $code CLASS=$size FFLAGS="$*"
cd pathopt2
../bin/$code.$size > logs/$code.$size.txt
grep "Mop" logs/$code.$size.txt >secs.log

Sorted summary from all runs:

Flags Build Test Time

-O3 -OPT: unroll_times_max=8 
-CG:load_
exe=0 -LNO : interchange=off
-CG: local_fwd_sched=on

PASS PASS 10.33

-O3 -OPT: unroll_times_max=8 
-CG:load_
exe=0 -LNO : interchange=off
-OPT:unroll_times_max=16

PASS PASS 10.45

-03 -OPT:unroll_times_max=8 PASS PASS 10.47

-03 -OPT:unroll_times_max=8 PASS PASS 10.47



7 – Tuning Options
The pathopt2 Tool

7-42  

sed -e ’s/ Mop\/s total = //"\
secs.log > $PSC_METRIC_FILE

grep SUCCESSFUL logs/$1.$2.txt

Make the file executable and run pathopt2:

$ chmod +x compile-go-rate
$ pathopt2 -S rate-file -t try5 \

./compile-go-rate ft A @

Since -Ofast produced the best results in the sorted summary, we can now try the 
target peak_Ofast.

$ pathopt2 -S rate-file -t peak_Ofast \
/compile-go-rate ft A @

A truncated listingof the output shows the top fixe results for this run:

In a situation like this, with a near tie at the top, one would normally use the simpler 
flag set for production:

Ofast -CG:prefetch=off -CG:load_exe=0

Sorted summary from all runs:

Flags Build Test Rate

-Ofast PASS PASS 662.60

-O3 -ipa PASS PASS 662.37

-O3 PASS PASS 655.03

-O3 -OPT:Ofast PASS PASS 654.30

-O2 PASS PASS 603.43

Sorted summary from all runs:

Flags Build Test Rate

-Ofast -CG:prefetch=off 
-CG:load_exe=0
-OPT:unroll_size=256

PASS PASS 702.72

-Ofast -CG:prefetch=off 
-CG:load_exe=0

PASS PASS 702.17

-Ofast -msse3 -CG:load_exe=0
-LNO:interchange=off 
-OPT:unroll_size=256

PASS PASS 696.36

-Ofast -CG:prefetch=off -msse
-CG:load_exe=0
-LNO:interchange=off

PASS PASS 695.08

-Ofast -msse3 -CG:load_exe=0
-LNO:interchange=off

694.48



7 – Tuning Options
How Did the Compiler Optimize My Code?

 7-43

which can be shortened to:

Ofast -CG:prefetch=off:load_exe=0

7.10
How Did the Compiler Optimize My Code?

Often you may want to know what the compiler did to optimize your code. There 
are several ways to generate a listing showing (by line number) what the compiler 
did to optimize a subroutine. Choose the one that seems most useful to you.

7.10.1
Using the -S flag

The -S flag can be a useful way to see what the compiler did, especially if you 
understand some assembly, but it is useful even if you don’t. Here is an example, 
using the STREAM benchmark. First we compile STREAM with the -S flag:

$ pathcc -O3 stream_d.c -S

This produces a stream_d.s assembly file. In this file you can see sections of 
human-readable comments interspersed with sections of assembly code, that look 
something like this:

#<loop> Loop body line 118, nesting depth: 1, iterations: 250000 
#<loop> unrolled 4 times
#<sched>
#<sched> Loop schedule length: 13 cycles (ignoring nested loops) 
#<sched>
#<sched> 4 flops ( 15% of peak)
#<sched> 8 mem refs ( 30% of peak)
#<sched> 3 integer ops ( 11% of peak)
#<sched> 15 instructions ( 28% of peak)
#<sched>
#<freq> BB:60 frequency = 250000.00000 (heuristic)
#<freq> BB:60 => BB:60 probability = 0.99994
#<freq> BB:60 => BB:59 probability = 0.00006
#,freq>

.loc 1 120 0
# 119 for (j = 0; j < N; j++)
# 120 a[ j] = 2.0E0 * a[ j];
movapd 0 (%r8), %xmm3 # [0] id:82 a+0x0
movapd 16 (%r8), %xmm2 # [1] id:82 a+0x0
addpd %xmm3, %xmm3 # [4]
addpd %xmm32 %xmm2 # [5]
movapd 32(%r8), %xmm1 # [2] id:82 a+0x0
movapd 48(%r8), %xmm0 # [3] id:82 a+0x0
addpd %xmm1, %xmm1 # [6]
addpd %xmm0, %xmm0 # [7]
movntpd %xmm3, 0(%r8) # [9] id:83 a+0x0 
movntpd %xmm2, 16(%r8) # [10] id:83 a+0x0



7 – Tuning Options
How Did the Compiler Optimize My Code?

7-44  

addq $64, %r8 # [8]
movntpd %xmm1, -32(%r8) # [11] id:83 a+0x0
cmpq %rbp, %r8 # [11]
movntpd %xmm0, -16(%r8) # [12] id:83 a+0x0 
jle .LBB60_main # [12]

Note the "unrolled 4 times" comment above and the original source in comments, 
which tell you what the compiler did, even if you can’t read x86 assembly code.

7.10.2
Using -CLIST or -FLIST

You can use -CLIST:=on (for C codes) or -FLIST:=on for Fortran codes to see 
what the compiler is doing. On the same STREAM source code, compile with the 
-CLIST flag:

$ pathcc -O3 -CLIST:=ON -c stream_d.c

The output will look something like this:

/opt/pathscale/lib/2 .3. 99/be translates /tmp/ccI. 16xQZJ into
stream.w2c.h and stream.w2c.c, based on source stream.c

When you look at stream_d.w2c.c with an editor, you might see some pretty 
strange looking C code. In this case, there doesn’t seem to be much optimizing 
going on, but in codes where LNO (Loop Nest Optimization) is more important, you 
would see a lot of the optimizations.

7.10.3
Verbose Flags

You can also turn on verbose flags in LNO to see vectorization activity. You would 
do this with the -LNO:simd_verbose flag in the compile line:

$ pathcc -O3 -LNO:simd_verbose -c stream_d.c

The output might look something like this:

(stream_d.c:103) LOOP WAS VECTORIZED.

(stream_d.c:119) LOOP WAS VECTORIZED.
(stream_d.c:142) LOOP WAS VECTORIZED.
(stream_d.c:147) LOOP WAS VECTORIZED.
(stream_d.c:152) LOOP WAS VECTORIZED.
(stream_d.c:157) LOOP WAS VECTORIZED.
(stream_d.c:164) Nonvectorizable ops/non-unit stride.

Loop was not vectorized.
(stream_d.c:211) Nonvectorizable ops/non-unit stride.

Loop was not vectorized.

This would tell you more about what the compiler is doing with loops. You can also 
try the -LNO:vintr_verbose flag on the compile line:

$ pathcc -O3 -LNO:vintr_verbose -c stream_d.c



7 – Tuning Options
How Did the Compiler Optimize My Code?

 7-45

In this case the output doesn’t tell you much. No output because there are no intrinsic 
functions to get vectorized in STREAM.



7 – Tuning Options
How Did the Compiler Optimize My Code?

7-46  



 8-1

Section 8      
Using OpenMP and Autoparallelization

The PathScale Compiler Suite includes OpenMP and autoparallelization for Fortran 
and C/C++.

This implementation of OpenMP supplies parallel directives that comply with the 
OpenMP Application Program Interface (API) specification 2.5. Runtime libraries 
and environment variables are also included. This section is not a tutorial on how 
to use OpenMP. To learn more about using OpenMP, please see a reference like 
Parallel Programming in OpenMP (by Rohit Chandra, et al; Morgan Kaufmann 
Publishers, 2000. ISBN 1-55-860671-8). See section 8.15 for more resources.

8.1
OpenMP

The OpenMP API defines compiler directives and library routines that make it 
relatively easy to create programs for shared memory computers (processors that 
share physical memory) from new or existing code. OpenMP provides a 
portable/scalable interface that has become the de facto standard for programming 
shared memory computers. Using OpenMP you can create threads, assign work 
to threads, and manage data within the program.

OpenMP enables incremental parallelization of your code on SMP (shared memory 
processor) systems, allowing you to add directives to chunks of existing code a little 
at a time.

The PathScale OpenMP implementation in Fortran and C/C++ consists of 
parallelization directives and libraries. Using directives, you can distribute the work 
of the application over several processors.

OpenMP supports the three basic aspects of parallel programming: Specifying 
parallel execution, communicating between multiple threads, and expressing 
synchronization between threads.

The OpenMP runtime library automatically creates the optimal number of threads 
to be executed in parallel for the multiple processors on the platform where the 
program is being run. If you are running the program on a system with only one 
processor, you will not see any speedup. In fact, the program may run slower due 
to the overhead in the synchronization code generated by the compiler. For best 
performance, the number of threads should typically be equal to the number of 
processors you will be using.

The amount of speedup you can get under parallel execution depends a great deal 
on the algorithms used and the way the OpenMP directives are used. Programs 



8 – Using OpenMP and Autoparallelization
Autoparallelization

8-2  

that exhibit a high degree of coarse grain parallelism can achieve significant 
speedup as the number of processors are increased.

Appendix B describes the implementation dependent behavior for PathScale’s 
OpenMP in C/C++ and Fortran. For more information on OpenMP and the OpenMP 
specification, please see the OpenMP website at

http://www.openmp.org.

8.2
Autoparallelization

Under autoparallelization, the compiler tries to parallelize program code without 
depending on user directives. Autoparallization is invoked by specifying the -apo 
option on the compile and link lines:

$ pathf95 ... -apo .... -c foo.F95
$ pathf95 ... -apo .... -o foobar foo.o bar.o ...

Since the compiler is only able to parallelize a subset of the loops that the user 
knows are parallelizable, OpenMP directives are always helpful. OpenMP directives 
are not seen by the compiler unless -mp is specified. Thus, for programs that 
contain OpenMP directives, autoparallelization can be combined with OpenMP to 
additionally parallelize code that does not contain OpenMP directives. In this case 
it is good to specify the -apo and -mp options together.

$ pathf95 ... -apo -mp .... -c foo.F95
$ pathf95 ... -apo -mp .... -o foobar foo.o bar.o ...

Other than the OpenMP directives, the compiler currently does not implement any 
additional directives to help the compiler in its autoparallelization analysis.

Many codes benefit from autoparallelization and the extent of the benefit may vary 
with the characteristics of the program and data set being used. There are cases 
where autoparallelization causes small performance degradation of an application. 
This happens because an autoparallelized program runs under multiple threads. 
The runtime decision to create multiple threads, followed by their synchronization, 
are overhead during execution.

When the compiler parallelizes a loop, it generates both a serial and a parallel 
version. At runtime, the generated code looks at the total amount of work performed 
by the loop and decides whether to execute the serial or the parallel version. This 
decision can only be made at runtime when the number of processors and the loop 
iteration counts are available. If the amount of work is not large enough to justify 
the additional synchronization overhead, it will execute the serial version instead. 
In such cases, the performance will be slower than if the program is not compiled 
with -apo, due to the need to make this decision at run time.

The synchronization overhead can be controlled using the 
-LNO:parallel_overhead option. The value of this option is the compiler’s 
estimate of the overhead in processor cycles in invoking the parallel version of a 



8 – Using OpenMP and Autoparallelization
OpenMP Compiler Directives (Fortran)

 8-3

loop. This value affects the runtime decision on whether to execute the serial or 
parallel versions. Because the optimal value varies across systems and programs, 
this option can be used for parallel performance tuning under -apo. For more 
information on this option, see the eko man page.

8.3
Getting Started With OpenMP

To use OpenMP, you need to add directives where appropriate, and then compile 
and link your code using the -mp flag. This flag tells the compiler to honor the 
OpenMP directives in the program and process the source code guarded by the 
OpenMP conditional compilation sentinels (e.g. ! $ for Fortran and #pragma for 
C/C++). The actual program execution is also affected by the way the OpenMP 
Environment Variables (see section 8.9) are set.

The compiler will generate different output that causes the program to be run in 
multiple threads during execution. The output code is linked with the PathScale 
OpenMP Runtime Library for execution under multiple threads. See the Fortran 
code in section 8.12 and the C/C++ code in section 8.13 for examples.

Because the OpenMP directives tell the compiler what constructs in the program 
can be parallelized, and how to parallelize them, it is possible to make mistakes in 
the inserted OpenMP code that will result in incorrect execution. As long as all the 
OpenMP-related code is guarded by conditional compilation sentinels (e.g. ! $ or 
#pragma), you can re-compile the same program without the -mp flag. In these 
cases, the resulting executable will run serially. If the error no longer occurs, you 
can conclude that the problems in the parallel execution are due to mistakes in the 
OpenMP part of the code, making the problem easier to track down and fix.

See section 10.11 for more tips on troubleshooting OpenMP problems.

8.4
OpenMP Compiler Directives (Fortran)

The OpenMP directives for Fortran all start with comment characters followed by 
$OMP or $omp. They are only processed by the compiler if -mp is specified.

NOTE: Possible comment characters that can be used include !, C, c, and *. In 
the following examples we use ! as the comment character. The Open 
MP standard dictates that for fixed-form Fortran, !$OMP directives must 
begin in the first column of the line.

Some of the OpenMP directives also support additional clauses. The following table 
lists the Fortran compiler directives provided by version 2.0 of the OpenMP Fortran 
Application Program Interface.



8 – Using OpenMP and Autoparallelization
OpenMP Compiler Directives (Fortran)

8-4  

Table 8-1. Fortran Compiler Directives 
Directive Clauses Example

Parallel region construct
Defines a parallel region
PARALLEL !$OMP parallel [clause] ...

structured-block

!$OMP end parallel

PRIVATE

SHARED

DEFAULT
(FIRSTPRIVATE/
SHARED/ NONE)

REDUCTION

COPYIN

IF

NUM_THREADS

Work sharing constructs
Divide the execution of the enclosed block of code among the members of the team that 
encounter it
DO (NOWAIT) !$OMP do [clause] ...

do-loop
!$OMP enddo [nowait]

PRIVATE

FIRSTPRIVATE

LAST PRIVATE

REDUCTION

SCHEDULE

(static, dynamic,
guided, runtime)
ORDERED

SECTIONS !$OMP sections [ clause]...
structured-block
!$OMP end sections [nowait]

PRIVATE

FIRSTPRIVATE

LAST PRIVATE

REDUCTION



8 – Using OpenMP and Autoparallelization
OpenMP Compiler Directives (Fortran)

 8-5

SINGLE !$OMP single [clause]...
structured-block
!$OMP end single [nowait]

PRIVATE

FIRSTPRIVATE

CO PYPRIVATE

Combined parallel work sharing constructs
Shortcut for denoting a parallel region that contains only one work-sharing construct
PARALLEL DO !$OMP parallel do

structured-block
!$OMP end parallel do

PARALLEL 
SECTIONS

!$OMP parallel sections
structured-block
!$OMP end parallel sections

PARALLEL 
WORKSHARE

!$OMP parallel workshare
structured-block
!$OMP end parallel workshare

Synchronization constructs
Provide various aspects of synchronization; for example, access to a block of code or 
execution order of statements within a block of code
ATOMIC !$OMP atomic

expression-statement

BARRIER !$OMP barrier

CRITICAL !$OMP critical [ (name)]
structured-block
!$OMP end critical [(name)]

FLUSH !$OMP flush [ (list)]

MASTER !$OMP master
structured-block
!$OMP end master

ORDERED !$OMP ordered
structured-block
!$OMP end ordered

Data environments
Control the data environment during the execution of parallel constructs
THREADPRIVATE !$OMP threadprivate (/c1/, /c2/)

WORKSHARE !$OMP workshare

Table 8-1. Fortran Compiler Directives (Continued)
Directive Clauses Example



8 – Using OpenMP and Autoparallelization
OpenMP Compiler Directives (C/C++)

8-6  

8.5
OpenMP Compiler Directives (C/C++)

#pragmaThe OpenMP directives for C and C++ all start with #pragma. They are 
only processed by the compiler if -mp is specified.

Some of the OpenMP directives also support additional clauses. The following table 
lists the C and C++ compiler directives provided by version 2.0 of the OpenMP 
C/C++ Application Program Interface.

Table 8-2. C/C++ Compiler Directives 
Directive Clauses Example

Parallel region construct
Defines a parallel region
PARALLEL #pragma omp parallel [clause] ...

structured-block

PRIVATE

SHARED

FIRSTPRIVATE
DEFAULT
(SHARED/ NONE)

REDUCT ION

COPYIN

IF

NUM_THREADS

Work sharing constructs
Divide the execution of the enclosed block of code among the members of the team that 
encounter it
FOR NOWAIT #pragma omp for [clause] ...

for-loop

PRIVATE

FIRSTPRIVATE

LASTPRIVATE

REDUCTION

SCHEDULE
(static, dynamic, 
guided, runtime)
ORDERED

SECTIONS NOWAIT #pragma omp sections [clause] ...
structured-block

PRIVATE



8 – Using OpenMP and Autoparallelization
OpenMP Runtime Library Calls (Fortran)

 8-7

8.6
OpenMP Runtime Library Calls (Fortran)

OpenMP programs can explicitly call standard routines implemented in the OpenMP 
runtime library. If you want to ensure the program is still compilable without -mp, 
you need to guard such code with the OpenMP conditional compilation sentinels 

FIRSTPRIVATE

LASTPRIVATE

REDUCTION

SINGLE NOWAIT #pragma omp single [clause]...
structured-block

PRIVATE

FIRSTPRIVATE

COPYPRIVATE

Combined parallel work sharing constructs
Shortcut for denoting a parallel region that contains only one work-sharing construct
PARALLEL FOR #pragma omp parallel for 

structured-block

PARALLEL
SECTIONS

#pragma omp parallel sections 
structured-block

Synchronization constructs
Provide various aspects of synchronization; for example, access to a block of code or 
execution order of statements within a block of code
ATOMIC #pragma omp atomic

expression-statement

BARRIER #pragma omp barier

CRITICAL #pragma omp critical (name) ]
structured-block

FLUSH #pragma omp flush [ (list) ]

MASTER #pragma omp master
tructured-block

ORDERED #pragma omp ordered
structured-block

Data environments
Control the data environment during the execution ofparallel constructs
THREADPRIVATE #pragma omp threadprivate

Table 8-2. C/C++ Compiler Directives (Continued)
Directive Clauses Example



8 – Using OpenMP and Autoparallelization
OpenMP Runtime Library Calls (Fortran)

8-8  

(e.g. ! $). The following table lists the OpenMP runtime library routines provided by 
version 2.0 of the OpenMP Fortran Application Program Interface.

Table 8-3. Fortran OpenMP Runtime Library Routines 
Routine Description

call 
omp_set_num_threads(integer)

Set the number of threads to use in a team.

integer omp_get_num_threads () Return the number of threads in the currently 
executing parallel region.

integer omp_get_max_threads () Return the maximum value that 
omp_get_num_threads may return.

integer omp_get_thread_num () Return the thread number within the team.

integer omp_get_num_procs () Return the number of processors available 
to the program.

call omp_set_dynamic (logical) Control the dynamic adjustment of the 
number of parallel threads.

logical omp_get_dynamic () Return . TRUE. if dynamic threads is 
enabled, otherwise return . FALSE.

logical omp_in_parallel () Return . TRUE. for calls within a parallel 
region, otherwise return . FALSE.

call omp_set_nested (logical) Enable or disable nested parallelism.

logical omp_get_nested () Return . TRUE. if nested parallelism is 
enabled, otherwise return . FALSE.

Lock routines
omp_init_lock (int) Allocate and initialize lock, associating it with 

the lock variable passed in as a parameter.
omp_init_nest_lock (int) Initialize a nestable lock and associate it with 

a specified lock variable.
omp_set_lock  (int) Acquire the lock, waiting until it becomes 

available if necessary.
omp_set_nest_lock(int) Set a nestable lock. The thread executing 

the subroutine will wait until a lock becomes 
available and then set that lock, 
incrementing the nesting count.

omp_unset_lock (int) Release the lock, resuming a waiting thread 
(if any).

omp_unset_nest_lock (int) Release ownership of a nestable lock. The 
subroutine decrements the nesting count 
and releases the associated thread from 
ownership of the nestable lock.



8 – Using OpenMP and Autoparallelization
OpenMP Runtime Library Calls (C/C++)

 8-9

8.7
OpenMP Runtime Library Calls (C/C++)

OpenMP programs can explicitly call standard routines implemented in the OpenMP 
runtime library. If you want to ensure the program is still compilable without -mp, 
you need to guard such code with the OpenMP conditional compilation sentinels 
(e.g. #pragma). The following table lists the OpenMP runtime library routines 
provided by version 2.1 of the OpenMP C/C++ Application Program Interface.

logical omp_test_lock (int) Try to acquire the lock, return TRUE if 
successful, FALSE if not.

omp_test_nest_lock (int) Attempt to set a lock using the same method 
as omp_set_nest_lock but execution 
thread does not wait for confirmation that the 
lock is available. If lock is successfully set, 
function in- crements the nesting count, if 
lock is unavailable, function returns a value 
of zero.

omp_get_wtime Returns double precision value equal to the 
number of seconds since the initial value of 
the operating system real-time clock.

omp_get_wtick Returns double precision floating point value 
equal to the number of seconds between 
successive clock ticks.

Table 8-4. C/C++ OpenMP Runtime Library Routines 
Routine Description

void omp_set_num_threads (int) Set the number of threads to use in a team.

int omp_get_num_threads (void) Return the number of threads in the currently 
executing parallel region.

int omp_get_max_threads (void) Return the maximum value that 
omp_get_num_threads may return.

int omp_get_thread_num (void) Return the thread number within the team.

int omp_get_num_procs (void) Return the number of processors available to 
the program.

void omp_set_dynamic (int) Control the dynamic adjustment of the number 
of parallel threads.

int omp_get_dynamic (void) Return a non-zero value if dynamic threads 
is enabled, otherwise return 0.

int omp_in_parallel (void) Return a non-zero value for calls within a 
parallel region, otherwise return 0.

Table 8-3. Fortran OpenMP Runtime Library Routines (Continued)
Routine Description



8 – Using OpenMP and Autoparallelization
Runtime Libraries

8-10  

8.8
Runtime Libraries

There are both static and dynamic versions of each library, and the libraries are 
supplied in both 64-bit and 32-bit versions.

void omp_set_nested (int) Enable or disable nested parallelism.

int omp_get_nested (void) Return a non-zero value if nested 
parallelism is enabled, otherwise return 0.

Lock routines
omp_init_lock (omp_lock_t *) Allocate and initialize lock, associating it with 

the lock variable passed in as a parameter.
omp_init_nest_lock(omp_nest_
lock_t *)

Initialize a nestable lock and associate it with 
a specified lock variable.

omp_set_lock (omp_lock_t *) Acquire the lock, waiting until it becomes 
available if necessary.

omp_set_nest_lock(omp_nest_lock

_t *)

Set a nestable lock. The thread executing the 
subroutine will wait until a lock becomes avail- 
able and then set that lock, incrementing the 
nesting count.

omp_unset_lock (omp_lock_t *) Release the lock, resuming a waiting thread 
(if any).

omp_unset_nest_lock Release ownership of a nestable lock. The 
sub- routine decrements the nesting count 
and releases the associated thread from 
ownership of the nestable lock.

(omp_nest_lock_t *)

int omp_test_lock (omp_lock_t *) Try to acquire the lock, return a non-zero 
value if successful, 0 if not.

omp_test_nest_lock(omp_nest_
lock_t *)

Attempt to set a lock using the same method 
as omp_set_nest_lock but execution 
thread does not wait for confirmation that the 
lock is available. If lock is successfully set, 
function in- crements the nesting count and 
returns the new nesting count, if lock is 
unavailable, function returns a value of zero.

double omp_get_wtime (void) Returns double precision value equal to the 
number of seconds since the initial value of 
the operating system real-time clock.

double omp_get_wtick (void) Returns double precision floating point value 
equal to the number of seconds between 
successive clock ticks.

Table 8-4. C/C++ OpenMP Runtime Library Routines (Continued)
Routine Description



8 – Using OpenMP and Autoparallelization
Environment Variables

 8-11

The libraries are:

/opt/pathscale/lib/<version>/libopenmp.so 
-dynamic 64-bit

/opt/pathscale/lib/<version>/libopenmp.a
-static 64-bit

/opt/pathscale/lib/<version>/32/libopenmp.so
-dynamic 32-bit

/opt/pathscale/lib/<version>/32/libopenmp.a
-static 32-bit

The symbolic links to the dynamic versions of the libraries, for both 32-bit and 64-bit 
environments can be found here:

/opt/pathscale/lib/<version>/libopenmp.so.1
-symbolic link to dynamic version, 64-bit 

/opt/pathscale/lib/<version>/32/libopenmp.so.1
-symbolic link to dynamic version, 32-bit

Be sure to use the -mp flag on both the compile and link lines.

NOTE: For running OpenMP executables compiled with the PathScale compiler, 
on a system where no PathScale compiler is currently installed, please 
see the PathScale Compiler Suite Install Guide for instructions on 
installing the PathScale libraries on the target system.

8.9
Environment Variables

The OpenMP environment variables allow you to change the execution behavior of 
the program running under multiple threads. The table in this section lists the 
environment variables currently supported.

The environment variables can be set using the shell commands. For example, in 
bash:

export OMP_NUM_THREADS=4

In csh:

setenv OMP_NUM_THREADS 4

After the previous shell commands, the following command will print 4:

echo $OMP_NUM_THREADS 4

section 8.9.1 lists the available environment variables (both Standard and 
PathScale) for use with OpenMP.



8 – Using OpenMP and Autoparallelization
Environment Variables

8-12  

8.9.1
Standard OpenMP Environment Variables

8.9.2
PathScale OpenMP Environment Variables

The PathScale OpenMP environment variables provide addtional control over 
thread scheduling through processor affinity.

Processor affinity is used to specify the preferred processor or subset of processors 
for scheduling a thread. An affinity setting might be made in order to bind a thread 
close to a resource and to prevent the kernel from rescheduling the thread to another 
processor further away from that resource. The resource might be cache memory, 
main memory, or an i/o device, for example. Note that there is a tension between 
affinity and load balancing, since specifying affinities may prevent the kernel 
scheduler from balancing the workload over the processors. The policy of the kernel 
scheduler determines whether affinity or load balance prevails in cases of conflict. 
Affinity is particularly important on NUMA (non-uniform memory architectures) since 
memory access latency and bandwidth may vary based on the relative locations of 
the processor and memory.

The affinity mechanism is often specific to a particular OS or kernel, and the following 
discussion is relevant to most modern Linux distributions and kernels though details 
may still vary. A processor here refers to a CPU core, and this might be a 
conventional single-core processor, a CPU core in a multi-core processor or a 
hyper-threaded CPU core. Affinity can be specified at the thread level allowing 
distinct threads in a process to have different settings. By default the affinity of a 
thread is usually set to all available CPU cores on the system, which allows the 
kernel to schedule that thread freely. Typically affinity is inherited by a child process 

Table 8-5. Standard OpenMP Environment Variables
Variable Possible Values Description

OMP_DYNAMIC FALSE Enables or disables dynamic adjustment of 
the number of threads available for 
execution. Default is FALSE, since this 
mechanism is not supported.

OMP_NESTED TRUE OR FALSE Enables or disables nested parallelism. 
Default is FALSE.

OMP_SCHEDULE type [, chunk] This environment variable only applies to DO 
and PARALLEL_DO directives that have 
schedule type RUNTIME. Type can be 
STATIC, DYNAMIC, or GUIDED. Default is 
STATIC, with no chunk size specified.

OMP_NUM_THREADS Integer value Set the number of threads to use during 
execution. Default is number of CPUs in the 
machine.



8 – Using OpenMP and Autoparallelization
Environment Variables

 8-13

when forked from a parent process. Affinity can be modified to any subset of the 
CPU cores, except the empty set. Examples include a single CPU core, all CPU 
cores on a particular socket, and all CPU cores on the system. Affinity may be set 
or retrieved from the command line using the taskset utility or similar. Run-time 
libraries, such as the PathScale OpenMP run-time library, may automatically set 
affinity in order to optimize thread placement. Also, application programs may 
themselves set affinity if required. 

PSC_OMP_AFFINITY (TRUE or FALSE)

When TRUE, the operating system’s affinity mechanism (where available) is used 
to assign threads to CPUs, otherwise no affinity assignments are made. If the 
OpenMP program is run with one initial thread (OMP_NUM_THREADS is one, or the 
machine has one CPU) the default value is FALSE, otherwise the default value is 
TRUE. The rationale for this default is that it is useful to assign affinity assignments 
to multi-threaded programs for performance reasons, but that single-threaded 
programs should be run without explicit affinity assignments so that they can be 
scheduled freely by the operating system (just like any other serial program 
generated by the compiler). These defaults can of course be changed by explicitly 
setting PSC_OMP_AFFINITY to TRUE or FALSE. 

An interesting case is when many multiple OpenMP processes are run on the same 
node (e.g. using MPI). The OpenMP library has no specific knowledge of MPI and 
each OpenMP process has no knowledge of other OpenMP processes running on 
that node. By default each OpenMP process will make the same affinity assignments 
and the CPU utilization may be unbalanced. In hybrid OpenMP/MPI programs using 
multiple OpenMP threads per process it may be necessary to set 
PSC_OMP_AFFINITY to FALSE to prevent this. For hybrid OpenMP/MPI programs 
using a single OpenMP thread per process, the default is to disable OpenMP affinity 
and the operating system will hopefully use all CPUs equitably. An alternative 
approach is to specify explicit and disjoint affinity assignments per MPI process 
using taskset or using the other OpenMP library environment variables for 
controlling thread affinity. See the following descriptions of releated environment 
variables.

PSC_OMP_AFFINITY_GLOBAL (boolean TRUE or FALSE)

This environment variable controls where thread global ID or local ID values are 
used when assigning threads to CPUs. The default is TRUE so that global ID values 
are used for calculating thread assignments.

Global IDs uniquely identify each thread, and are integer values starting from 0 (for 
the original master thread) and incrementing upwards in the order in which threads 
are allocated. The global ID is constant for a particular thread from its fork to its join. 
Using the global ID for the affinity mapping ensures that threads do not change CPU 
in their lifetime, and ensures that threads will be evenly distributed over CPUs.

The alternative is to use the thread local ID for this mapping. When nested 
parallelism is not employed, then each thread’s global and local ID will be identical 



8 – Using OpenMP and Autoparallelization
Environment Variables

8-14  

and the setting of this variable is irrelevant. However, when a nested team of threads 
is created, that team will be assigned new local thread IDs starting at 0 for the master 
of that team and incrementing upwards. Note that the local ID of a thread can change 
when that thread performs a nested fork and then a nested join, and that these 
events may cause the CPU binding of that thread to change. Also note that all team 
masters will have a local ID of 0, and will therefore map to the same CPU. Usually 
these properties are undesirable, so the default is to use the thread global ID for 
scheduling assignments.

PSC_OMP_AFFINITY_INHERITANCE (TRUE or FALSE)

This determines whether the OpenMP library inherits any prevailing affinity settings 
from its environment, and the default value is TRUE.

When affinity inheritance is disabled the OpenMP library ignores the environment’s 
affinity setting, and sets up its own affinity mappings according to its built-in 
heuristics. By default the OpenMP library will bind one thread to each CPU in the 
machine, though this can be over-ridden by OpenMP environment variables.

When affinity inheritance is enabled (the default) and the OpenMP program is run 
under an affinity assignment, then the OpenMP program is restricted to just the 
subset of CPUs specified in that affinity assignment. This behavior ensures that the 
OpenMP library inter-operates with programs like taskset in the expected way. 
The behavior is as if the OpenMP program had been run on a machine that consisted 
of just the CPU subset specified by taskset. The OpenMP library will then use its 
usual thread count and affinity rules but applied to the CPU subset. A common 
approach is to run multiple OpenMP processes on a node (e.g. using MPI) such 
that each OpenMP process uses a distinct subset of CPUs specified by taskset. 
Affinity inheritance ensures that the OpenMP library creates the right number of 
threads and that CPUs are not overloaded with threads. 

When using affinity inheritance, any explicit affinity settings made using 
PSC_OMP_AFFINITY_MAP, PSC_OMP_CPU_STRIDE and PSC_OMP_CPU_OFFSET 
employ a virtualized CPU numbering. The virtualized CPU numbers are a sequence 
of incrementing integers starting from 0, and refer to the potentially non-contiguous 
real CPU numbers in ascending order. This means that the settings for these 
variables are independent of the specific CPU numbers specified by taskset.

PSC_OMP_AFFINITY_MAP (a list of integer values separated by commas)

This environment variable allows the mapping from threads to CPUs to be fully 
specified by the user. It must be set to a list of CPU identifiers separated by commas. 
The list must contain at least one CPU identifier, and entries in the list beyond the 
maximum number of threads supported by the implementation (256) are ignored. 
Each CPU identifier is a decimal number between 0 and one less than the number 
of CPUs in the system (inclusive).

The implementation generates a mapping table that enumerates the mapping from 
each thread to CPUs. The CPU identifiers in the PSC_OMP_AFFINITY_MAP list are 
inserted in the mapping table starting at the index for thread 0 and increasing 



8 – Using OpenMP and Autoparallelization
Environment Variables

 8-15

upwards. If the list is shorter than the maximum number of threads, then it is simply 
repeated over and over again until there is a mapping for each thread. This repeat 
feature allows short lists to be used to specify repetitive thread mappings for all 
threads.

Here are some examples for assigning eight threads on an eight CPU system:

1. Assign all threads to the same CPU: PSC_OMP_AFFINITY_MAP=0

2. Assign threads to the lower half of the machine: PSC_OMP_AFFINITY_MAP=0, 
1, 2, 3

3. Assign threads to the upper half of the machine: 
PSC_OMP_AFFINITY_MAP=4,5,6,7

4. Assign threads to a dual-core machine in the same way as 
PSC_OMP_CPU_STRIDE=2:
PSC_OMP_AFFINITY_MAP=0,2,4,6,1,3,5,7

NOTE: When PSC_OMP_AFFINITY_MAP is defined, the values of 
PSC_OMP_CPU_STRIDE and PSC_OMP_CPU_OFFSET are ignored. 
However, the value of PSC_OMP_GLOBAL_AFFINITY still determines 
whether the thread’s global or local ID is used in the mapping process.

CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7
T0
T1
T2
T3
T4
T5
T6
T7

CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7
T0 T1 T2 T3
T4 T5 T6 T7

CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7
T0 T1 T2 T3

T4 T5 T6 T7

CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7
T0 T4 T1 T5 T2 T6 T3 T7



8 – Using OpenMP and Autoparallelization
Environment Variables

8-16  

PSC_OMP_CPU_STRIDE (Integer value)

This specifies the striding factor used when mapping threads to CPUs. It takes an 
integer value in the range of 0 to the number of CPUs (inclusive). The default is a 
stride of 1 which causes the threads to be linearly mapped to consecutive CPUs. 
When there are more threads than CPUs the mapping wraps around giving a 
round-robin allocation of threads to CPUs. The behavior for a stride of 0 is the same 
as a stride of 1.

Strides greater than 1 are useful when there is a hierarchy of CPUs in the system, 
and the scheduling algorithm needs to take account of this to make best use of 
system resources. A particularly interesting case is when the system comprises a 
number of multi-core chips, such that each core shares some resources (e.g. a 
memory interface) with other cores on that chip. It may then be desirable to spread 
threads across the chips first to make best use of that resource, before scheduling 
multiple threads to the cores on each chip.

Let the number of CPUs in a multi-core chip be m, and the number of multi-core 
chips in the system be n. The total number of CPUs is then n multiplied by m. There 
are two typical orders in which the system may number the CPUs:

• For chip index p in [0, n) and core index c in [0, m), the CPU number is p + c*n. 
This is core-major ordering since incrementing the core number increases the 
CPU number by n, while incrementing the chip number only increases the CPU 
number by 1.

• For chip index p in [0, n) and core index c in [0, m), the CPU number is p*m + c. 
This is chip-major ordering since incrementing the chip number increases the 
CPU number by m, while incrementing the core number only increases the CPU 
number by 1.

For core-major ordering, a linear assignment of threads to CPU numbers will have 
the effect of spreading threads over chips first. For chip-major ordering, the linear 
assignment will fill up the first chip with threads, before moving to the second chip, 
and so forth. This behavior can be changed by setting the stride factor to the value 
of m. It causes the OpenMP library to spread the threads across the chips with a 
stride equal to the number of cores in a chip.

The decision on whether to spread threads over chips or over cores first depends 
on what one is trying to achieve and the system architecture. It may be desirable 
to spread over cores first and minimize the number of chips to improve locality. 
Alternatively, it may be desirable to spread over chips first to maximize the number 
of chips to maximize the available system memory bandwidth.



8 – Using OpenMP and Autoparallelization
Environment Variables

 8-17

For example, here are the generated thread assignments for a system comprising 
of four chips, each with two cores, where PSC_OMP_CPU_STRIDE is set to 2:

Tx indicates thread number x. Here is another example for two chips with four cores 
and PSC_OMP_CPU_STRIDE set to 4:

This variable is most useful when the number of threads is fewer than the number 
of CPUs. In the common case where the number of threads is the same as the 
number of CPUs, then there is typically no need to set PSC_OMP_CPU_STRIDE.

Note that the same mappings can also be obtained by enumerating the CPU 
numbers using the PSC_OMP_AFFINITY_MAP variable.

PSC_OMP_CPU_OFFSET (Integer value)

This specifies an integer value that is used to offset the CPU assignments for the 
set of threads. It takes an integer value in the range of 0 to the number of CPUs 
(inclusive). When a thread is mapped to a CPU, this offset is added onto the CPU 
number calculated after PSC_OMP_CPU_STRIDE has been applied. If the resulting 
value is greater than the number of CPUs, then the remainder is used from the 
division of this value by the number of CPUs.

The effect of this is to apply an offset to the CPU assignments for a set of threads. 
This is particularly useful when multiple OpenMP jobs are to be run at the same 
time on the same system, and allows the jobs to be separated onto different CPUs. 
Without this mechanism both jobs would be assigned to CPUs starting at CPU 0 
causing a non-uniform distribution.

<– CHIP 0 –> <– CHIP 1 –> <– CHIP 2 –> <– CHIP 3 –>
CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7

T0 T4 T1 T5 T2 T6 T3 T7
T8 T12 T9 T13 T10 T14 T11 T15
T16 ...

<——— CHIP0 ———> <———-CHIP1 ———>
CPU0 CPU1 CPU2 CPU3 CPU4 CPU6 CPU6 CPU7

T0 T2 T4 T6 T1 T3 T5 T7
T8 T10 T12 T14 T9 T11 T13 T15
T16 ...



8 – Using OpenMP and Autoparallelization
Environment Variables

8-18  

For example, consider a system with four chips each with two cores using chip-major 
numbering. Let there be 2 OpenMP jobs each consisting of 4 threads. If these jobs 
are run with the default scheduling the assignments will be:

Jx-Ty indicates thread y of job x. If PSC_OMP_CPU_OFFSET is set to 4 for job 1, 
the scheduling will be changed to:

If PSC_OMP_CPU_STRIDE is set to 2 for both jobs and PSC_OMP_CPU_OFFSET is 
set to 1 for job 1 only then the scheduling will be:

PSC_OMP_GUARD_SIZE (Integer value)

This environment variable specifies the size in bytes of a guard area that is placed 
below pthread stacks. This guard area is in addition to any guard pages created 
by your O/S. It is often useful to have a larger guard area to catch pthread stack 
overflows, particularly for Fortran OpenMP programs. By default, the guard area 
size is 0 for 32-bit programs (disabling the mechanism) and 32MB for 64-bit 
programs (since virtual memory is typically bountiful in 64-bit environments). The 
PSC_OMP_GUARD_SIZE environment variable can be used to over-ride the default 
value. Its format is a decimal number following by an optional ’k’, ’m’ or ’g’ (in 
lower or uppercase) to denote kilobytes, megabytes, or gigabytes. If the size is 0 
then the guard is not created. The guard area consumes no physical memory, but 
does consume virtual memory and will show up in the "VIRT" or “SIZE” figure of a 
"top" command.

PSC_OMP_GUIDED_CHUNK_DIVISOR (Integer value)

The value of PSC_OMP_GUIDED_CHUNK_DIVISOR is used to divide down the 
chunk size assigned by the guided scheduling algorithm. If the number of iterations 
left to be scheduled is remaining_size and the number of threads in the team 
is number_of_threads, the chunk size will be determined as:

chunk_size = (remaining_size) / (number_of_threads *
PSC_OMP_GUI DED_CHUNK_DIVI SOR)

<– CHIP 0 –> <– CHIP 1 –> <– CHIP 2 –> <– CHIP 3 –>
CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7
J0-T0 J0-T1 J0-T2 J0-T3
J1-T0 J1-T1 J1-T2 J1-T3

<– CHIP 0 –> <– CHIP 1 –> <– CHIP 2 –> <– CHIP 3 –>
CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7
J0-T0 J0-T1 J0-T2 J0-T3 J1-T0 J1-T1 J1-T2 J1-T3

<– CHIP 0 –> <– CHIP 1 –> <– CHIP 2 –> <– CHIP 3 –>
CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7
J0-T0 J1-T0 J0-T1 J1-T1 J0-T2 J1-T2 J0-T3 J1-T3



8 – Using OpenMP and Autoparallelization
Environment Variables

 8-19

A value of 1 gives the biggest possible chunks and the fewest number of calls into 
the loop scheduler. Larger values will result in smaller chunks giving more 
opportunities for the dynamic guided scheduler to assign work, balancing out 
variation between loop iterations, at the expense of more calls into the loop 
scheduler. With a value of PSC_OMP_GUIDED_CHUNK_DIVISOR equal to 1, the 
first thread will get 1/n’th of the iterations (for a team of n). If these iterations happen 
to be particularly expensive then this thread will be the critical path through the loop. 
The default value is 2.

PSC_OMP_GUIDED_CHUNK_MAX (Integer value)

This is the maximum chunk size that will be used by the loop scheduler for guided 
scheduling. The default value for this is 300. Note that a minimum chunk size can 
already be set by the user on a guided schedule directive. This environment variable 
allows the user to set a maximum too (though it applies to the whole program). The 
rationale for setting a maximum is to break up the iterations under guided scheduling 
for better dynamic load balancing between the threads.

The full equation for the chunk size for guided scheduling is:

chunk_size = MAX(
MIN(

ROUNDUP(
(remaining_size) /
(number_of_threads

* PSC_OMP_GUIDED_CHUNK_DIVISOR)

),
PSC OMP GUIDED CHUNK MAX

),
minimum_chunk_size

)
Where:

• remaining_size is the number of iterations of the loop.

• number_of_threads is the number of threads in the team.

• PSC_OMP_GUIDED_CHUNK_DIVISOR is the value of the 
PSC_OMP_GUIDED_CHUNK_DIVISOR environment variable (defaults to 2).

• PSC_OMP_GUIDED_CHUNK_MAX is the value of the 
PSC_OMP_GUIDED_CHUNK_MAX environment variable (defaults to 300).

• minimum_chunk_size is the size of the smallest piece (this is the value of 
chunk in the SCHEDULE directive)

• ROUNDUP (x) rounds x upwards to the nearest higher integer

• MIN (a,b) is the minimum of a and b

• MAX (a,b) is the maximum of a and b



8 – Using OpenMP and Autoparallelization
Environment Variables

8-20  

The minimum_chunk_size is the value specified by the user in the guided 
scheduling directive (defaults to 1).

NOTE: If the values of PSC_OMP_GUIDED_CHUNK_MAX and 
minimum_chunk_size are inconsistent (i.e. the minimum is larger than 
the maximum), the minimum_chunk_size takes precedence per the 
OpenMP specification.

PSC_OMP_LOCK_SPIN (Integer value (0 or non-zero))

This chooses the locking mechanism used by critical sections and OMP locks:

0 = user-level spin locks are disabled, uses pthread mutexes

non-zero = user-level spin locks are enabled. This is the default.

This determines whether locking in critical sections and OMP locks is implemented 
with user-level spin loops or using pthread mutexes. Synchronization using 
pthread mutexes is significantly more expensive but frees up execution resources 
for other threads.

PSC_OMP_SILENT (Set or not set)

If you set PSC_OMP_SILENT to anything, then warning and debug messages from 
the libopenmp library are inhibited. Fatal error messages are not affected by the 
setting of PSC_OMP_SILENT.

PSC_OMP_STACK_SIZE (Stack size specifications)

Stack size specification follows the syntax in section 3.13. See section 8.10.1 for 
more details.

PSC_OMP_STATIC_FAIR (Set or not set)

The default static scheduling policy when no chunk size is specified is as follows. 
The number of iterations of the loop is divided by the number of threads in the team 
and rounded up to give the chunk size. Loop iterations are grouped into chunks of 
this size and assigned to threads in order of increasing thread id (within the team). 
If the division was not exact then the last thread will have fewer iterations, and 
possibly none at all.

The policy for static scheduling when no chunk size is specified can be changed to 
the "static fair" policy by defining the environment variable 
PSC_OMP_STATIC_FAIR. The number of iterations is divided by the number of 
threads in the team and rounded down to give the chunk size. Each thread will be 
assigned at least this many iterations. If the division was not exact then the remaining 
iterations are scheduled across the threads in increasing thread order until no more 
iterations are left. The set of iterations assigned to a thread are always contiguous 
in terms of their loop iteration value. Note that the difference between the minimum 
and maximum number of iterations assigned to individual threads in the team is at 
most 1. Thus, the set of iterations is shared as fairly as possibly among the threads.



8 – Using OpenMP and Autoparallelization
OpenMP Stack Size

 8-21

Consider the static scheduling of four iterations across 3 threads. With the default 
policy threads 0 and 1 will be assigned two iterations and thread 2 will be assigned 
no iterations. With the fair policy, thread 0 will be assigned two iterations and threads 
1 and 2 will be assigned one iteration.

NOTE: The maximum number of iterations assigned to a thread (which 
determines the worst case path through the schedule) is the same for the 
default scheduling policy and the fair scheduling policy. In many cases 
the performance of these two scheduling policies will be very similar.

PSC_OMP_THREAD_SPIN (Integer value)

This takes a numeric value and sets the number of times that the spin loops will 
spin at user-level before falling back to O/S schedule/reschedule mechanisms. By 
default it is 100. If there are more active threads than processors and this is set very 
high, then the thread contention will typically cause a performance drop. 
Synchronization using the O/S schedule and reschedule mechanisms is 
significantly more expensive but frees up execution resources for other threads.

8.10
OpenMP Stack Size
8.10.1
Stack Size for Fortran

The Fortran compiler allocates data on the stack by default. Some environments 
set a low limit on the size of a process’ stack, which may cause Fortran programs 
that use a large amount of data to crash shortly after they start. In an OpenMP 
program there is a stack for the main thread of execution as in serial programs, and 
also an additional separate stack for each additional thread created by libopenmp. 
These additional threads are created by the POSIX threads library and are called 
pthreads. The PathScale Fortran runtime environment automatically sizes the 
stack for the main thread and the pthreads to avoid stack size problems where 
possible. Additionally, diagnostics are given on memory segmentation faults to help 
diagnose stack size issues.

The stack size limit for the main thread of an OpenMP program is set using the 
same algorithm as for a serial Fortran program (see section 3.13 for information 
about Fortran compiler stack size) except that the calculated stack limit is 
subsequently divided by the number of CPUs in the system. This ensures that the 
physical memory available for stack can be shared between as many threads as 
there are CPUs in the system. The limit tries to avoid excessive swapping in the 
case where all of these threads consume all of their available stack. Note that if 
there are more OpenMP threads than CPUs and they all consume all of their stack, 
then this will cause swapping. The stack size of the main thread can be controlled 
using the PSC_STACK_LIMIT environment variable, and diagnostics for its setting 
can be generated using the PSC_STACK_VERBOSE environment variable, in exactly 
the same way as for a serial Fortran program.



8 – Using OpenMP and Autoparallelization
Stack Size Algorithm

8-22  

The stack sizing of OpenMP pthreads follows a complementary approach to that 
for the main thread. There are some differences because the sizing of pthread 
stacks has different system imposed limits and mechanisms. The 
PSC_STACK_VERBOSE flag can also be used to turn on diagnostics for the stack 
sizing of pthreads. However, the stack size is controlled by the 
PSC_OMP_STACK_SIZE environment variable (not PSC_STACK_LIMIT). The 
syntax and allowed values for PSC_OMP_STACK_SIZE are identical to the 
PSC_STACK_LIMIT so please see section 3.13 for instructions.

The reason for having both PSC_OMP_STACK_LIMIT and PSC_OMP_STACK_SIZE 
is to allow the stacks of the main thread and the OpenMP pthreads to have different 
limits. Often, the system imposed limits are different in these two cases and 
sometimes the stack requirements of the OpenMP pthreads may be quite different 
from the main thread. For example, in some applications the main thread of an 
OpenMP program might allocate large arrays for the whole program on its stack, 
and in others the large arrays will be allocated by all of the threads.

8.10.2
Stack Size for C/C++

The stack size of serial C and C++ programs is typically set by the ulimit command 
provided by the shell. Since C and C++ programs typically do not allocate large 
arrays on the stack it is usually convenient to use whatever default ulimit your 
system provides. More strict ulimit settings can be used to catch runaway stacks or 
unbounded recursion before the program exhausts all available memory.

For OpenMP C and C++ programs, there will be an additional stack for each 
pthread created by the libopenmp library. section 8.11 describes how these 
pthread stacks are sized.

NOTE: The automatic stack sizing algorithm used by Fortran serial program and 
Fortran OpenMP programs is not employed for C and C++ programs.

8.11
Stack Size Algorithm

The stack limit for each OpenMP pthread is calculated as follows:

• If PSC_OMP_STACK_SIZE is set then this specifies the stack limit.

• If this is a Fortran program the stack limit is automatically set using the same 
approach as described in section 3.13, except that the calculated value is divided 
by the number of CPUs in the system. This ensures that the physical memory 
available for stack can be shared between as many threads as there are CPUs 
in the system.

• Otherwise, this is a C/C++ program and the stack limit is set to a default value 
of 32MB. The distinction between Fortran and C/C++ programs is determined 
by whether the program entry point is MAIN (for Fortran) or main (for C/C++).



8 – Using OpenMP and Autoparallelization
Stack Size Algorithm

 8-23

This stack size is then compared against system imposed limits (both lower and 
upper). If the check fails then a warning is generated, and the stack size is 
automatically adjusted to the appropriate limit. The following lower limit is imposed:

• The minimum size of a pthread stack specified by the system. This is typically 
16KB.

The following upper limits are imposed:

• The maximum stack size that the system’s pthread library will accept (i.e. the 
system-imposed upper bound on the pthread stack size). The library 
dynamically detects this value at start-up time. For systems using 
linuxthreads, this limit is typically in the range of 8MB to 32MB. For systems 
using NPTL threads, there is typically no arbitrary limit imposed by the system 
on the stack size.

• libopenmp imposes a limit of 1GB is imposed when using the 32-bit version of 
libopenmp, and a limit of 4GB when using the 64-bit version of libopenmp. 
These limits prevent excessive stack limits when using libopenmp.

When each pthread is created, the operating system will allocate virtual memory 
for its entire stack (as sized by the above algorithms). This essentially allocates 
virtual memory space for that stack so that it can grow up to its specified limit. The 
operating system will provide physical memory pages to back up this virtual memory 
as and when it is required. A consequence for this is that the “top” program will 
include the whole of these stacks in the VIRT or SIZE (VIRT or SIZE will be used 
depending on your Linux distribution) memory usage figure, while only the allocated 
physical pages for these stacks will be shown in the RES or RSS (resident) figure 
(RES or RSS will be used depending on your Linux distribution). If the OpenMP 
program runs with a large pthread stack size (which is the common case), then it 
is quite normal for VIRT or SIZE to be a large figure. It will be at least the number 
of pthreads created by libopenmp times their stack size. However, RES or RSS 
will typically be much less and this is the real physical memory requirement for the 
application.

NOTE: A large stack limit for the main thread does not show up in the VIRT or 
SIZE figure. This is because the operating system has special handling 
for the main thread of an application and does not need to pre-allocate 
virtual memory pages for its stack up to the stack limit.

The pthread stack limit is typically much lower when using linuxthreads than 
with NPTL threads. Linux kernels in the 2.4 series (and earlier) tend to be provided 
with linuxthreads, while NPTL is typically the default with 2.6 series kernels. 
However, some distributions have back-ported NPTL to their 2.4 series kernels.

NOTE: When a program is statically linked with pthreads this might also trigger 
use of linuxthreadson some distributions.



8 – Using OpenMP and Autoparallelization
Example OpenMP Code in Fortran

8-24  

8.12
Example OpenMP Code in Fortran

The following program is a parallel version of hello world written using OpenMP 
directives. When run, it spawns multiple threads. It uses the CRITICAL directive to 
ensure that the printing from the various threads will not overwrite one another.

Here is the program omphello.f:

PROGRAM HELLO
INTEGER NTHREADS, TID, OMP_GET_NUM_THREADS,
OMP_GET_THREAD_NUM
TID=0
NTHREADS=1

! Fork a team of threads giving them their own copies of
variables TID PARALLEL PRIVATE (TID)

! Obtain and print thread id
!$ TID = OMP_GET_THREAD_NUM()
!$OMP CRITICAL

PRINT *, ’Hello World from thread ’, TID
!$OMP END CRITICAL
!$OMP MASTER
!$OMP CRITICAL
! Only master thread does this
!$ NTHREADS= OMP_GET_NUM_THREADS ()

PRINT *, ’Number of threads = ’, NTHREADS
!$OMP END CRITICAL
!$OMP END MASTER
! All threads join master thread and disband 
!$OMP END PARALLEL

END

The !$ before some of the lines are conditional compilation tokens. These lines are 
ignored when compiled without -mp.

We compile omphello.f for OpenMP with this command:

$ pathf 95 -c -mp omphello.f

Now we link it, again using -mp:

$ pathf 95 -mp omphello.o -o omphello.out

We set the environment variable for the number of threads with this command:

$ export OMP_NUM_THREADS=5

For best libopenmp performance and to avoid stack size limitations, it is highly 
recommended that 2.6 series Linux kernels, NPTL and dynamic linkage is used 
with OpenMP programs.



8 – Using OpenMP and Autoparallelization
Example OpenMP Code in C/C++

 8-25

Now run the program:

$ ./omphello.out
Hello World from thread1 
Hello World from thread2 
Hello World from thread3
Hello World from thread0 
Number of threads = 5
Hello World from thread4

The output from the different threads can be in a different order each time the 
program is run. We can change the environment variable to run with two threads:

$ export OMP_NUM_THREADS=2

Now the output looks like this:

$ ./omphello.out
Hello World from thread0
Number of threads = 2 
Hello World from thread1

The same program can be compiled and linked without -mp and the directives will 
be ignored. We compile the program (without -mp):

$ pathf 95 -c omphello.f

Link the object file and create an output file:

$ pathf 95 omphello.o -o omphello.out

Run the program and the output looks like this:

$ ./omphello.out
Hello World from thread 0 
Number of threads = 1
For more examples using OpenMP, please see the sample code at 

http: //www.openmp.org/drupal/node/view/14. 

There are also examples of OpenMP code in Appendix A of the OpenMP 2.0 Fortran 
specification. See section 8.15 for more details.

8.13
Example OpenMP Code in C/C++

The following program is a parallel version of hello world written using OpenMP 
directives. When run, it spawns multiple threads. It uses the CRITICAL directive to 
ensure that the printing from the various threads will not overwrite one another.

Here is the program omphello.c:

#include <omp.h>
main()
{

int tid = 0;



8 – Using OpenMP and Autoparallelization
Example OpenMP Code in C/C++

8-26  

int nthreads = 1;
/* Fork a team of threads giving them their own copies of variable 
tid */

#pragma omp parallel private (tid)
{

#ifdef _OPENMP
/* Obtain and print thread id */
tid = omp_get_thread_num ();

#endif
#pragma omp critical
printf ("Hello World from thread %d\n", tid);

#pragma omp master 
#pragma omp critical
{

#ifdef _OPENMP
/* Only master thread does this */
nthreads = omp_get_num_threads ();

#endif
printf ("Number of threads = %d\n", nthreads);
}
/* All threads join master thread and disband */

}
}

The #pragma and #ifdef before some of the lines are conditional compilation 
tokens. These lines are ignored when compiled without -mp.

We compile omphello.c for OpenMP with this command:

$ pathcc -c -mp omphello.c

Now we link it, again using -mp:

$ pathcc -mp omphello.o -o omphello.out

We set the environment variable for the number of threads with this command:

$ export OMP_NUM_THREADS=5

Now run the program:

$ ./omphello.out
Hello World from thread 1 
Hello World from thread 2 
Hello World from thread 3 
Hello World from thread 0 
Number of threads = 5
Hello World from thread 4

The output from the different threads can be in a different order each time the 
program is run. We can change the environment variable to run with two threads:

$ export OMP_NUM_THREADS=2



8 – Using OpenMP and Autoparallelization
Tuning for OpenMP Application Performance

 8-27

Now the output looks like this:

$ ./omphello.out
Hello World from thread 0
Number of threads = 2 
Hello World from thread 1

The same program can be compiled and linked without -mp and the directives will 
be ignored. We compile the program (without -mp):

$ pathcc -c omphello.c

Link the object file and create an output file:

$ pathcc omphello.o -o omphello.out

Run the program and the output looks like this:

$ ./omphello.out
Hello World from thread 0
Number of threads = 1

For more examples using OpenMP, please see the sample code at http: 
//www.openmp.org/drupal/node/view/14. There are also examples of OpenMP code 
in Appendix A of the OpenMP 2.0 C/C++ specification. See section 8.15 for more 
details.

8.14
Tuning for OpenMP Application Performance

A good first step in tuning OpenMP code is to build a serial version of the application 
and tune the serial performance (See section 7 for ideas and suggestions). Often 
good flags for serial performance are also good for OpenMP performance. Typically 
OpenMP parallelizes the outer iterations of the compute intensive loops in a coarse 
fashion, leaving chunks of the outer loops and the inner loops that generally behave 
very similarly to the serial code.

Use pathopt2 (see section 7.9 for details on pathopt2) to help find good serial 
tuning options for the application. You may be able to find interesting options for 
tuning by looking at tuned configuration files for similar codes.

With this approach you can find good options for the serial parts of the code before 
having to consider OpenMP-specific issues (such as scheduling, scaling, and 
affinity). If the test case takes a long time to run or needs a lot of memory, then you 
may be forced to tune the flags with OpenMP enabled.

8.14.1
Reduced Datasets

You may find it useful to reduce the size of the data sets to give a quicker runtime, 
allowing the efficacy of particular tuning options to be quickly ascertained. One thing 
to note is that OpenMP performance tends to get better with larger data sets because 



8 – Using OpenMP and Autoparallelization
Tuning for OpenMP Application Performance

8-28  

the fork/join overheads diminish as the loops get larger. Thus, you should also run 
trials with the full data set, especially when looking at scaling issues. You can also 
make use of more memory and more cache on an n-way multi-processor than a 
uni-processor, and this sometimes leads to a very nice superlinear speed-up.

8.14.2
Enable OpenMP

After you have tuned the serial version of the application, turn on OpenMP 
parallelization with the -mp flag. Try running the code on varying numbers of CPUs 
to see how the application scales.

One very important option for OpenMP tuning is -OPT:early_mp, which by default 
is off but can be turned on using -OPT:early_mp=on. The setting of this primarily 
determines the ordering of (SIMD) vectorization and OpenMP parallelization 
optimization phase of the compiler. With late MP, loops will first be vectorized and 
then the vectorized loops will be parallelized. With early MP loops will first be 
parallelized and then the parallel loops will be vectorized. Occasionally one of these 
orderings works better than the other, so you have to try both.

8.14.3
Optimizations for OpenMP

The most important optimizations for OpenMP applications tend to be loop nest 
optimization (LNO), code generation (CG) and aggressive optimizations (e.g. by 
reducing numerical accuracy). IPA (inter-procedural analysis) may help with 
OpenMP programs too–try it and see!

8.14.3.1
Libraries

Some applications spend a large amount of time in numerical libraries. At small 
numbers of nodes, a highly optimized and tuned serial algorithm crafted for the 
target processor may out perform a parallel implementation based on a 
non-optimized algorithm. At higher numbers of nodes the parallel version may scale 
and give better performance. However, best performance will typically require an 
OpenMP parallelization of the best serial algorithm (exploiting target features such 
as SSE for example). Check to see if there are OpenMP-enabled versions of these 
numerical libraries available.

8.14.3.2
Memory System Performance

OpenMP applications are often very sensitive to memory system performance. An 
excellent approach is to tune the memory system with an OpenMP version of the 
STREAM benchmark. In particular, the BIOS settings for memory bank interleaving 
should be auto, and for node interleaving should be off.



8 – Using OpenMP and Autoparallelization
Tuning for OpenMP Application Performance

 8-29

Interleaving memory by node causes memory addresses to be striped across the 
various nodes at a low granularity, creating the illusion of a uniform memory system. 
However, OpenMP programs tend to have very good memory locality and the 
correct approach is to use NUMA optimizations in the operating system to give good 
placement of data relative to threads.

This optimization relies on first touch: the thread that first touches the data is 
assumed to be the most frequent user of the data and thus the data is allocated 
onto physical addresses in the DRAM associated with the CPU that is currently 
running that thread. This is applied by a NUMA-aware operating system at the page 
level. If your kernel version is not NUMA aware, then a kernel upgrade may be 
required for good performance.

Similarly thread-to-CPU affinity is also important for good OpenMP performance. 
The OpenMP library by default uses affinity system calls to strongly associate 
threads with CPUs. The idea is to keep the threads co-located with their associated 
data. Without affinity assignments, the threads may be migrated by the O/S 
scheduler to other nodes and lose their good placement relative to their data. 
However, sometimes the use of affinity binding can cause a load imbalance and 
prevent the scheduler from make sensible decisions about thread placement. In 
this case the thread affinity assignments can be disabled by setting the 
PSC_OMP_AFFINITY environment variable to FALSE. If your kernel does not 
support scheduling affinity, you may need to upgrade to a newer kernel to see the 
performance benefit of this mechanism.

8.14.3.3
Load Balancing

It is possible to gain some coarse insight into the load balancing of the OpenMP 
application using the "top" program. Depending on the version of "top", you should 
be able to view the breakdown of user, system, and idle time per CPU. Often this 
view can be obtained by pushing "1". You may also want to increase the update 
rate (e.g with "s" followed by 0.5). It is sometimes possible to see the program 
moving from serial to parallel phases and also see whether the work is being well 
distributed. If there is excessive time spent in the system or swapping, then this 
should also be investigated. It goes without saying that it is best to run OpenMP 
applications on nodes with no other running applications.

If the OpenMP application uses runtime scheduling, then try varying the runtime 
schedule using the OMP_SCHEDULE environment variable. A good choice of 
schedule and chunk size is sometimes important for performance.

NOTE: IThe gprof profiling (-pg) does not work in conjunction with pthreads or 
the OpenMP library. An alternative approach is to use OProfile, which 
uses hardware counters and sampling techniques to build up a profile of 
the system.



8 – Using OpenMP and Autoparallelization
Tuning for OpenMP Application Performance

8-30  

It is possible to capture application code, dynamic libraries, kernel, modules, and 
drivers in a profile created by OProfile giving insight into system-wide performance 
characteristics. OProfile can also attribute the samples on a thread or CPU basis 
allowing load balancing and scheduling issues to be observed. OProfile can access 
many different performance counters giving more detail insight into the CPU 
behavior; however, these advanced features of OProfile are not easy to use.

If the application uses nested OpenMP parallelism, then try turning on the nested 
parallelism support by setting the OMP_NESTED environment variable to TRUE.

8.14.3.4
Tuning the Application Code

If you are able to tune the code of the application, it is worth checking whether any 
of the OpenMP directives specify a chunk size. It may be possible to make more 
appropriate choices of the chunk size, perhaps influenced by the number of CPUs 
available, the L2 size, or the data size. You may also want to try different scheduling 
strategies. If the amount of work in an OpenMP loop varies significantly from iteration 
to iteration, then a DYNAMIC or GUIDED scheduling algorithm is preferable.

The default loop scheduling algorithm is static scheduling and this is used by the 
majority OpenMP applications. If this leads to an unbalanced distribution of work 
across the threads, try setting the PSC_OMP_STATIC_FAIR environment variable, 
which will cause the library to use a fairer distribution.

If the application uses guided scheduling, the 
PSC_OMP_GUIDED_CHUNK_DIVISOR and PSC_OMP_GUIDED_CHUNK_MAX 
environment variables can be used to tune the loop scheduling. The default values 
for these are widely applicable but some applications with guided scheduling can 
be fairly sensitive to their setting. See section 8.9.2 for the interpretation of these.

By default the OpenMP library employs spin locks for synchronization and these 
loops can be tuned for performance using the PSC_OMP_THREAD_SPIN and 
PSC_OMP_LOCK_SPIN environment variables. It may be desirable to turn off the 
spinning (and use blocking pthread calls instead) for OpenMP applications that use 
multiple threads per CPU. This is fairly uncommon, and in the usual case the use 
of spin locks is a significant optimization over the use of blocking pthread calls. 
(See section 8.9.2 for details on these environment variables.)

8.14.3.5
Using Feedback Data

If an OpenMP program is instrumented via the -fb-create option to generate 
feedback data in feedback-directed compilation, the execution of the instrumented 
executable should only be run under a single thread. This can be effected via the 
OMP_NUM_THREADS environment variable. The reason is because the 
instrumentation library (libinstr.so) used during execution does not support 



8 – Using OpenMP and Autoparallelization
Other Resources for OpenMP

 8-31

simultaneous updates of the feedback data by multiple threads. Running the 
instrumented executable under multiple threads can result in segmentation faults.

8.15
Other Resources for OpenMP

For more information on OpenMP, you might also find these resources useful:

• At the OpenMP home page, http://www.openmp.org/

• For the Fortran, C and C++ version 2.5 OpenMP Specification, click on 
Specifications in the left column of the OpenMP home page

• For Tutorials, Benchmarks, Publications, and Books, click on Resources in 
the left column of the OpenMP home page.

• Parallel Programming in OpenMP by Rohit Chandra, et al; Morgan Kaufmann 
Publishers, 2000. ISBN 1-55-860671-8



8 – Using OpenMP and Autoparallelization
Other Resources for OpenMP

8-32  

Notes



 9-1

Section 9      
Examples

9.1
Compiler Flag Tuning and Profiling With pathprof

We’ll use the 168.wupwise program from the CPU2000 floating point suite for this 
example. This is a Physics/Quantum Chromodynamics (QCD) code. For those who 
care, "wupwise" is an acronym for "Wuppertal Wilson Fermion Solver," a program 
in the area of lattice gauge theory (quantum chromodynamics). The code is in about 
2100 lines of Fortran 77 in 23 files. We’ll be running and tuning wupwi se 
performance on the reference (largest) dataset. Each run takes about two to four 
minutes on a 2 GHz Opteron system to complete.

Even though this is a Fortran 77 code, the PathScale Fortran compiler (pathf95) 
can handle it.

Outline:

Try pathf95 -O2 and pathf95 -O3 first. 

Run times (user time) were:

seconds
O2 150.3
O3 174.3

We’re a little surprised since -O3 is supposed to be faster than -O2 in general. But 
the man page did say that the -O3 "may include optimizations that are generally 
beneficial but may hurt performance."

So, let’s look at a profile of the -O2 binary. We do need to recompile using flags 
-O2 -pg.

Then we need to run the generated, instrumented binary again with the same 
reference dataset: $ time -p ./wupwise > wupwise.out (Here we used the 
-p (POSIX) flag to get a different time output format). This run generates the file 
gmon.out of profiling information.

Then we need to run pathprof to generate the human-readable profile.



9 – Examples
Compiler Flag Tuning and Profiling With pathprof

9-2  

NOTE: The pathprof program included in the PathScale Compiler Suite is a 
symbolic link your system’s gprof executible. The pathprof and 
pathcov programs link to the gprof and gcov executibles in the version 
of GCC on which the PathScale Compiler Suite is based. Please note 
that the pathprof tool will generate a segmentation fault when used with 
OpenMP applications that are run with more than one thread. There is 
no current workaround for pathprof (or gprof).

Now, we note that the total time that pathprof measures is 163.3 secs. vs. the 
150.3 that we measured for the original -O2 binary. But considering that the -O2 
-pg instrumented binary took 247 seconds to run, this is a pretty good estimate.

It is nice that the top hot-spot, zgemm consumes about 50% of the total time. We 
also note that some very small routines zaxpy, zcopy, and lsame are called a 
very large number of times. These look like ideal candidates for inlining.

$ pathprof ./wupwise

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls s/cal s/cal name

51.15 83.54 83.54 155648000 0.00 0.00 zgemm_

17.65 112 .37 28.83 603648604 0.00 0.00 zaxpy_

8.72 126.61 14.24 214528306 0.00 0.00 zcopy_

8. 03 139.72 13.11 933888000 0.00 0.00 lsame_

4.59 147.21 7.49 s_cmp

1.51 149.67 2.46 512301 0.00 0.00 zdotc_

1.49 152. 11 2.44 603648604 0.00 0.00 dcabs1_

1.37 154.34 2.23 155648000 0.00 0.00 gammul_

1.08 156.10 1.76 155648000 0.00 0.00 su3mul_

1.07 157.85 1.75 152 0.01 0.50 muldeo_

...

0.00 163.32 0.00 1 0.00 155.83 MAIN__

0.00 163.32 0.00 1 0.00 0.00 init_

0.00 163.32 0.00 1 0.00 0.06 phinit_

% the percentage of the total running time of the time program 
used by this function.

cumulative secondsa running sum of the number of seconds accounted 
for by this function and those listed above it.

...



9 – Examples
Compiler Flag Tuning and Profiling With pathprof

 9-3

In the second part of the pathprof output (after the explanation of the column 
headings for the flat profile), is a call-graph profile. In the example of such a profile 
below, one can follow the chain of calls from main to matmul_, muldoe_, su3mul_, 
and zgemm_, where most of the time is consumed.

================================================

Additional call-graph profile info:
Call graph (explanation follows) 

granularity: each sample hit covers 4 byte(s) for 0.01% of 
163.32 seconds
index % time self children called name

0.00 155.83 1/1 main [2]
[1] 95.4 0.00 155.83 1 MAIN__ [1]

0.00 151.19 152/ 152 matmul_ [3]

0.05 4.47 1/1 uinith_ [13]

0.00 0.06 1/1 phinit_ [22]

0.02 0.05 1/2 rndphi_ [21]

0.0 0.00 301/512301 zdotc_ [14]

0.0 0.00 77/1024077 dznrm2_ [17]

0.0 0.00 452/603648604 zaxpy_ [9]

0.0 0.00 154/214528306 zcopy_ [10]

0.0 0.00 75/39936075 zscal_ [16]

0.00 0.00 1/1 init_ [23]

--------------------------------------------
...
--------------------------------------------

0.00 151.19 152/152 MAIN__ [1]
[3] 92.6 0.00 151.19 152 matmul_ [3]

1.75 73.84 152/152 muldoe_ [7]

1.75 73.84 152/152 muldeo_ [6]

0.00 00.00 152/214528306 zcopy_ [10]

0.00 00.00 152/603648604 zaxpy_ [9]

--------------------------------------------
0.88 48.33 77824000/155648000 muldeo_ [6]
0.88 48.33 77824000/155648000 muldoe_ [7]

[4] 60.3 1.76 96.65 155648000 su3mul_ [4]

83.54 13.11 155648000/155648000 zgemm_ [5]

--------------------------------------------
83.54 13.11 155648000/155648000 su3mul_ [4]

[5] 59.2 83.54 13.11 155648000 zgemm_ [5]
13.11 0.00 933888000/933888000 lsame_ [11]

--------------------------------------------
... 

==============================================================



9 – Examples
Using the -profile Option

9-4  

The -ipa option can analyze the code to make smart decisions on when and which 
routines to inline so we try that. -O2 -ipa results in a 133.8 second run time–a 
nice improvement over our previous best of 150 seconds with only -O2.

Since we heard somewhere that improvements with compiler flags are not always 
predictable, we also try -O3 -ipa. To our great surprise, we achieve a run time of 
110.5 seconds, a 58% speed-up over our previous -O3 time, and a nice 
improvement over -O2 -ipa.

Section 7.7 mentions the flags -O3 -ipa -LNO:fusion=2 and 
OPT:div_split=on. Testing combinations of these two flags as additions to the 
O3 - ipa we have already tested results in:

O3 -ipa -LNO:fusion=2 results in 109.74 seconds run time

O3 -ipa -OPT:div_split=on results in 112.24 seconds

O3 -ipa -OPT:div_split=on -LNO:fusion=2 results in 111.28 seconds

So, -O3 -ipa is essentially a tie for the best set of flags with -O3 -ipa 
LNO:fusion=2.

9.2
Using the -profile Option

This compiler option will generate extra profiling information suitable for the analysis 
program pathprof(1). The -profile option tells the compiler to generate profiling 
information for both the program and the runtime libraries, whereas the -pg option 
tells the compiler to generate profiling information for the program only.

Use this option when compiling the source files for which you want to gather data. 
You must also use it when linking. 

NOTE: You will need to include libc_p.a, which is available in the 
glibc-profile-* package for your distribution.



 10-1

Section 10      
Debugging and Troubleshooting

The PathScale Compiler Suite Support Guide contains information about getting 
support from PathScale and tells you how to submit a bug. (We consider 
performance issues to be a bug.) The pathbug tool, described in the Support Guide, 
can help you gather information for submitting your bug.

10.1
Subscription Manager Problems

For recommendations in addressing problems or issues with subscriptions, refer to 
”Troubleshooting” in the PathScale Compiler Suite and Subscription Manager Install 
Guide.

10.2
Debugging

The earlier sections on the PathScale Fortran and C /C++ compilers contain 
language-specific debugging information. See section 3.12 and section 4.3. More 
general information on debugging can be found in this section.

The flag -g tells the PathScale compilers to produce data in the form used by 
modern debuggers, such as pathdb or GDB. This format is known as DWARF 2.0 
and is incorporated directly into the object files. Code that has been compiled using 
-g will be capable of being debugged using pathdb, GDB, or other debuggers. 
See the PathScale Debugger User Guide for more information on using pathdb.

It is advisable to use the -O0 level of optimization in conjunction with the -g flag, 
since code rearrangement and other optimizations can sometimes make debugging 
difficult. If -g is specified without an optimization level, then -O0 is the default.

10.3
Dealing with Uninitialized Variables

Uninitialized variables may cause your program to crash or to produce incorrect 
results. New options have been added to help identify and deal with uninitialized 
variables in your code. These options are -trapuv, -Wuninitialized, and 
-zerouv.

The -trapuv option works by initializing local variables to NaN (floating point 
not-a-number) and setting the CPU to detect floating point calculations involving 
NaNs. Floating point calculations are operations such as +, -, *, /, sin, sqrt, 
compare, etc. If a NaN is detected the application will abort. Assignments are not 
considered floating point calculations, and so "x=y" doesn’t trap even if y is NaN.



10 – Debugging and Troubleshooting
Trapping IEEE Exceptions

10-2  

The -trapuv option affects local scalar and array variables and memory returned 
by alloca(). It does not affect the behavior of globals, memory allocated with 
malloc(), or Fortran common data. The option initializes integer variables to the 
bit pattern for floating point NaN (integers don’t have NaNs). The CPU doesn’t trap 
on these integer operands, although the NaN bit pattern will make the wrong result 
more obvious. This option is not supported under 32-bit ABI without SSE2.

The -Wuninitialized option warns about uninitialized automatic variables at 
compile time. -Wno-uninitialized tells the compiler not to warn about 
uninitialized automatic variables.

The new -zerouv option sets uninitialized variables in your code to zero at program 
runtime. Doing this will have a slight performance impact. This option affects local 
scalar and array variables and memory returned by alloca(). It does not affect 
the behavior of globals, memory allocated with malloc(), or Fortran common 
data.

10.4
Trapping IEEE Exceptions

By default, when an IEEE floating point operation generates a denormalized number 
or a special symbol such as NaN or Infinity, the program will continue to execute. 
If instead you wish to stop the program, here are two options to do so.

Option 1. This option works if you are running on a machine with SSE SIMD 
instructions.

Set these compiler options to OFF to unmask the exceptions on which you wish to 
trap:

-TENV:simd_imask=OFF   (traps invalid)

-TENV:simd_dmask=OFF (traps denormalized)

-TENV:simd_zmask=OFF (traps divide by zero)

-TENV:simd_omask=OFF (traps overflows)

-TENV:simd_umask=OFF (traps underflows)

-TENV:simd_pmask=OFF (traps imprecise)

For more information, see the eko man page.

Option 2. Use the TR15580 Floating Point features in your code. The following 
example will work on any machine, but only for Fortran.

NOTE: If you are using C or C++, try the GNU C library extensions 
feenableexcept and fedisableexcept, which are documented in 
the GNU man pages. This will also work on any machine. 

Here is the Fortran example named ieee.f95:

USE IEEE_EXCEPTIONS



10 – Debugging and Troubleshooting
Large Object Support

 10-3

REAL A, B, C
!Uncomment the halt mode you need to use
!IEEE_USUAL implies IEEE_INVALID, IEEE_OVERFLOW, and
! IEEE_DIVIDE_BY_ZERO
!CALL ieee_set_halting_mode(IEEE_INVALID, .TRUE.)
!CALL ieee_set_halting_mode(IEEE_OVERFLOW, .TRUE.)
!CALL ieee_set_halting_mode(IEEE_DIVIDE_BY_ZERO, .TRUE.)
!CALL ieee_set_halting_mode(IEEE_UNDERFLOW, .TRUE.)
!CALL ieee_set_halting_mode(IEEE_INEXACT, .TRUE.)
CALL ieee_set_halting_mode(IEEE_USUAL, .TRUE.)A = 2.0
B = 0.0
C = A / B
PRINT *, C 
END PROGRAM MAIN

To run the program:

$ pathf95 ieee.f95 -o example
$ ./example
Floating point exception signaled at 400db2: floating point divide 
by zero
Aborted

This Fortran standard feature is documented here:

http://www.nag.co.uk/sc22wg5/TR15580.html

It can also be downloaded from their ftp site:

ftp://ftp.nag.co.uk/sc22wg5/N1351-N1400/

Search for the document N1378.pdf

Additionally, the -trapuv option will trap on a NaN as a side effect, but there is no 
control over the individual classes of trap (NaN, overflow, underflow, or zerodivide). 
See section 10.3 for more information on using -trapuv.

10.5
Large Object Support

Statically allocated data (.bss) objects such as Fortran COMMON blocks and C 
variables with file scope are currently limited to 2GB in size. If the total size exceeds 
that, the compilation (without the -mcmodel=medium option) will likely fail with the 
message:

relocation truncated to fit: R_X86_64_PC32

For Fortran programs with only one COMMON block or with no COMMON blocks after 
the one that exceeds the 2GB limit, the program may compile and run correctly.

At higher optimization levels (-O3, -Ofast), -OPT:reorg_common is set to ON by 
default. This might split a COMMON block such that a block begins beyond the 2GB 
boundary. If a program builds correctly at -O2 or below but fails at -O3 or -Ofast, 



10 – Debugging and Troubleshooting
More Inputs Than Registers

10-4  

try adding -OPT:reorg_common=OFF to the flags. Alternatively, using the 
-mcmodel=medium option will allow this optimization.

10.6
More Inputs Than Registers

The compiler will complain if an asm has more inputs than there are available CPU 
registers. For m32 (32-bit), the maximum number of asm inputs is seven (7). For 
m64 (64-bit), the maximum number is fifteen (15).

10.7
Linking With libg2c

When using Fortran with a Red Hat or Fedora Core system, you cannot link libg2c 
automatically. In order to link successfully against libg2c on a Red Hat or Fedora 
Core system, you should first install the appropriate libf2c library, then add a 
symlink in /usr/lib64 or /usr/lib from libg2c.so.0 to libg2c.so. This 
problem is due to a packaging issue with Red Hat’s version of this library.

You will only need to take this step if you are linking against either the AMD Core 
Math Library (ACML) or Fortran object code that was compiled using the g77 
compiler.

10.8
Linking Large Object Files

The PathScale Compiler Suite does not support the linking or assembly of large 
object files on the x86 platform.

Earlier versions of the compiler (before 2.1) contained a bug that would truncate 
static data structures whose size exceeded four gigabytes. This sometimes caused 
a compilation error or generation of binaries that would crash or corrupt data at 
runtime. This bug has been fixed in the 2.1 release.

10.9
Using -ipa and -Ofast

When compiling with -ipa, the .o files that are created are not a regular .o files. 
IPA uses the .o files in its analysis of your program, and then does a second 
compilation using that information.

NOTE: NOTE: When you are using -ipa, all the .o files have to have been 
compiled with -ipa for your compilation to be successful. Each archive 
(for example libfoo.a) must contain either .o files compiled with -ipa 
or .o files compiled without ipa, but not both.

The requirement of -ipa may mean modifying Makefiles. If your Makefiles build 
libraries, and you wish this code to be built with -ipa, you will need to split these 
libraries into separate *.o files before linking.



10 – Debugging and Troubleshooting
Troubleshooting OpenMP

 10-5

By default, -ipa is turned on when you use -Ofast, so the caveats above apply 
to using -Ofast as well.

10.10
Tuning

Our compilers often optimize loops by eliminating the loop variable, and instead 
using a quantity related to the loop variable, called an "induction variable". If the 
induction variable overflows, the loop test will be incorrectly evaluated. This is a 
very rare circumstance. To see if this is causing your code to fail under optimization, 
try:

-OPT:wrap_around_unsafe_opt=OFF

10.11
Troubleshooting OpenMP

You must use the -mp flag when you compile code that contains OpenMP directives. 
If you do not use the -mp flag, the compiler will ignore the OpenMP directives and 
compile your code as if the directives were not there.

10.11.1
Compiling and Linking with -mp

If a program compiled with -mp is linked and linked without the -mp flag, the linker 
will not link with the OpenMP library and the linker will display undefined references 
similar to these:

undefined reference to ‘__ompc_can_fork’

../libutil.a(diffu.o) (.text+0xa93) : In function
‘diffu_’:

undefined reference to ‘__ompc_get_thread_num’

../libutil.a(diffu.o) (.text+0x2400) : In function
‘diffu_’:

undefined reference to ‘__ompc_fork’

../libutil.a(diffu.o) (.text+0x2499) : In function
‘__ompdo_diffu_1’:



10 – Debugging and Troubleshooting
Troubleshooting OpenMP

10-6  



 A-1

Appendix A
Environment Variables

This appendix lists environment variables utilized by the compiler, along with a short 
description. These variables are organized by language, with a separate section 
for language independent variables.

A.1
Environment Variables for Use with C

A.2
Environment variables for Use with C++

A.3
Environment Variables for Use with Fortran

PSC_CFLAGS Flags to pass to the the C compiler, pathcc. This 
variable is used with the gcc compatibility wrapper 
scripts.

PSC_CXXFLAGS Flags to pass to the C++ compiler, pathCC. This variable 
is used with the gcc compatibility wrapper scripts.

F90_BOUNDS_CHECK_ABORT Set to YES, causes the program to abort on the first 
bounds check violation.

F90_DUMP_MAP Dump memory mapping at the location of a segmentation 
fault.

FTN_SUPPRESS_REPEATS Output multiple values instead of using the repeat factor, 
used at runtime

NLS PATH Flags for runtime and compile-time messages. If the 
main function in your program is coded in C, then even 
though other parts of the program are coded in Fortran, 
the Fortran runtime library will not be able to find the file 
which provides runtime error messages. To remedy this, 
set the NLSPATH environment variable to the location of 
the error messages, using %N for the base name of the 
file. For example, if the compiler version is 2.1, set it to 
/opt/pathscale/lib/2.1/%N.cat.

PSC_FDEBUG_ALLOC Flag to debug Fortran memory allocations. This variable 
is used to initialize memory locations during execution.



A – Environment Variables
Language-independent Environment Variables

A-2  

A.4
Language-independent Environment Variables

A.5
Environment Variables for OpenMP

These environment variables are described in detail in section 8. They are listed 
here for your reference.

PSC_FFLAGS Flags to pass to the Fortran compiler, pathf95. This 
variable is used with the gcc compatibility wrapper 
scripts.

PSC_STACK_LIMIT Controls the stack size limit the Fortran runtime attempts 
to use. This string takes the format of a floating-point 
number, optionally followed by one of the characters "k" 
(for units of 1024 bytes), "m" (for units of 1048576 bytes), 
"g" (for units of 1073741824 bytes), or "%" (to specify a 
percentage of physical memory). If the specifier is 
following by the string "/ cpu", the limit is divided by the 
number of CPUs the system has. For example, a limit of" 
1.5g" specifies that the Fortran runtime will use no more 
than 1.5 gigabytes (GB) of stack. On a system with 2GB 
of physical memory, a limit of "90%/cpu" will use no more 
than 0.9GB of stack (2/2*0.90).

PSC_STACK_VERBOSE If this environment variable is set, the Fortran runtime 
will print detailed information about how it is computing 
the stack size limit to use.

FILENV The location of the assign file. See the assign man 
page for more details.

PSC_COMPILER_DEFAULTS_
PATH

Specifies a PATH or a colon-separated list of PATHs, 
designating where the compiler is to look for the 
compiler.defaults file. If the environment variable 
is set, the PATH /opt/pathscale/etc will not be 
used. If the file cannot be found, then no defaults file will 
be used, even if one is present in 
/opt/pathscale/etc.

PSC_GENFLAGS Generic flags passed to all compilers. This variable is 
used with the gcc compatibility wrapper scripts.

PSC_PROBLEM_REPORT_DIR Name a directory in which to save problem reports and 
preprocessed source files, if the compiler encounters an 
internal error. If not specified, the directory used is 
$HOME/ .ekopath-bugs.



A – Environment Variables
Environment Variables for OpenMP

 A-3

A.5.1
Standard OpenMP Runtime Environment Variables

These environment variables can be used with OpenMP in either Fortran or C and 
C++.

A.5.2
PathScale OpenMP Environment Variables

These environment variables can be used with OpenMP in Fortran and C and C++, 
except as indicated.

OMP_DYNAMIC Enables or disables dynamic adjustment of the number 
of threads available for execution. Default is FALSE, 
since this mechanism is not supported.

OMP_NESTED Enables or disables nested parallelism. Default is 
FALSE.

OMP_SCHEDULE This environment variable only applies to DO and 
PARALLEL_DO directives that have schedule type 
RUNTIME. Type can be STATIC, DYNAMIC, or GUIDED. 
Default is STATIC, with no chunk size specified.

OMP_NUM_THREADS Set the number of threads to use during execution. 
Default is number of CPUs in the machine.

PSC_OMP_AFFINITY When TRUE, the operating system’s affinity mechanism 
(where available) is used to assign threads to CPUs, 
otherwise no affinity assignments are made. The default 
value is TRUE.

PSC_OMP_AFFINITY_
GLOBAL

This environment variable controls where thread global 
ID or local ID values are used when assigning threads 
to CPUs. The default is TRUE so that global ID values 
are used for calculating thread assignments.



A – Environment Variables
Environment Variables for OpenMP

A-4  

PSC_OMP_AFFINITY_MAP This environment variable allows the mapping from 
threads to CPUs to be fully specified by the user. It must 
be set to a list of CPU identifiers separated by commas. 
The list must contain at least one CPU identifier, and 
entries in the list beyond the maximum number of threads 
supported by the implementation (256) are ignored. Each 
CPU identifier is a decimal number between 0 and one 
less than the number of CPUs in the system (inclusive).
The implementation generates a mapping table that 
enumerates the mapping from each thread to CPUs. The 
CPU identifiers in the PSC_OMP_AFFINITY_MAP list are 
inserted in the mapping table starting at the index for 
thread 0 and increasing upwards. If the list is shorter than 
the maximum number of threads, then it is simply 
repeated over and over again until there is a mapping for 
each thread. This repeat feature allows short lists to be 
used to specify repetitive thread mappings for all threads.

PSC_OMP_CPU_STRIDE This specifies the striding factor used when mapping 
threads to CPUs. It takes an integer value in the range 
of 0 to the number of CPUs (inclusive). The default is a 
stride of 1 which causes the threads to be linearly 
mapped to consecutive CPUs. When there are more 
threads than CPUs the mapping wraps around giving a 
round-robin allocation of threads to CPUs. The behavior 
for a stride of 0 is the same as a stride of 1.

PSC_OMP_CPU_OFFSET This specifies an integer value that is used to offset the 
CPU assignments for the set of threads. It takes an 
integer value in the range of 0 to the number of CPUs 
(inclusive). When a thread is mapped to a CPU, this 
offset is added onto the CPU number calculated after 
PSC_OMP_CPU_STRI DE has been applied. If the 
resulting value is greater than the number of CPUs, then 
the remainder is used from the division of this value by 
the number of CPUs.

PSC_OMP_GUARD_SIZE This environment variable specifies the size in bytes of 
a guard area that is placed below pthread stacks. This 
guard area is in addition to any guard pages created by 
your O/S.

PSC_OMP_GUIDED_CHUNK_
DIVISOR

The value of PSC_OMP_GUI DE D_CHUNK_DIVISOR is 
used to divide down the chunk size assigned by the 
guided scheduling algorithm. See section 8.9.2 for 
details.

PSC_OMP_GUIDED_CHUNK_
MAX

This is the maximum chunk size that will be used by the 
loop scheduler for guided scheduling. See section 8.9.2 
for details.



A – Environment Variables
Environment Variables for OpenMP

 A-5

PSC_OMP_LOCK_SPIN This chooses the locking mechanism used by critical 
sections and OMP locks. See section 8.9.2 for details.

PSC_OMP_SILENT If you set PSC_OMP_SILENT to anything, then warning 
and debug messages from the libopenmp library are 
inhibited.

PSC_OMP_STACK_SIZE (Fortran) Stack size specification follows the syntax in 
section 3.13. 

PSC_OMP_STATIC_FAIR This determines the default static scheduling policy when 
no chunk size is specified, as discussed in section 8.9.2.

PSC_OMP_THREAD_SPIN This takes a numeric value and sets the number of times 
that the spin loops will spin at user-level before falling 
back to O/S schedule/reschedule mechanisms.



A – Environment Variables
Environment Variables for OpenMP

A-6  



 B-1

Appendix B
Implementation Dependent Behavior for OpenMP Fortran

The OpenMP Fortran specification 2.0, Appendix E, requires that the 
implementation-defined behavior of PathScale’s OpenMP implementation be 
defined and documented: see http://www.openmp.org/. (For the Fortran version 2.0 
OpenMP Specification, click on Specifications in the left column of the OpenMP 
home page.) This appendix summarizes the behaviors that are described as 
implementation dependent in this API. The sections in italic, including the cross 
references, come from the Fortran 2.0 specification, and each is followed by the 
relevant details for the PathScale implementation in its Compiler Suite Version 3.2 
release of OpenMP for Fortran.

SCHEDULE (GUIDED, chunk): chunk specifies the size of the smallest piece, 
except possibly the last. The size of the initial piece is implementation dependent 
(Table 1, page 17).

The size of the initial piece is given by the following equation:

chunk_size = MAX(
MIN(
ROUNDUP
( (remaining_size) /
(number_o f_threads * PSC_OMP_GUIDED_CHUNK_DIVISOR)

),
PSC OMP GUIDED CHUNK MAX 

),
minimum_chunk_size
)

Where:

• remaining_size is the number of iterations of the loop.

• number_of_threads is the number of threads in the team.

• PSC_OMP_GUIDED_CHUNK_DIVISOR is the value of the 
PSC_OMP_GUIDED_CHUNK_DIVISOR environment variable (defaults to 2).

• PSC_OMP_GUIDED_CHUNK_MAX is the value of the 
PSC_OMP_GUIDED_CHUNK_MAX environment variable (defaults to 300).

• minimum_chunk_size is the size of the smallest piece (this is the value of 
chunk in the SCHEDULE directive)

• ROUNDUP (x) rounds x upwards to the nearest higher integer

• MIN (a,b) is the minimum of a and b

• MAX (a,b) is the maximum of a and b



B – Implementation Dependent Behavior for OpenMP Fortran

B-2  

When SCHEDULE (RUNTIME) is specified, the decision regarding scheduling is 
deferred until runtime. The schedule type and chunk size can be chosen at runtime 
by setting the OMP_SCHEDULE environment variable. If this environment variable 
is not set, the resulting schedule is implementation-dependent (Table 1, page 17).

The default runtime schedule is static scheduling. The default chunk size is set to 
the number of iterations of the loop divided by the number of threads in the team 
rounded up to the nearest integer. The loop iterations are partitioned into chunks 
of the default chunk size. If the number of iterations of the loop is not an exact integer 
multiple of the number of threads in the team, the last chunk will be smaller than 
the default chunk size and in some cases it may contain zero loop iterations. The 
chunks are assigned to threads starting from the thread with local index 0. The 
thread with the highest local index will receive the last chunk, and this may be smaller 
than the others or even zero. The loop iterations which are executed by a thread 
are contiguous in terms of their loop iteration number.

NOTE: The PSC_OMP_STATIC_FAIR environment variable can be used to 
change the default static scheduling algorithm to an alternate scheme 
where the iterations are more equally balanced over the threads in cases 
where the division in not exact.

In the absence of the SCHEDULE clause, the default schedule is 
implementation-dependent (section 2.3.1).

In the absence of the SCHEDULE clause, the default schedule is static scheduling. 
The default chunk size is set to the number of iterations of the loop divided by the 
number of threads in the team rounded up to the nearest integer. The loop iterations 
are partitioned into chunks of the default chunk size. If the number of iterations of 
the loop is not an exact integer multiple of the number of threads in the team, the 
last chunk will be smaller than the default chunk size and in some cases it may 
contain zero loop iterations. The chunks are assigned to threads starting from the 
thread with local index 0. The thread with the highest local index will receive the 
last chunk, and this may be smaller than the others or even zero. The loop iterations 
which are executed by a thread are contiguous in terms of their loop iteration 
number.

NOTE: The PSC_OMP_STATIC_FAIR environment variable can be used to 
change the default static scheduling algorithm to an alternate scheme 
where the iterations are more equally balanced over the threads in cases 
where the division in not exact.

OMP_GET_NUM_THREADS: If the number of threads has not been explicitly set by 
the user, the default is implementation-dependent (Section 3.1.2, page 48).

If the number of threads has not been explicitly set by the user, it defaults to the 
number of CPUs in the machine.

OMP_SET_DYNAMIC: The default for dynamic thread adjustment is 
implementation-dependent (Section 3.1.7, page 51).



B – Implementation Dependent Behavior for OpenMP Fortran

 B-3

The default for OMP_DYNAMIC is false. Dynamic thread adjustment is not supported 
by this implementation–the number of threads that are assigned to a new team is 
not adjusted dynamically by this implementation.

If dynamic thread adjustment is requested by the user or program, by setting 
OMP_DYNAMIC to TRUE or calling OMP_SET_DYNAMIC with a TRUE parameter, the 
implementation produces a diagnostic message and ignores the request. The value 
returned by OMP_GET_DYNAMIC is always FALSE to indicate that this mechanism 
is not supported.

OMP_SET_NESTED: When nested parallelism is enabled, the number of threads 
used to execute nested parallel regions is implementation-dependent (Section 
3.1.9, page 52).

The implementation supports dynamically-nested parallelism. The number of 
threads assigned to a new team is determined by the following algorithm:

• If this fork is dynamically nested inside another fork and nesting is disabled, then 
the new team will consist of 1 thread (the thread that requests the fork).

• Otherwise, the number of threads is specified by the NUM_THREADS clause on 
the parallel directive if NUM_THREADS has been specified.

• Otherwise, the number of threads is specified by the most recent call to 
OMP_SET_NUM_THREADS if it has been called.

• Otherwise, the number of threads is specified by the OMP_NUM_THREADS 
environment variable if it has been defined.

• Otherwise, the number of threads defaults to the number of CPUs in the machine.

If the number of threads is greater than 1, the request requires allocation of new 
threads and this may fail if insufficient machine resources are available. The 
maximum number of threads that can be allocated simultaneously is limited to 256 
by the implementation.

Currently, nested parallelism is not supported where nested parallel directives

are statically scoped within the same subroutine as the outer parallel directive. In 
this case only the outer parallel directive will be parallelized, and any inner nested 
directives will be serialized (executed by a team of 1 thread). To achieve nested 
parallelism, the nested parallel directives must be moved to a separate subroutine.

OMP_SCHEDULE environment variable: The default value for this environment 
variable is implementation-dependent (Section 4.1, page 59).

The default for the OMP_SCHEDULE environment variable is static scheduling with 
no chunk size specified. The chunk size will default to the number of iterations of 
the loop divided by the number of threads in the team rounded up to the nearest 
integer. The loop iterations are partitioned into chunks of the default chunk size. If 
the number of iterations of the loop is not an exact integer multiple of the number 
of threads in the team, the last chunk will be smaller than the default chunk size 



B – Implementation Dependent Behavior for OpenMP Fortran

B-4  

and in some cases it may contain zero loop iterations. The chunks are assigned to 
threads starting from the thread with local index 0. The thread with the highest local 
index will receive the last chunk, and this may be smaller than the others or even 
zero. The loop iterations which are executed by a thread are contiguous in terms 
of their loop iteration number.

NOTE: The PSC_OMP_STATIC_FAIR environment variable can be used to 
change the default static scheduling algorithm to an alternate scheme 
where the iterations are more equally balanced over the threads in cases 
where the division in not exact.

OMP_NUM_THREADS environment variable: The default value is 
implementation-dependent (Section 4.2, page 60).

The default value of the OMP_NUM_THREADS environment variable is the number 
of CPUs in the machine.

OMP_DYNAMIC environment variable: The default value is 
implementation-dependent (Section 4.3, page 60).

The default value of the OMP_DYNAMIC environment variable is false.

An implementation can replace all ATOMIC directives by enclosing the statement 
in a critical section (Section 2.5.4, page 27).

Many ATOMIC directives are implemented with in-line atomic code for the atomic 
statement, while others are implemented using a critical section, due to the absence 
of hardware support.

If the dynamic threads mechanism is enabled on entering a parallel region, the 
allocation status of an allocatable array that is not affected by a COPYIN clause 
that appears on the region is implementation-dependent (Section 2.6.1, page 32).

The allocation status of the thread’s copy of an allocatable array will be retained on 
entering a parallel region.

Due to resource constraints, it is not possible for an implementation to document 
the maximum number of threads that can be created successfully during a program’s 
execution. This number is dependent upon the load on the system, the amount of 
memory allocated by the program, and the amount of implementation dependent 
stack space allocated to each thread. If the dynamic threads mechanism is disabled, 
the behavior of the program is implementation-dependent when more threads are 
requested than can be successfully created. If the dynamic threads mechanism is 
enabled, requests for more threads than an implementation can support are satisfied 
by a smaller number of threads (Section 2.3.1, page 15).

Since the implementation does not support dynamic thread adjustment, the dynamic 
threads mechanism is always disabled. If more threads are requested than are 
available, the request will be satisfied using only the available threads.



B – Implementation Dependent Behavior for OpenMP Fortran

 B-5

The maximum number of threads that can be allocated simultaneously is limited to 
256 by the implementation.

Additionally, if a system call to allocate threads, memory or other system resources 
does not succeed, then the runtime library will exit with a fatal error message.

If an OMP runtime library routine interface is defined to be generic by an 
implementation, use of arguments of kind other than those specified by the 
OMP_*_KIND constants is implementation-dependent (Section D.3, page 111).

No generic OMP runtime library routine interface is provided.



B – Implementation Dependent Behavior for OpenMP Fortran

B-6  

Notes



 C-1

Appendix C
Supported Fortran Intrinsics

The Version 3.2 release of the PathScale Compiler Suite supports all of the GNU 
g77 intrinsics. You must use -intrinsic=PGI or -intrinsic=G77 to get new 
G77 intrinsics which were added in the release.

All of the argument types for each intrinsic may not be supported in this release.

C.1
How to Use the Intrinsics Table

As an example let’s look at the intrinsic ACO S. This is what it looks like in the table:

For the intrinsic ACOS, the result is R*4, which means “REAL*4” or “REAL 
(KIND=4)”, and its arguments (X) can be either R*4 (REAL*4) or R*8 (REAL*8). 
ACOS belongs to the ANSI, G77, PGI, and TRADITIONAL families of intrinsics (see 
appendix C.2 for an explanation of intrinsic families), which means the compiler will 
recognize it if any of those families is enabled. Under remarks, E, P are listed. E 
tells us that this is an elemental intrinsic and P tells us that the intrinsic may be 
passed as an actual argument.

Here is a simple scalar call to intrinsic ACOS:

print *, acos(1.0)

Because the intrinsic is elemental, you can also apply it to an array:

print *, acos((/ 1.0, 0.707, 0.5 /))

NOTE: One of the lesser-known features of Fortran 90 is that you can use 
argument names when calling intrinsics, instead of passing all of the 
arguments in strictly defined order. There are only a couple of cases where 
it is actually useful to know the official name so that you can omit optional 
arguments that don’t interest you (for example call date_and_time 
(time=timevar)) but you’re always allowed to specify the name if you 
like.

C.2
Intrinsic Options

If your program contains a function or subroutine whose name conflicts with that of 
one of the intrinsic procedures, you have three choices. Within each program unit 

Intrinsic Name Result Arguments Families Remarks
ACOS R*4 X: R*4, R*8 ANSI, G77, PGI, 

TRADITIONAL
E, P



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

C-2  

that calls that function or subroutine, you can declare the procedure in an "external" 
statement; or you can declare it with Fortran 90 interface block; or you can use 
command-line options to tell the compiler not to provide that intrinsic.

The option -ansi (if present) removes all non-standard intrinsics. The options 
-intrinsic=name and -no-intrinsic=name are applied to add or remove specific 
intrinsics from the set of remaining ones.

For example, the compile command might look like this:

$ pathf95 myprogram.f -ansi -intrinsic=second

To make it convenient to compile programs developed under other compilers, 
pathf95 provides the ability to enable and disable a group or "family" of intrinsics 
with a single option. Family names are ANSI, EVERY, G77, PGI, OMP, and 
TRADITIONAL. These family names must appear in uppercase to distinguish them 
from the names of individual intrinsics. By default, the compiler enables either ANSI 
or TRADITIONAL, depending on whether you use the -ansi option. It automatically 
enables OMP as well if you use the -mp option.

As an example, suppose you are compiling a program that was originally developed 
under the GNU G77 compiler, and encounter problems because it contains 
subroutine names which conflict with some of the intrinsics in the TRADITIONAL 
family. Suppose that you have also decided that you want to use the individual 
intrinsic adjustl, which is not provided by G77. These options would give you the 
set of intrinsics you need:

-no-intrinsic=traditional -instinsic=G77 -intrinsic=adjust1

C.3
Table of Supported Intrinsics

The following table lists the Fortran intrinsics supported by the PathScale Compiler 
Suite, along with the result, arguments, families, and characteristics for each. See 
the Legend for more information.

Legend:

Key to Types
I: Integer
R: Real
Z: Complex
C: Character
L: Logical
Depends on arg: Result type varies depending on the argument type
Subroutine: Intrinsic is a subroutine, not a function

Key to Remarks
E: Elemental intrinsic



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

 C-3

P: May pass intrinsic itself as an actual argument
X: Extension to the Fortran standard
O: Optional argument
1: Must use -intrinsic=<name> to enable this

Table C-1. Fortran Intrinsics Supported in Version 3.2

Intrinsic Name Result Arguments Families Remarks
ABORT Subroutine G77, PGI
ABS R*4 A: I*1, I*2, I*4, I*8, 

R*4, R*8, Z*8, Z*16
ANSI, G77, 
PGI, 
TRADITIONAL

ACCESS I*4 NAME: C
MODE: C

G77, PGI

ACHAR C I: I*1, I*2, I*4, I*8 ANSI, G77, 
PGI,TRADITIO
NAL 

E

ACOS R*4 X: R*4, R*8 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

ACOSD R*4 X: R*4, R*8 PGI, 
TRADITIONAL

E

ADD_AND_
FETCH

I: I*4
J: I*4

TRADITIONAL E

ADD_AND_
FETCH

I: I*8
J: I*8

TRADITIONAL E

ADJUSTL STRING: C ANSI, PGI, 
TRADITIONAL

E

ADJUSTR STRING: C ANSI, PGI, 
TRADITIONAL

E

AIMAG R*4 Z: Z*8, Z*16 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

AINT R*4 A: R*4, R*8
KIND: I*1, I*2, I*4, 
I*8

ANSI, G77, 
PGI, 
TRADITIONAL

E, P
O

ALARM I*4 SECONDS: I*4, I*8
HANDLER: 
Procedure
STATUS: I*4

G77, PGI

O



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

C-4  

ALARM Subroutine SECONDS: I*4, I*8
HANDLER: 
Procedure
STATUS: I*4

G77

O
ALL ANSI, PGI, 

TRADITIONAL
See Std

ALLOCATED ANSI, PGI, 
TRADITIONAL

See Std

ALOG R*4 X: R*4, R*8 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

ALOG10 R*4 X: R*4, R*8 ANSI, G77, 
PGI, 
TRADITI NAL

E, P

AMAX0 ANSI, G77, 
PGI, 
TRADITIONAL

See Std

AMAX1 ANSI, G77, 
PGI, 
TRADITIONAL

See Std

AMIN0 ANSI, G77, 
PGI, 
TRADITIONAL

See Std

AMIN1 ANSI, G77, 
PGI, 
TRADITIONAL

See Std

AMOD R*4 A: R*4, R*8
P: R*4, R*8

ANSI, G77, 
PGI, 
TRADITIONAL

E, P

AND I: I*1, I*2, I*4, I*8, 
R*4, R*8, 
CrayPtr, L*1, L*2, 
L*4, L*8, 
J: I*1, I*2, I*4, I*8, 
R*4, R*8, 
CrayPtr, L*1, L*2, 
L*4, L*8

ANSI, G77, 
PGI, 
TRADITIONAL

E

AND_AND_
FETCH

I: I*4
J: I*4

TRADITIONAL E

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

 C-5

AND_AND_
FETCH

I: I*8
J: I*8

TRADITIONAL E

ANINT R*4 A: R*4, R*8
KIND: I*1, I*2, I*4, 
I*8

ANSI, G77, 
PGI, 
TRADITIONAL

E, P
O

ANY ANSI, PGI, 
TRADITIONAL

See Std

ASIN R*4 X: R*4, R*8 ANSI, G77, 
PGI,
TRADITIONAL

E, P

ASIND R*4 X: R*4, R*8 PGI, 
TRADITIONAL

E

ASSOCIATED ANSI, PGI, 
TRADITIONAL

See Std

ATAN R*4 X: R*4, R*8 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

ATAN2 R*4 Y: R*4, R*8
X: R*4, R*8

ANSI, G77, 
PGI, 
TRADITIONAL

E, P

ATAN2D R*4 Y: R*4, R*8
X: R*4, R*8

PGI, 
TRADITIONAL

E, P

ATAND R*4 X: R*4, R*8 PGI, 
TRADITIONAL

E, P

BESJ0 R*4 X: R*4 G77, PGI
BESJ1 R*4 X: R*4 G77, PGI
BESJ1 R*8 X: R*8 G77, PGI
BESJN R*4 N: R*4

X:R*4
G77, PGI

BESJN R*8 N: R*4
X:R*8

G77, PGI

BESY0 R*4 X: R*4 G77, PGI
BESY0 R*8 X: R*8 G77, PGI
BESY1 R*4 X: R*4 G77, PGI
BESY1 R*8 X: R*8 G77, PGI
BESYN R*4 N: R*4

X: R*4
G77, PGI

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

C-6  

BESYN R*8 N: R*4
X: R*8

G77, PGI

BITEST I: I*2
POS: I*1, I*2, I*4, I*8

PGI, 
TRADITIONAL

E

BIT_SIZE I: I*1, I*2, I*4, I*8 ANSI, G77, 
PGI, 
TRADITIONAL

E

BJTEST I: I*4
POS: I*1, I*2, I*4, I*8

PGI, 
TRADITIONAL

E

BKTEST I: I*8
POS: I*1, I*2, I*4, I*8

TRADITIONAL E

BTEST I: I*1, I*2, I*4, I*8
POS: I*1, I*2, I*4, I*8

ANSI, G77, 
PGI, 
TRADITIONAL

E

CABS R*4 A: Z*8, Z*16 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

CCOS Z*8 X: Z*8, Z*16 ANSI, G77, 
PGI,
TRADITIONAL

E, P

CDABS R*8 A: Z*16 G77, PGI, 
TRADITIONAL

E, P

CDCOS Z*16 X: Z*16 G77, PGI, 
TRADI-
TIONAL

E, P

CDEXP Z*16 X: Z*16 G77, PGI, 
TRADITIONAL

E, P

CDLOG Z*16 X: Z*16 G77, PGI, 
TRADITIONAL

E, P

CDSIN Z*16 X: Z*16 G77, PGI, 
TRADITIONAL

E, P

CDSQRT Z*16 X: Z*16 G77, PGI, 
TRADITIONAL

E, P

CEILING A: R*4, R*8
KIND: I*1, I*2, I*4, 
I*8

ANSI, PGI, 
TRADITIONAL

E
O

CEXP Z*8 X: Z*8, Z*16 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

 C-7

CHAR C I: I*1, I*2, I*4, I*8
KIND: I*1, I*2, I*4, 
I*8

ANSI, G77, 
PGI, 
TRADITIONAL

E
O

CHDIR I*4 DIR: C
STATUS: I*4

G77, PGI O

CHDIR Subroutine DIR: C
STATUS: I*4

G77 O

CHMOD I*4 NAME: C
MODE: C
STATUS: I*4

G77, PGI O

CHMOD Subroutine NAME: C
MODE: C
STATUS: I*4

G77 O

CLEAR_IEEE_
EXCEPTION

Subroutine EXCEPTION: I*8 TRADITIONAL E

CLOC I*8 C: C TRADITIONAL
CLOCK C TRADITIONAL
CLOG Z*8 X: Z*8, Z*16 ANSI, G77, 

PGI, 
TRADITIONAL

E, P

CMPLX Z*8 X:I*1, I*2, I*4, I*8, 
R*4, R*8, Z*8, Z*16
Y: I*1, I*2, I*4, I*8, 
R*4, R*8, Z*8, Z*16

ANSI, G77, 
PGI,
TRADITIONAL

E
O

COMMAND_
ARGUMENT_
COUNT

I*4 KIND: I*1, I*2, I*4, 
I*8

ANSI, 
TRADITIONAL

O

COMPARE_
AND_SWAP

L*4 I: I*4
J: I*4
K: I*4

TRADITIONAL E

COMPARE_
AND_SWAP

L*8 I: I*8
J: I*8
K: I*8

TRADITIONAL E

COMPL I: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8

PGI, 
TRADITIONAL

E

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

C-8  

CONJG Z*8 Z: Z*8, Z*16 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

COS R*4 X: R*4, R*8, Z*8, 
Z*16

ANSI, G77, 
PGI, 
TRADITIONAL

E, P

COSD R*4 X: R*4, R*8 PGI, 
TRADITIONAL

E, P

COSH R*4 X: R*4, R*8 ANSI, G77, 
PGI,
TRADITIONAL

E, P

COT R*4 X: R*4, R*8 TRADITIONAL E, P
COTAN R*4 X: R*4, R*8 TRADITIONAL E, P
COUNT ANSI, PGI, 

TRADITIONAL
See Std

CPU_TIME Subroutine TIME: R*4 ANSI, G77, 
PGI, 
TRADITIONAL

CPU_TIME Subroutine TIME: R*8 ANSI, G77, 
PGI, 
TRADITIONAL

CSHIFT ANSI, PGI, 
TRADITIONAL

See Std

CSIN Z*8 X: Z*8, Z*16 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

CSMG I: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8
J: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8
K: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8

TRADITIONAL E

CSQRT Z*8 X: Z*8, Z*16 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

 C-9

CTIME C STIME: I*4 G77, PGI
CTIME C STIME: I*8 G77, PGI
CTIME Subroutine G77

STIME: I*4
RESULT: C

O

CTIME Subroutine STIME: I*8
RESULT: C

G77 O

CVMGM I: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8
J: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8
K: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8

TRADITIONAL E

CVMGN I: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8
J: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8
K: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8

TRADITIONAL E

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

C-10  

CVMGP I: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8
J: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8
K: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8

TRADITIONAL E

CVMGT I: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8
J: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8
K: L*1, L*2, L*4, L*8

TRADITIONAL E

CVMGZ I: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8
J: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8
K: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8

TRADITIONAL E

C_LOC I*8 X: Any type, Array 
rank=any

TRADITIONAL

DABS R*8 A: R*8 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

DACOS R*8 X: R*8 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

 C-11

DACOSD R*8 X: R*8 PGI, 
TRADITIONAL

E

DASIN R*8 X: R*8 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

DASIND R*8 X: R*8 PGI, 
TRADITIONAL

E

DATAN R*8 X: R*8 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

DATAN2 R*8 Y: R*8
X: R*8

ANSI, G77, 
PGI, 
TRADITIONAL

E, P

DATAN2D R*8 Y: R*8
X: R*8

PGI, 
TRADITIONAL

E

DATAND R*8 X: R*8 PGI, 
TRADITIONAL

E

DATE C G77, PGI, 
TRADITIONAL

DATE Subroutine DATE: C G77, PGI
DATE_AND
_TIME

Subroutine DATE: C
TIME: C
ZONE: C
VALUES: I*1, I*2, 
I*4, I*8,
Array rank=1

ANSI, G77, 
PGI, 
TRADITIONAL

O

DBESJ0 R*8 X: R*8 G77, PGI
DBESJ1 R*8 X: R*8 G77, PGI
DBESJN R*8 N: I*4 

X: R*8
G77, PGI

DBESY0 R*8 X: R*8 G77, PGI
DBESY1 R*8 X: R*8 G77, PGI
DBESYN R*8 N: I*4 

X: R*8
G77, PGI

DBLE R*8 A: I*1, I*2, I*4, I*8, 
R*4, R*8, Z*8, Z*16

ANSI, G77, 
PGI, E 
TRADITIONAL

E

DCMPLX *16 X: I*1, I*2, I*4, I*8, 
R*4, R*8, Z*8, Z*16

G77, PGI, 
TRADITIONAL

E

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

C-12  

Y: I*1, I*2, I*4, I*8, 
R*4, R*8, Z*8, Z*16

O

DCONJG Z*16 Z: Z*16 G77, PGI, 
TRADITIONAL

E

DCOS R*8 X: R*8 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

DCOSD R*8 X: R*8 PGI, 
TRADITIONAL

E

DCOSH R*8 X: R*8 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

DCOT R*8 X: R*8 TRADITIONAL E, P
DCOTAN R*8 X: R*8 TRADITIONAL E, P
DDIM R*8 X: R*8

Y: R*8
ANSI, G77, 
PGI, 
TRADITIONAL

E, P

DERF X: R*4, R*8 G77, PGI, 
TRADITIONAL

E, P

DERFC X: R*4, R*8 G77, PGI, 
TRADITIONAL

E, P

DEXP R*8 X: R*8 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

DFLOAT R*8 A: I*1, I*2, I*4, I*8 G77, PGI, 
TRADITIONAL

E

DFLOATI R*8 A: I*2 TRADITIONAL E
DFLOATJ R*8 A: I*4 TRADITIONAL E
DFLOATK R*8 A: I*8 TRADITIONAL E
DIGITS X: I*1, I*2, I*4, I*8, 

R*4, R*8
ANSI, PGI, 
TRADITIONAL

E

DIM R*4 X: R*4
Y: R*4

ANSI, G77, 
PGI, 
TRADITIONAL

E, P

DIM X: R*8
Y: R*8

ANSI, G77, 
PGI, 
TRADITIONAL

E, P

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

 C-13

DIM X: I*1, I*2, I*4, I*8 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

Y: I*1, I*2, I*4, I*8
DIMAG R*8 Z: Z*16 G77, PGI, 

TRADITIONAL
E

DINT R*8 A: R*8 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

DISABLE_IEEE_
INTERRUPT

Subroutine INTERRUPT: I*8 TRADITIONAL E

DLOG R*8 X: R*8 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

DLOG10 R*8 X: R*8 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

DMAX1 ANSI, G77, 
PGI, 
TRADITIONAL

See Std

DMIN1 ANSI, G77, 
PGI, 
TRADITIONAL

See Std

DMOD R*8 A: R*8
P: R*8

ANSI, G77, 
PGI, 
TRADITIONAL

E, P

DNINT R*8 A: R*8 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

DOT_
PRODUCT

ANSI, PGI, 
TRADITIONAL

See Std

DPROD R*8 X: R*4, R*8
Y: R*4, R*8

ANSI, G77, 
PGI, 
TRADITIONAL

E, P

DREAL R*8 A: I*1, I*2, I*4, I*8, 
R*4, R*8, Z*8, Z*16

G77, PGI, 
TRADITIONAL

E

DSHIFTL I: I*1, I*2, I*4, I*8
J: I*1, I*2, I*4, I*8
K: I*1, I*2, I*4, I*8

TRADITIONAL E

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

C-14  

DSHIFTR I: I*1, I*2, I*4, I*8
J: I*1, I*2, I*4, I*8
K: I*1, I*2, I*4, I*8

TRADITIONAL E

DSIGN R*8 A: R*8
B: R*8

ANSI, G77, 
PGI, 
TRADITIONAL

E, P

DSIN R*8 X: R*8 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

DSIND R*8 X: R*8 PGI, 
TRADITIONAL

E

DSINH R*8 X: R*8 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

DSM_
CHUNKSIZE

I*8 ARRAY: Any type, 
Array rank=any
DIM: I*1, I*2, I*4, I*8

TRADITIONAL

DSM_
DISTRIBUTION_
BLOCK

I*8 ARRAY: Any 
type,Array rank=any
DIM: I*1, I*2, I*4, I*8

TRADITIONAL

DSM_
DISTRIBUTION_
CYCLIC

I*8 ARRAY: Any type, 
Array rank=any
DIM: I*1, I*2, I*4, I*8

TRADITIONAL

DSM_
DISTRIBUTION_
STAR

I*8 ARRAY: Any type, 
Array rank=any
DIM: I*1, I*2, I*4, I*8

TRADITIONAL

DSM_
ISDISTRIBUTED

I*8 ARRAY: Any type, 
Array rank=any

TRADITIONAL

DSM_
ISRESHAPED

I*8 ARRAY: Any type, 
Array rank=any

TRADITIONAL

DSM_
NUMCHUNKS

I*8 ARRAY: Any type, 
Array rank=any

TRADITIONAL

DSM_
NUMTHREADS

I*8 ARRAY: Any type, 
Array rank=any
DIM: I*1, I*2, I*4, I*8

TRADITIONAL

DSM_REM_
CHUNKSIZE

I*8 ARRAY: Any type, 
Array rank=any
DIM: I*1, I*2, I*4, I*8
INDEX: I*1, I*2, I*4, 
I*8

TRADITIONAL

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

 C-15

DSM_THIS_
CHUNKSIZE

I*8 ARRAY: Any type, 
Array rank=any
DIM: I*1, I*2, I*4, I*8
INDEX: I*1, I*2, I*4, 
I*8

TRADITIONAL

DSM_THIS_
STARTINGINDE
X

I*8 ARRAY: Any type, 
Array rank=any
DIM: I*1, I*2, I*4, I*8
INDEX: I*1, I*2, I*4, 
I*8

TRADITIONAL

DSM_THIS_
THREADNUM

I*8 ARRAY: Any type, 
Array rank=any
DIM: I*1, I*2, I*4, I*8
INDEX: I*1, I*2, I*4, 
I*8

TRADITIONAL

DSQRT R*8 X: R*8 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

DTAN R*8 X: R*8 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

DTAND R*8 X: R*8 PGI, 
TRADITIONAL

E, P

DTANH R*8 X: R*8 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

DTIME R*4 TARRAY: R*4, 
Array rank=1

G77, PGI, 
TRADITIONAL

DTIME Subroutine TARRAY: R*4, 
Array rank=1
RESULT: R*4

G77, 
TRADITIONAL

ENABLE_IEEE
_INTERRUPT

Subroutine INTERRUPT: I*8 TRADITIONAL E

EOSHIFT ANSI, PGI, 
TRADITIONAL

See Std

EPSILON X: R*4, R*8 ANSI, PGI, 
TRADITIONAL

E

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

C-16  

EQV I: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8
J: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8

PGI, 
TRADITIONAL

E

ERF X: R*4, R*8 G77, PGI, 
TRADITIONAL

E, P

ERFC X: R*4, R*8 G77, PGI, 
TRADITIONAL

E, P

ETIME R*4 TARRAY: R*4, 
Array rank=1

G77, PGI, 
TRADITIONAL

ETIME Subroutine TARRAY: R*4, 
Array rank=1
RESULT: R*4

G77, 
TRADITIONAL

EXIT Subroutine STATUS: I*1, I*2, 
I*4, I*8

G77, PGI, 
TRADITIONAL

O

EXP R*4 X: R*4, R*8, Z*8, 
Z*16

ANSI, G77, 
PGI, 
TRADITIONAL

E, P

EXPONENT X: R*4, R*8 ANSI, PGI, 
TRADITIONAL

E

FCD I: I*1, I*2, I*4, I*8, 
CrayPtr
J: I*1, I*2, I*4, I*8

TRADITIONAL E

FDATE C G77, PGI, 
TRADITIONAL

FDATE Subroutine DATE: C G77, PGI
FETCH_AND_
ADD

I: I*4
J: I*4

TRADITIONAL E

FETCH_AND_
ADD

I: I*8
J: I*8

TRADITIONAL E

FETCH_AND_
AND

I: I*4
J: I*4

TRADITIONAL E

FETCH_AND_
AND

I: I*8
J: I*8

TRADITIONAL E

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

 C-17

FETCH_AND_
NAND

I: I*4
J: I*4

TRADITIONAL E

FETCH_AND_
NAND

I: I*8
J: I*8

TRADITIONAL E

FETCH_AND_
OR

I: I*4
J: I*4

TRADITIONAL E

FETCH_AND_
OR

I: I*8
J: I*8

TRADITIONAL E

FETCH_AND_
SUB

I: I*4
J: I*4

TRADITIONAL E

FETCH_AND_
SUB

I: I*8
J: I*8

TRADITIONAL E

FETCH_AND_
XOR

I: I*4
J: I*4

TRADITIONAL E

FETCH_AND_
XOR

I: I*8
J: I*8

TRADITIONAL E

FGET I*4 C: C
STATUS: I*4

G77 O

FGET Subroutine C: C
STATUS: I*4

G77 O

FGETC I*4 UNIT: I*4, I*8
C: C
STATUS: I*4

G77, PGI O

FGETC Subroutine UNIT: I*4, I*8
C: C
STATUS: I*4

G77 O

FLOAT R*4 A: I*1, I*2, I*4, I*8 ANSI, G77, 
PGI, 
TRADITIONAL

E

FLOATI R*4 A: I*2 PGI, 
TRADITIONAL

E

FLOATJ R*4 A: I*4 PGI, 
TRADITIONAL

E

FLOATK R*4 A: I*8 PGI, 
TRADITIONAL

E

FLOOR A: R*4, R*8
KIND: I*1, I*2, I*4, 
I*8

ANSI, PGI, 
TRADITIONAL

E
O

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

C-18  

FLUSH Subroutine UNIT: I*4, I*8
STATUS: I*4

G77, PGI O
O

FNUM I*4 UNIT: I*4 G77, 
TRADITIONAL

FPUT I*4 C: C
STATUS: I*4

G77 O

FPUT Subroutine C: C
STATUS: I*4

G77 O

FPUTC I*4 UNIT: I*4, I*8
C: C
STATUS: I*4

G77, PGI O

FPUTC Subroutine UNIT: I*4, I*8
C: C
STATUS: I*4

G77 O

FP_CLASS Depends on arg X: R*4 TRADITIONAL E
FP_CLASS Depends on arg X: R*4 TRADITIONAL E
FP_CLASS Depends on arg X: R*8 TRADITIONAL E
FP_CLASS Depends on arg X: R*8 TRADITIONAL E
FRACTION X: R*4, R*8 ANSI, PGI, 

TRADITIONAL
E

FREE Subroutine P: I*1, I*2, I*4, I*8, 
CrayPtr

PGI, 
TRADITIONAL

E

FSEEK I*4 UNIT: I*4
OFFSET: I*4
WHENCE: I*4

G77, PGI

FSEEK Subroutine UNIT: I*4
OFFSET: I*4
WHENCE: I*4

G77

FSEEK Subroutine UNIT: I*4
OFFSET: I*8
WHENCE: I*4

G77

FSTAT I*4 UNIT: I*1, I*2, I*4, I*8
SARRAY: I*1, I*2, 
I*4, I*8, 
Array rank=1
STATUS: I*1, I*2, 
I*4, I*8

G77, PGI, 
TRADITIONAL

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

 C-19

FSTAT Subroutine UNIT: I*1, I*2, I*4, I*8
SARRAY: I*1, I*2, 
I*4, I*8,
Array rank=1
STATUS: I*1, I*2, 
I*4, I*8

G77 O

FTELL I*8 UNIT: I*4 G77, PGI
FTELL I*8 UNIT: I*8 G77, PGI
FTELL Subroutine UNIT: I*4

OFFSET: I*4
G77

FTELL Subroutine UNIT: I*4
OFFSET: I*8

G77

FTELL Subroutine UNIT: I*8
OFFSET: I*8

G77

GERROR Subroutine MESSAGE: C G77, PGI
GETARG Subroutine POS: I*4

VALUE: C
G77, PGI

GETCWD I*4 NAME: C
STATUS: I*4

G77, PGI O

GETCWD Subroutine NAME: C
STATUS: I*4

G77 O

GETENV Subroutine NAME: C
VALUE: C

G77, PGI

GETGID I*4 G77, PGI
GETLOG Subroutine LOGIN: C G77, PGI
GETPID I*4 G77, PGI
GETUID I*4 G77, PGI
GETPOS I: I*1, I*2, I*4, I*8 TRADITIONAL E
GET_
COMMAND

Subroutine COMMAND: C
LENGTH: I*4
STATUS: I*4

ANSI, 
TRADITIONAL

O
O
O

GET_
COMMAND_
ARGUMENT

Subroutine NUMBER: I*4
VALUE: C
LENGTH: I*4
STATUS: I*4

ANSI, 
TRADITIONAL O

O
O

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

C-20  

GET_
ENVIRONMENT
_VARIABLE

Subroutine NAME: C
VALUE: C
LENGTH: I*4
STATUS: I*4
TRIM_NAME: L*4

ANSI, 
TRADITIONAL O

O
O
O

GET_IEEE_
EXCEPTIONS

Subroutine STATUS: I*8 TRADITIONAL

GET_IEEE_
INTERRUPTS

Subroutine STATUS: I*8 TRADITIONAL

GET_IEEE_
ROUNDING_
MODE

Subroutine STATUS: I*8 TRADITIONAL

GET_IEEE_
STATUS

Subroutine STATUS: I*8 TRADITIONAL

GMTIME Subroutine STIME: I*4
TARRAY: I*4, 
Array rank=1

G77, PGI

HOSTNM I*4 NAME: C
STATUS: I*4

G77, PGI O

HOSTNM Subroutine NAME: C
STATUS: I*4

G77 O

HUGE X: I*1, I*2, I*4, I*8, 
R*4, R*8

ANSI, PGI, 
TRADITIONAL

E

IABS I*4 A: I*1, I*2, I*4, I*8 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

IACHAR I*4 C: C ANSI, G77, 
PGI, 
TRADITIONAL

E

IAND I*4 I: I*1, I*2, I*4, I*8
J: I*1, I*2, I*4, I*8

ANSI, G77, 
PGI, 
TRADITIONAL

E

IARGC I*4 G77, PGI
IBCHNG I*4 I: I*1, I*2, I*4, I*8

POS: I*1, I*2, I*4, I*8
TRADITIONAL E

IBCLR I*4 I: I*1, I*2, I*4, I*8
POS: I*1, I*2, I*4, I*8

ANSI, G77, 
PGI, 
TRADITIONAL

E

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

 C-21

IBITS I*4 I: I*1, I*2, I*4, I*8
POS: I*1, I*2, I*4, I*8
LEN: I*1, I*2, I*4, I*8

ANSI, G77, 
PGI,
TRADITIONAL

E

IBSET I*4 I: I*1, I*2, I*4, I*8
POS: I*1, I*2, I*4, I*8

ANSI, G77, 
PGI, 
TRADITIONAL

E

ICHAR I*4 C: C ANSI, G77, 
PGI, 
TRADITIONAL

E

IDATE Subroutine I: I*1
J: I*1
K: I*1

G77, PGI, 
TRADITIONAL

IDATE Subroutine I: I*2
J: I*2
K: I*2

G77, PGI, 
TRADITIONAL

IDATE Subroutine I: I*4
J: I*4
K: I*4

G77, PGI, 
TRADITIONAL

IDATE Subroutine I: I*8
J: I*8
K: I*8

G77, PGI, 
TRADITIONAL

IDATE Subroutine TARRAY: I*1, 
Array rank=1

G77, PGI, 
TRADITIONAL

IDATE Subroutine TARRAY: I*2, 
Array rank=1

G77, PGI, 
TRADITIONAL

IDATE Subroutine TARRAY: I*4, 
Array rank=1

G77, PGI, 
TRADITIONAL

IDATE Subroutine TARRAY: I*8, Array 
rank=1

G77, PGI, 
TRADITIONAL

IDIM I*4 X: I*1, I*2, I*4, I*8
Y: I*1, I*2, I*4, I*8

ANSI, G77, 
PGI, 
TRADITIONAL

E, P

IDINT I*4 ANSI, G77, 
PGI, 
TRADITIONAL

E

A: R*8
IDNINT I*4 A: R*8 ANSI, G77, 

PGI, 
TRADITIONAL

E, P

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

C-22  

IEEE_BINARY_
SCALE

Y: R*4, R*8
N: I*1, I*2, I*4, I*8

TRADITIONAL E

IEEE_CLASS X: R*4, R*8 TRADITIONAL E
IEEE_COPY_
SIGN

X: R*4, R*8
Y: R*4, R*8

TRADITIONAL E

IEEE_
EXPONENT

X: R*4, R*8
Y: I*1, I*2, I*4, I*8, 
R*4, R*8

TRADITIONAL E
O

IEEE_FINITE X: R*4, R*8 TRADITIONAL E
IEEE_INT X: R*4, R*8

Y: I*1, I*2, I*4, I*8, 
R*4, R*8

TRADITIONAL E
O

IEEE_IS_NAN X: R*4, R*8 TRADITIONAL E
IEEE_NEXT_
AFTER

X: R*4, R*8
Y: R*4, R*8

TRADITIONAL E

IEEE_REAL X: I*1, I*2, I*4, I*8, 
R*4, R*8
Y: R*4, R*8

TRADITIONAL E
O

IEEE_
REMAINDER

X: R*4, R*8
Y: R*4, R*8

TRADITIONAL E

IEEE_
UNORDERED

X: R*4, R*8
Y: R*4, R*8

TRADITIONAL E

IEOR I*4 I: I*1, I*2, I*4, I*8
J: I*1, I*2, I*4, I*8

ANSI, G77, 
PGI, 
TRADITIONAL

E

IERRNO I*4 G77, PGI
IFIX I*4 A: R*4, R*8 ANSI, G77, 

PGI, 
TRADITIONAL

E

IIABS I*2 A: I*2 PGI, 
TRADITIONAL

E

IIAND I*2 I: I*2
J: I*2

PGI, 
TRADITIONAL

E

IIBCHNG I*2 I: I*2
POS: I*1, I*2, I*4, I*8

TRADITIONAL E

IIBCLR I*2 PGI, 
TRADITIONAL

E

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

 C-23

IIBITS I*2 I: I*2
POS: I*1, I*2, I*4, I*8

PGI, 
TRADITIONAL

E

IIBSET I*2 I: I*2
POS:I*1, I*2, I*4, I*8

PGI, 
TRADITIONAL

E

IIDIM I*2 X: I*2
Y: I*2

PGI, 
TRADITIONAL

E

IIDINT I*2 A: R*8 PGI, 
TRADITIONAL

E

IIEOR I*2 I*2
J: I*2

PGI, 
TRADITIONAL

E

IIFIX I*2 A: R*4, R*8 PGI, 
TRADITIONAL

E

IINT I*2 A: R*4 PGI, 
TRADITIONAL

E

IIOR I*2 I: I*2
J: I*2

PGI, 
TRADITIONAL

E

IISHA I*2 I: I*2
SHIFT: I*1, I*2, I*4, 
I*8

TRADITIONAL E

IISHC I*2 I: I*2
SHIFT: I*1, I*2, I*4, 
I*8

TRADITIONAL E

IISHFT I*2 I: I*2
SHIFT: I*1, I*2, I*4, 
I*8

PGI, 
TRADITIONAL

E

IISHFTC I*2 I: I*2
SHIFT: I*1, I*2, I*4, 
I*8
SIZE: I*1, I*2, I*4, I*8

PGI, 
TRADITIONAL

E
O

IISHL I*2 I: I*2
SHIFT: I*1, I*2, I*4, 
I*8

TRADITIONAL E

IISIGN I*2 A: I*2
B: I*2

PGI, 
TRADITIONAL

E, P

ILEN Depends on arg I: I*1 TRADITIONAL E, P
ILEN Depends on arg I: I*2 TRADITIONAL E, P
ILEN Depends on arg I: I*4 TRADITIONAL E, P
ILEN Depends on arg I: I*8 TRADITIONAL E, P

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

C-24  

IMAG Z: Z*8, Z*16 G77, 
TRADITIONAL

E

IMAGPART Z: Z*8, Z*16 G77 E
IMOD I*2 A: I*2

P: I*2
PGI, 
TRADITIONAL

E, P

IMVBITS Subroutine FROM: I*2
FROMPOS: I*1, I*2, 
I*4, I*8
LEN: I*1, I*2, I*4, I*8
TO: I*2
TOPOS: I*1, I*2, I*4, 
I*8

TRADITIONAL E

INDEX I*4 STRING: C
SUBSTRING: C
BACK: L*1, L*2, L*4, 
L*8

ANSI, G77, 
PGI, 
TRADITIONAL

E, P
O

ININT I*2 A: R*4, R*8 PGI, 
TRADITIONAL

E, P

INOT I*2 I: I*2 PGI, 
TRADITIONAL

E

INT I*4 A: I*1, I*2, I*4, I*8, 
R*4, R*8, Z*8, Z*16
KIND: I*1, I*2, I*4, 
I*8

ANSI, G77, 
PGI, 
TRADITIONAL

E
O

INT2 I*2 A: I*1, I*2, I*4, I*8, 
R*4, R*8, Z*8, Z*16

G77, 
TRADITIONAL

E

INT4 I*4 A: I*1, I*2, I*4, I*8, 
R*4, R*8, Z*8, Z*16

TRADITIONAL E

INT8 I*8 A: I*1, I*2, I*4, I*8, 
R*4, R*8, Z*8, Z*16

G77, PGI, 
TRADITIONAL

E

INT_MULT_
UPPER

I: I*8
J: I*8

E

INT_MULT_
UPPER

I:
J:

E

IOR I*4 I: I*1, I*2, I*4, I*8
J: I*1, I*2, I*4, I*8

ANSI, G77, 
PGI, 
TRADITIONAL

E

IRAND I*4 FLAG: I*4 G77, PGI O
IRTC I*8 TRADITIONAL

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

 C-25

ISATTY L*4 UNIT: I*4 G77, PGI
ISHA I: I*1, I*2, I*4, I*8

SHIFT: I*1, I*2, I*4, 
I*8

TRADITIONAL E

ISHC I: I*1, I*2, I*4, I*8
SHIFT: I*1, I*2, I*4, 
I*8

TRADITIONAL E

ISHFT I: I*1, I*2, I*4, I*8
SHIFT: I*1, I*2, I*4, 
I*8

ANSI, G77, 
PGI,
TRADITIONAL

E

ISHFTC I: I*1, I*2, I*4, I*8
SHIFT: I*1, I*2, I*4, 
I*8
SIZE: I*1, I*2, I*4, I*8

ANSI, G77, 
PGI, 
TRADITIONAL

E
O

ISHL I: I*1, I*2, I*4, I*8
SHIFT: I*1, I*2, I*4, 
I*8

TRADITIONAL E

ISIGN I*4 A: I*1, I*2, I*4, I*8
B: I*1, I*2, I*4, I*8

ANSI, G77, 
PGI, 
TRADITIONAL

E, P

ISNAN X: R*4, R*8 TRADITIONAL E
IS_IOSTAT_END L*4 I: I*1, I*2, I*4, I*8 ANSI, 

TRADITIONAL
IS_IOSTAT_
EOR

L*4 I: I*1, I*2, I*4, I*8 ANSI, 
TRADITIONAL

ITIME Subroutine TARRAY: I*4, 
Array rank=1

G77, PGI

JDATE C TRADITIONAL
JIABS I*4 A: I*4 PGI, 

TRADITIONAL
E

JIAND I*4 I: I*4
J: I*4

PGI, 
TRADITIONAL

E

JIBCHNG I*4 I: I*4
POS: I*1, I*2, I*4, I*8

TRADITIONAL E

JIBCLR I*4 I: I*4
POS: I*1, I*2, I*4, I*8

PGI, 
TRADITIONAL

E

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

C-26  

JIBITS I*4 I: I*4
POS: I*1, I*2, I*4, I*8
LEN: I*1, I*2, I*4, I*8

PGI, 
TRADITIONAL

E

JIBSET I*4 I: I*4
POS: I*1, I*2, I*4, I*8

PGI, 
TRADITIONAL

E

JIDIM I*4 X: I*4
Y: I*4

PGI, 
TRADITIONAL

E

JIDINT I*4 A: R*8 PGI, 
TRADITIONAL

E

JIEOR I*4 I: I*4
J: I*4

PGI, 
TRADITIONAL

E

JIFIX I*4 A: R*4, R*8 PGI, 
TRADITIONAL

E

JINT I*4 A: R*4 PGI, 
TRADITIONAL

E

JIOR I*4 I: I*4
J: I*4

PGI, 
TRADITIONAL

E

JISHA I*4 I: I*4
SHIFT: I*1, I*2, I*4, 
I*8

TRADITIONAL E

JISHC I*4 I: I*4
SHIFT: I*1, I*2, I*4, 
I*8

TRADITIONAL E

JISHFT I*4 I: I*4
SHIFT: I*1, I*2, I*4, 
I*8

PGI, 
TRADITIONAL

E

JISHFTC I*4 I: I*4
SHIFT: I*1, I*2, I*4, 
I*8
SIZE: I*1, I*2, I*4, I*8

PGI, 
TRADITIONAL

E
O

JISHL I*4 I: I*4
SHIFT: I*1, I*2, I*4, 
I*8

TRADITIONAL E

JISIGN I*4 A: I*4
B: I*4

PGI, 
TRADITIONAL

E, P

JMOD I*4 A: I*4
P: I*4

PGI, 
TRADITIONAL

E, P

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

 C-27

JMVBITS Subroutine FROM: I*4
FROMPOS: I*1, I*2, 
I*4, I*8
LEN: I*1, I*2, I*4, I*8
TO: I*4
TOPOS: I*1, I*2, I*4, 
I*8

TRADITIONAL E

JNINT I*4 A: R*4, R*8 TRADITIONAL E, P
JNOT I*4 I: I*4 PGI, 

TRADITIONAL
E

KIABS I*8 A: I*8 PGI, 
TRADITIONAL

E

KIAND I*8 I: I*8
J: I*8

PGI, 
TRADITIONAL

E

KIBCHNG I*8 I*8
POS: I*1, I*2, I*4, I*8

TRADITIONAL E

KIBCLR I*8 I*8
POS: I*1, I*2, I*4, I*8

PGI, 
TRADITIONAL

E

KIBITS I*8 I*8
POS: I*1, I*2, I*4, I*8
LEN: I*1, I*2, I*4, I*8

PGI, 
TRADITIONAL

E

KIBSET I*8 I*8
POS: I*1, I*2, I*4, I*8

PGI, 
TRADITIONAL

E

KIDIM I*8 X: I*8
Y: I*8

PGI, 
TRADITIONAL

E

KIDINT I*8 A: R*8 TRADITIONAL E
KIEOR I*8 I: I*8

J: I*8
TRADITIONAL E

KIFIX I*8 A: R*4, R*8 PGI, 
TRADITIONAL

E

KILL I*4 PID: I*4
SIG: I*4

G77, PGI, 
TRADITIONAL

KILL Subroutine PID: I*4
SIG: I*4
STATUS: I*4

G77, 
TRADITIONAL

O

KIND I*4 X: Any type ANSI, PGI, 
TRADITIONAL

E

KINT I*8 A: R*4 TRADITIONAL E

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

C-28  

KIOR I*8 I: I*8
J: I*8

PGI, 
TRADITIONAL

E

KISHA I*8 I: I*8
SHIFT: I*1, I*2, I*4, 
I*8

TRADITIONAL E

KISHC I*8 I: I*8
SHIFT: I*1, I*2, I*4, 
I*8

TRADITIONAL E

KISHFT I*8 I: I*8
SHIFT: I*1, I*2, I*4, 
I*8

PGI, 
TRADITIONAL

E

KISHL I*8 I: I*8
SHIFT: I*1, I*2, I*4, 
I*8

TRADITIONAL E

KISIGN I*8 A: I*8
B: I*8

PGI, 
TRADITIONAL

E, P

KMOD I*8 A: I*8
P: I*8

PGI, 
TRADITIONAL

E, P

KMVBITS Subroutine FROM: I*8
FROMPOS: I*1, I*2, 
I*4, I*8
LEN: I*1, I*2, I*4, I*8
TO: I*8
TOPOS: I*1, I*2, I*4, 
I*8

TRADITIONAL E

KNINT I*8 A: R*4, R*8 PGI, 
TRADITIONAL

E, P

KNOT I*8 I: I*8 PGI, 
TRADITIONAL

E

LBOUND ANSI, PGI, 
TRADITIONAL

See Std

LEN I*4 STRING: C ANSI, G77, 
PGI, 
TRADITIONAL

E, P

LENGTH I: I*1, I*2, I*4, I*8 TRADITIONAL E
LEN_TRIM I*4 STRING: C ANSI, G77, 

PGI, 
TRADITIONAL

E

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

 C-29

LGE C STRING_A: C
STRING_B: C

ANSI, G77, 
PGI, 
TRADITIONAL

E

LGT C STRING_A: C
STRING_B: C

ANSI, G77, 
PGI, 
TRADITIONAL

E

LINK I*4 PATH1: C
PATH2: C

G77, PGI

LINK Subroutine PATH1: C
PATH2: C
STATUS: I*4

G77 O

LLE C STRING_A: C
STRING_B: C

ANSI, G77, 
PGI, 
TRADITIONAL

E

LLT C STRING_A: C
STRING_B: C

ANSI, G77, 
PGI, 
TRADITIONAL

E

LNBLNK I*4 STRING: C G77, PGI
LOC I*8 I:Any type, 

Array rank=any
G77, PGI, 
TRADITIONAL

LOCK_
RELEASE

Subroutine I: I*4, I*8 TRADITIONAL E
O

LOCK_TEST_
AND_SET

I: I*4
J: I*4

TRADITIONAL E

LOCK_TEST_
AND_SET

I: I*8
J: I*8

TRADITIONAL E

LOG R*4 X: R*4, R*8, Z*8, 
Z*16

ANSI, G77, 
PGI, 
TRADITIONAL

E

LOG10 R*4 X: R*4, R*8 ANSI, G77, 
PGI, 
TRADITIONAL

E

LOG2_IMAGES I*4 TRADITIONAL
LOGICAL L*4 L: L*1, L*2, L*4, L*8

KIND: I*1, I*2, I*4, 
I*8

ANSI, PGI, 
TRADITIONAL

E
O

LONG I*4 A: I*1, I*2, I*4, I*8, 
R*4, R*8, Z*8, Z*16

G77, 
TRADITIONAL

E

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

C-30  

LSHIFT I: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8
POSITIVE_SHIFT: 
I*1, I*2, I*4, I*8

G77, PGI, 
TRADITIONAL

E

LSTAT I*4 FILE: C
SARRAY: I*4, 
Array rank=1
STATUS: I*4

G77, PGI O

LSTAT Subroutine FILE: C
SARRAY: I*4, 
Array rank=1
STATUS: I*4

G77 O

LTIME Subroutine STIME: I*4
TARRAY: I*4, 
Array rank=1

G77, PGI

MALLOC I: I*1, I*2, I*4, I*8 PGI, 
TRADITIONAL

E

MASK I: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8

TRADITIONAL E

MATMUL ANSI, PGI, 
TRADITIONAL

See Std

MAX ANSI, G77, 
PGI, 
TRADITIONAL

See Std

MAX0 ANSI, G77, 
PGI, 
TRADITIONAL

See Std

MAX1 ANSI, G77, 
PGI,
TRADITIONAL

See Std

MAX
EXPONENT

X: R*4, R*8 ANSI, PGI, 
TRADITIONAL

E

MAXLOC ANSI, PGI, 
TRADITIONAL

See Std

MAXVAL ANSI, PGI, 
TRADITIONAL

See Std

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

 C-31

MCLOCK I*4 G77, PGI
MCLOCK8 I*8 G77
MEMORY_
BARRIER

Subroutine TRADITIONAL E

MERGE TSOURCE: Any 
type 
FSOURCE: Any 
type 
MASK: L*1, L*2, 
L*4, L*8

ANSI, PGI, 
TRADITIONAL

E

MIN ANSI, G77, 
PGI, 
TRADITIONAL

See Std

MIN0 ANSI, G77, 
PGI, 
TRADITIONAL

See Std

MIN1 ANSI, G77, 
PGI, 
TRADITIONAL

See Std

MINEXPONENT X: R*4, R*8 ANSI, PGI, 
TRADITIONAL

E

MINLOC ANSI, PGI, 
TRADITIONAL

See Std

MINVAL ANSI, PGI, 
TRADITIONAL

See Std

MOD I*4 A: I*1, I*2, I*4, I*8, 
R*4, R*8
P: I*1, I*2, I*4, I*8, 
R*4, R*8

ANSI, G77, 
PGI, 
TRADITIONAL

E, P

MODULO A: I*1, I*2, I*4, I*8, 
R*4, R*8
P: I*1, I*2, I*4, I*8, 
R*4, R*8

ANSI, PGI, 
TRADITIONAL

E

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

C-32  

MVBITS Subroutine FROM: I*1, I*2, I*4, 
I*8
FROMPOS: I*1, I*2, 
I*4, I*8
LEN: I*1, I*2, I*4, I*8
TO: I*1, I*2, I*4, I*8
TOPOS: I*1, I*2, I*4, 
I*8

ANSI, G77, 
PGI, 
TRADITIONAL

E

NAND_AND_
FETCH

I: I*4
J: I*4

TRADITIONAL E

NAND_AND_
FETCH

I: I*8
J: I*8

TRADITIONAL E

NEAREST X: R*4, R*8
S: R*4, R*8

ANSI, PGI, 
TRADITIONAL

E

NEQV I: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8
J: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8

PGI, 
TRADITIONAL

E

NINT I*4 A: R*4, R*8
KIND: I*1, I*2, I*4, 
I*8

ANSI, G77, 
PGI, 
TRADITIONAL

E, P
O

NOT I: I*1, I*2, I*4, I*8 ANSI, G77, 
PGI, 
TRADITIONAL

E

NULL MOLD: Any type, 
Array rank=any

ANSI, PGI, 
TRADITIONAL

NUM_IMAGES I*4 TRADITIONAL
OMP_
DESTROY_
LOCK

Subroutine LOCK: I*4, I*8 OMP

OMP_
DESTROY_
NEST_LOCK

Subroutine LOCK: I*4, I*8 OMP

OMP_GET_
DYNAMIC

Depends on arg OMP

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

 C-33

OMP_GET_MAX
_THREADS

Depends on arg OMP

OMP_GET_
NESTED

Depends on arg OMP

OMP_GET_
NUM_PROCS

Depends on arg OMP

OMP_GET_
NUM_THREADS

Depends on arg OMP

OMP_GET_
THREAD_NUM

Depends on arg OMP

OMP_GET_
WTICK

R*8 OMP

OMP_GET_
WTIME

R*8 OMP

OMP_INIT_
LOCK

Subroutine LOCK: I*4, I*8 OMP

OMP_INIT_
NEST_LOCK

Subroutine LOCK: I*4, I*8 OMP

OMP_IN_
PARALLEL

Depends on arg OMP

OMP_SET_
DYNAMIC

Subroutine DYNAMIC_
THREADS: L*4, L*8

OMP

OMP_SET_
LOCK

Subroutine LOCK: I*4, I*8 OMP

OMP_SET_
NESTED

Subroutine NESTED: L*4, L*8 OMP

OMP_SET_
NEST_LOCK

Subroutine LOCK: I*4, I*8 OMP

OMP_SET_NUM
_THREADS

Subroutine NUM_THREADS: 
I*4, I*8

OMP

OMP_TEST_
LOCK

Depends on arg LOCK: I*4, I*8 OMP

OMP_TEST_
NEST_LOCK

Depends on arg LOCK: I*4, I*8 OMP

OMP_UNSET_
LOCK

Subroutine LOCK: I*4, I*8 OMP

OMP_UNSET_
NEST_LOCK

Subroutine LOCK: I*4, I*8 OMP

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

C-34  

OR I: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8
J: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8

G77, PGI, 
TRADITIONAL

E

OR_AND_
FETCH

I: I*4
J: I*4

TRADITIONAL E

OR_AND_
FETCH

I: I*8
J: I*8

TRADITIONAL E

PACK ANSI, PGI, 
TRADITIONAL

See Std

PERROR Subroutine G77, PGI
STRING: C

POPCNT I: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8

TRADITIONAL E

POPPAR I: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8

TRADITIONAL E

PRECISION X: R*4, R*8, Z*8, 
Z*16

ANSI, PGI, 
TRADITIONAL

E

PRESENT A: Procedure, any 
type

ANSI, PGI, 
TRADITIONAL

E

PRESENT A: Any type ANSI, PGI, 
TRADITIONAL

E

PRODUCT ANSI, PGI, 
TRADITIONAL

See Std

RADIX X: I*1, I*2, I*4, I*8, 
R*4, R*8

ANSI, PGI, 
TRADITIONAL

E

RAND R*8 FLAG: I*4 G77, PGI O
RANDOM_
NUMBER

Subroutine HARVEST: R*4, R*8 ANSI, PGI, 
TRADITIONAL

E
O

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

 C-35

RANDOM_
SEED

Subroutine SIZE: I*1, I*2, I*4, I*8
PUT: I*1, I*2, I*4, I*8, 
Array
rank=1
GET: I*1, I*2, I*4, I*8, 
Array
rank=1

ANSI, PGI, 
TRADITIONAL

O
O
O

RANF TRADITIONAL E
RANGE X: I*1, I*2, I*4, I*8, 

R*4, R*8,
Z*8, Z*16

ANSI, PGI, 
TRADITIONAL

E

REAL R*4 A: I*1, I*2, I*4, I*8, 
R*4, R*8,
Z*8, Z*16
KIND: I*1, I*2, I*4, 
I*8

ANSI, G77, 
PGI, 
TRADITIONAL

E
O

REALPART R*4 A: I*1, I*2, I*4, I*8, 
R*4, R*8, Z*8, Z*16
KIND: I*1, I*2, I*4, 
I*8

G77 E

REMOTE_
WRITE_
BARRIER

Subroutine TRADITIONAL  E

REM_IMAGES I*4 TRADITIONAL
RENAME I*4 PATH1: C 

PATH2: C
STATUS: I*4

G77, PGI O

RENAME Subroutine G77
PATH1: C
PATH2: C
STATUS: I*4

O

REPEAT Depends on arg STRING: C
NCOPIES: I*1, I*2, 
I*4, I*8

ANSI, PGI, 
TRADITIONAL

RESHAPE ANSI, PGI, 
TRADITIONAL

See Std

RRSPACING X: R*4, R*8 ANSI, PGI, 
TRADITIONAL

E

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

C-36  

RSHIFT I: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8
NEGATIVE_SHIFT: 
I*1, I*2, I*4, I*8

G77, PGI, 
TRADITIONAL

E

RTC TRADITIONAL E
SCALE X: R*4, R*8

I: I*1, I*2, I*4, I*8
ANSI, PGI, 
TRADITIONAL

E

SCAN I*4 STRING: C
SET: C
BACK: L*1, L*2, L*4, 
L*8

ANSI, PGI, 
TRADITIONAL

E
O

SECNDS R*4 T: R*4 G77, PGI
SECOND R*4 SECONDS: R*4 G77 O
SECOND Subroutine SECONDS: R*4 G77
SELECTED_INT
_KIND

R: I*1, I*2, I*4, I*8 ANSI, PGI, 
TRADITIONAL

SELECTED_
REAL_KIND

Depends on arg P: I*1, I*2, I*4, I*8
R: I*1, I*2, I*4, I*8

ANSI, PGI, 
TRADITIONAL

O
O

SETBUF I*4 UNIT: I*4 
BUF: C

TRADITIONAL 

SETLINEBUF I*4 UNIT: I*4 TRADITIONAL
SET_
EXPONENT

X: R*4, R*8
I: I*1, I*2, I*4, I*8

ANSI, PGI, 
TRADITIONAL

E

SET_IEEE_
EXCEPTION

Subroutine EXCEPTION: I*8 TRADITIONAL E

SET_IEEE_
EXCEPTIONS

Subroutine STATUS: I*8 TRADITIONAL

SET_IEEE_
INTERRUPTS

Subroutine STATUS: I*8 TRADITIONAL

SET_IEEE_
ROUNDING_
MODE

Subroutine STATUS: I*8 TRADITIONAL

SET_IEEE_
STATUS

Subroutine STATUS: I*8 TRADITIONAL

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

 C-37

SHAPE ANSI, PGI, 
TRADITIONAL

See Std

SHIFT I: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8
J: I*1, I*2, I*4, I*8

PGI, 
TRADITIONAL

E

SHIFTA I: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8
J: I*1, I*2, I*4, I*8

TRADITIONAL E

SHIFTL I: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8
J: I*1, I*2, I*4, I*8

TRADITIONAL E

SHIFTR I: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8
J: I*1, I*2, I*4, I*8

TRADITIONAL E

SHORT I*2 A: I*1, I*2, I*4, I*8, 
R*4, R*8,
Z*8, Z*16

G77,
TRADITIONAL

E

SIGN R*4 A: I*1, I*2, I*4, I*8, 
R*4, R*8
B: I*1, I*2, I*4, I*8, 
R*4, R*8

ANSI, G77, 
PGI, 
TRADITIONAL

E, P

SIGNAL I*8 NUMBER: I*1, I*2, 
I*4, I*8
HANDLER: 
Procedure
IGNDFL: I*4

G77, PGI, 
TRADITIONAL

O

SIGNAL I*8 NUMBER: I*1, I*2, 
I*4, I*8
HANDLER: I*4

G77, PGI, 
TRADITIONAL

SIGNAL I*8 NUMBER: I*1, I*2, 
I*4, I*8
HANDLER: I*8

G77, PGI, 
TRADITIONAL

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

C-38  

SIGNAL Subroutine G77, PGI, 
TRADITIONAL

SIN R*4 X: R*4, R*8, Z*8, 
Z*16

ANSI, G77, 
PGI, 
TRADITIONAL

E, P

SIND R*4 X: R*4, R*8 PGI, 
TRADITIONAL

E, P

SINH R*4 X: R*4, R*8 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

SIZE ANSI, PGI, 
TRADITIONAL

See Std

SIZEOF I*8 X: Any type, Array 
rank=any

TRADITIONAL

SLEEP Subroutine SECONDS: I*4 G77, PGI
SNGL R*4 A: R*8 ANSI, G77, 

PGI, 
TRADITIONAL

E

SPACING X: R*4, R*8 ANSI, PGI, 
TRADITIONAL

E

SPREAD ANSI, PGI, 
TRADITIONAL

See Std

SQRT R*4 X: R*4, R*8, Z*8, 
Z*16

ANSI, G77, 
PGI, 
TRADITIONAL

E, P

SRAND Subroutine SEED: I*4 G77, PGI
STAT I*4 FILE: C 

SARRAY: I*4, Array 
rank=1
STATUS: I*4

G77, PGI, 
TRADITIONAL

O

STAT Subroutine FILE: C
SARRAY: I*4, Array 
rank=1
STATUS: I*4

G77, 
TRADITIONAL

O

SUB_AND_
FETCH

I: I*4
J: I*4

TRADITIONAL E

SUB_AND_
FETCH

I: I*8
J: I*8

TRADITIONAL E

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

 C-39

SUM ANSI, PGI, 
TRADITIONAL

See Std

SYMLNK I*4 PATH1: C
PATH2: C
STATUS: I*4

G77, PGI O

SYMLNK Subroutine PATH1: C
PATH2: C
STATUS: I*4

G77 O

SYNCHRONIZE Subroutine TRADITIONAL E
SYNC_IMAGES Subroutine TRADITIONAL
SYNC_IMAGES Subroutine IMAGE: I*1, I*2, I*4, 

I*8
TRADITIONAL

SYNC_IMAGES Subroutine IMAGE: I*1, I*2, I*4, 
I*8, Array rank=1

TRADITIONAL

SYSTEM I*4 COMMAND: C
STATUS: I*4

G77, PGI O

SYSTEM Subroutine COMMAND: C
STATUS: I*4

G77 O

SYSTEM_
CLOCK

Subroutine COUNT: I*4
COUNT_RATE: I*4
COUNT_MAX: I*4

ANSI, G77, 
PGI,
TRADITIONAL

O
O
O

SYSTEM_CLOC
K

Subroutine COUNT: I*8
COUNT_RATE: I*8
COUNT_MAX: I*8

ANSI, G77, 
PGI, 
TRADITIONAL

O
O
O

TAN R*4 X: R*4, R*8 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

TAND R*4 X: R*4, R*8 PGI, 
TRADITIONAL

E

TANH R*4 X: R*4, R*8 ANSI, G77, 
PGI, 
TRADITIONAL

E, P

TEST_IEEE_
EXCEPTION

EXCEPTION: I*8 TRADITIONAL E

TEST_IEEE_
INTERRUPT

INTERRUPT: I*8 TRADITIONAL E

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Table of Supported Intrinsics

C-40  

THIS_IMAGE Depends on arg ARRAY: Any type,
Arrayrank=any
DIM: I*1, I*2, I*4, I*8

TRADITIONAL O

TIME I*4 G77, PGI, 
TRADITIONAL

TIMEF R*8 X, 1
TIME8 I*8 G77, 

TRADITIONAL
TIME Subroutine BUF: C G77
TINY X: R*4, R*8 ANSI, PGI, 

TRADITIONAL
E

TRANSFER ANSI, PGI, 
TRADITIONAL

See Std

TRANSPOSE Depends on arg MATRIX: Any type, 
Array
rank=2

ANSI, PGI, 
TRADITIONAL

TRIM Depends on arg STRING: C ANSI, PGI, 
TRADITIONAL

TTYNAM C UNIT: I*4 G77, PGI
TTYNAM Subroutine UNIT: I*4

NAME: C
G77

UBOUND ANSI, PGI, 
TRADITIONAL

See Std

UMASK I*4 MASK: I*4 G77
UMASK Subroutine MASK: I*4

OLD: I*4
G77 O

UNIT I: I*1, I*2, I*4, I*8 TRADITIONAL E
UNLINK I*4 FILE: C

STATUS: I*4
G77, PGI O

UNLINK Subroutine FILE: C
STATUS: I*4

G77 O

UNPACK ANSI, PGI, 
TRADITIONAL

See Std

VERIFY I*4 STRING: C
SET: C
BACK: L*1, L*2, L*4, 
L*8

ANSI, PGI, 
TRADITIONAL

E
O

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Fortran Intrinsic Extensions

 C-41

C.4
Fortran Intrinsic Extensions

Standard Fortran intrinsic procedures are documented in ISO 1539-1 or any good 
textbook on Fortran 95. This section documents procedures that are extensions to 

WRITE_
MEMORY_
BARRIER

Subroutine TRADITIONAL E

XOR I: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8
J: I*1, I*2, I*4, I*8, 
R*4, R*8,
CrayPtr, L*1, L*2, 
L*4, L*8

G77, PGI, 
TRADITIONAL

E

XOR_AND_
FETCH

I: I*4
J: I*4

TRADITIONAL E

XOR_AND_
FETCH

I: I*8
J: I*8

TRADITIONAL E

ZABS R*8 A: Z*16 G77, 
TRADITIONAL

E, P

ZCOS Z*16 X: Z*16 G77, 
TRADITIONAL

E, P

ZEXP Z*16 X: Z*16 G77, 
TRADITIONAL

E, P

ZLOG Z*16 X: Z*16 G77, 
TRADITIONAL

E, P

ZSIN Z*16 X: Z*16 G77, 
TRADITIONAL

E, P

ZSQRT Z*16 X: Z*16 G77, 
TRADITIONAL

E, P

Table C-1. Fortran Intrinsics Supported in Version 3.2(Continued)

Intrinsic Name Result Arguments Families Remarks



C – Supported Fortran Intrinsics
Fortran Intrinsic Extensions

C-42  

the standard, referring to argument names shown in the table of intrinsics in 
table C-1.

abort Prints a message and then, like the C library function abort, 
stops the program.

access Like the C library function access, returns zero if the file named 
by name satisfies the requirements indicated by mode, but 
otherwise returns the error code from the C library value errno.
Trailing blanks in name are ignored (you can prevent this by 
using char(0) to place a null character after the last significant 
character.
mode may contain any of the following:
r Readable
w Writable 
x Executable 
’ ’ File exists

alarm Uses the C library functions alarm and signal to wait the time 
indicated by seconds and then execute the external subroutine 
handler.status returns the number of seconds remaining 
until the previously scheduled alarm would have taken place, 
or 0 if no alarm was pending.

and Bitwise boolean AND
besj0, besj1, 
besjn, besy0, 
besy1, besyn

Fortran interfaces to C library functions j0, j1, jn, y0, y1, and 
yn (Bessel functions.)

cdabs, cdcos, 
cdexp, cdlog, 
cdsin, cdsqrt

Specific names for various mathematical functions having an 
argument of type complex*16.

chdir Like the C library function chdir, sets the current working 
directory to dir. The function form returns 0 on success, but 
otherwise returns the error code from the C library value errno. 
The subroutine form sets status to the value that the function 
form would return. 
Trailing blanks in dir are ignored (you can prevent this by using 
char(0) to place a null character after the last significant 
character.)



C – Supported Fortran Intrinsics
Fortran Intrinsic Extensions

 C-43

chmod Like the POSIX command chmod, changes the access 
permissions of file name according to mode. See the operating 
system documentation for the characters allowed in mode. The 
function form returns 0 on success, but otherwise returns the 
error code from the C library value errno. The subroutine form 
sets status to the value which the function form would return.
Trailing blanks in name are ignored (you can prevent this by 
using char (0) to place a null character after the last significant 
character.)

ctime Like the C library function ctime, converts stime (which can 
be obtained from the intrinsic time8) to a string of the form Thu 
Mar 2 12 :45:36 PST 2006. The function form returns that 
string. The subroutine form sets result to that string.

date Set the date argument to a string of the form 16-Mar-06 
(DD-MMM-YY).

dbesj0, dbesj1, 
dbesjn, 
dbesy0, 
dbesy1, 
dbesyn

Fortran interfaces to C library functions j0l, j1l, jnl, y0l, 
y1l, and ynl (Bessel functions.)

dcmplx Specific name for a function that converts its argument to type 
complex*16.

dconj Specific name for complex conjugate whose argument is type 
complex*16.

derf, derfc Fortran interface to C library function in erf and erfc (3m)
dfloat Specific name for function that converts its argument to type 

real*8.
dimag Specific name for a function that returns the imaginary part of a 

complex*16 argument.
dreal Specific name for a function that converts its argument to type 

real* 8.
dtime Find out the number of seconds of CPU time consumed by this 

process since the previous call to dtime (or, if there was no 
previous call, since the start of execution). tarray(1) gives 
user CPU time and tarray(2) gives system CPU time. The 
function form returns the sum of those times. The subroutine 
form sets result to the sum of those times.

erf, erfc Fortran interface to C library functions described in erff and 
erfcf (3m).



C – Supported Fortran Intrinsics
Fortran Intrinsic Extensions

C-44  

etime Find out the number of seconds of CPU time consumed by this 
process since the start of execution. tarray(1) gives user 
CPU time and tarray(2) gives system CPU time. The 
function form returns the sum of those times. The subroutine 
form sets result to the sum of those times.

exit Like the C library function exit, terminate the process and 
return the value status to the process (usually the shell) that 
caused this process to execute. status defaults to 0. Open 
Fortran logical units are flushed and closed.

fdate The subroutine form is equivalent to call ctime (date, time8 () 
). The function form is equivalent to ctime (time 8 () ).

fget Like fgetc, but uses logical unit 5.

fgetc Fortran interface to the C library function fgetc. Reads into c a single 
character from logical unit unit, treating that unit as if it were a stream 
of bytes. The function form returns 0 for success, -1 for end-of-file, 
or an error code from the C library value errno. The subroutine sets 
status to the value that the function would return.
Between the opening and closing of a file, you should use either stream 
intrinsics (fget, fgetc, fput, fputc, fseek, and ftell) or 
standard Fortran I/O, but not both.

flush Flush buffered I/O for logical unit unit. If unit is omitted, flush all 
logical units.

fnum Return the POSIX file descriptor corresponding to the open Fortran 
logical unit unit.

fput Like fputc, but uses logical unit 6.

fputc Fortran interface to the C library function fput. Writes to logical unit 
unit a single character c, treating that unit as if it were a stream of 
bytes. The function form returns 0 for success, -1 for end-of-file, or 
an error code from the C library value errno. The subroutine sets 
status to the value that the function would return.
Between the opening and closing of a file, you should use either stream 
intrinsics (fget, fgetc, fput, fputc, fseek, and ftell) or 
standard Fortran I/O, but not both.

fseek Fortran interface to the C library function f seek, which treats logical 
unit unit as a stream of bytes, and changes to offset the position 
pointer used by the next stream intrinsicm which reads or writes the 
file. If whence is 0, offset counts bytes from the beginning of the 
file; if whence is 1, offset positions the pointer relative to the current 
position; and if whence is 2,offset positions the pointer relative to 
the end of the file. The function form returns 0 on success, or an error 
code from the C library value errno.
Between the opening and closing of a file, you should use either stream 
intrinsics (fget, fgetc, fput, fputc, fseek, and ftell) or 
standard Fortran I/O, but not both.



C – Supported Fortran Intrinsics
Fortran Intrinsic Extensions

 C-45

fstat Fortran interface to the C library function fstat. Stores in sarray 
information about the file opened on logical unit unit. The function 
form returns 0 on success, or an error code from the C library variable 
errno. The subroutine form sets status to the value which the 
function would return.
sarray must have thirteen elements:
ID of device containing file
Inode number
File mode
Number of links
UID of owner
GID of owner
ID of device containing directory entry for file
Size of file in bytes
Time of last access
Time of last modification
Time of last file status change
Preferred I/O block size (-1 if not available)
Number of blocks allocated (-1 if not available)
Except for elements 12 and 13, values are set to 0 if they are not 
available from the relevant file system.

ftell Fortran interface to the C library function ftell. Treats logical unit 
unit as a stream of bytes. The function form returns the offset from 
the beginning of the file to the position pointer used to read or write 
the file, or -1 to indicate an error. The subroutine form sets offset 
to the value which the function would return.

gerror Fortran interface to the C library function st re r ro r. Sets me s 
sage to the error message corresponding to the error code from the 
C library variable errno.

getarg Stores into value an argument from the command line used to 
execute this process. pos is an index into the argument list (where 0 
identifies the name of the program, 1 identifies the first argument, 
etc.) Intrinsic iargc provides the number of arguments available.

getcwd Fortran interface to the C library function getcwd. Sets name to the 
current working directory name. The function form returns 0 for 
success, or an error code from the C library value errno. The 
subroutine form sets status to the value which the function would 
return.



C – Supported Fortran Intrinsics
Fortran Intrinsic Extensions

C-46  

getenv Fortran interface to the C library function getenv. Sets value to the 
value of environment variable whose name is name, or to blanks if 
the variable is missing or not set.
Trailing blanks in name are ignored (you can prevent this by using 
char (0) to place a null character after the last significant character).

getgid Like the POSIX function getgid, returns the group ID for this process.

getlog Sets login to the login name for this process.

getpid Like the POSIX function getpid, returns the process ID for this 
process.

getuid Like the POSIX function getuid, returns the process ID for this 
process.

gmtime Fortran interface to the C library function gmtime. Sets tarray to 
the broken-down time corresponding to stime, which can be obtained 
from the intrinsic time 8. All values are in Coordinated Universal 
Time.
tarray must have nine elements:
Seconds since the last minute, ranging 0. . 61 (due to leap seconds)
Minutes since the last hour, ranging 0. . 59
Hours since midnight, ranging 0. .23
Day of month, ranging 0. .31
Month, ranging 0. .11
Years since 1900
Days since Sunday, ranging 0. .6
Days since January 1, ranging 0. .365
Positive if daylight savings time is in effect, zero if not, or 
negative if unknown

hostnm Fortran interface to the POSIX function gethostname. Sets name to 
the network name of the host computer. The function form returns 0 
on success, or an error code from the C library value errno. The 
subroutine form sets status to the value that the function would 
return.

iargc Return the number of arguments on the command line used to 
execute this program, not including the program name itself.

idate The single-argument version stores in tarray, which must have three 
elements, the current local date:
Day, ranging 1. .31
Month, ranging 1. .12
Year, using 4 digits
The three-argument version sets its arguments to the month, 
day, and year. Note that the order is different from that of the 
one-argument version.



C – Supported Fortran Intrinsics
Fortran Intrinsic Extensions

 C-47

ierrno Returns the C library value errno, which is the last error code set by 
a C library (or Linux system) function. Note that a function which does 
not encounter an error may not set this value back to zero.

imag Return the imaginary part of a complex number without altering 
precision.

imagpart Imaginary part of a complex number (synonym for standard intrinsic 
aimag, which in Fortran 95 preserves the precision of its argument).

int2 Convert to type integer* 2.

int4 Convert to type integer* 4.

int8 Convert to type integer* 8.

irand Fortran interface to POSIX function rand. Returns a uniform 
pseudorandom integer. If flag is 0, return the next number in the 
current sequence; if flag is 1, call POSIX function srand (0) ; 
otherwise call srand (flag) to seed a new sequence.

isatty Fortran interface to Linux function is att y. Returns . true. if 
logical unit unit is associated with an interactive terminal device.

itime Store in tarray, which must have three elements, the current local 
time:
Hour, ranging 0. .23
Minutes, ranging 0. . 59
Seconds, ranging 0. . 60 (to allow for leap seconds)

kill Fortran interface to the POSIX function kill. Send to the process 
whose ID is pid the signal whose number is signal. The function 
form returns 0 on success, or an error code from the C library value 
errno. The subroutine form sets status to the value which the 
function would return.

link Fortran interface to the POSIX function link. Creates a hard link 
path2 pointing to the same file as path 1. The function form returns 
0 on success, or an error code from the C library value errno. The 
subroutine form sets status to the value which the function would 
return.Trailing blanks in path1 and path2 are ignored (you can 
prevent this by using char (0) to place a null character after the last 
significant character.)

lnblnk Returns the length of its argument, neglecting trailing blanks (synonym 
for standard function len_trim.)

loc Returns address of argument im memory.
long Convert to type integer* 4.

lshift Bitwise left shift. High-order bit is not treated as a sign bit. Shift 
count must be nonnegative and less than the bit-size of the data.



C – Supported Fortran Intrinsics
Fortran Intrinsic Extensions

C-48  

lstat Fortran interface to the POSIX function lst at. Store in array s 
array information about the file named file; if that is a symbolic 
link, describe the link rather than the target of the link (cf. stat). The 
function form returns 0, or an error code from the C library value 
errno.

Trailing blanks in file are ignored (you can prevent this by using 
char (0) to place a null character after the last significant character).
sarray must have thirteen elements:
ID of device containing file
Inode number
File mode
File mode
5.UID of owner
GID of owner
ID of device containing directory entry for file
Size of file in bytes
Time of last access
Time of last modification
Time of last file status change
Preferred I/O block size (-1 if not available)
Number of blocks allocated (-1 if not available)
Except for elements 12 and 13, values are set to 0 if they are not 
available from the relevant file system.

ltime Fortran interface to the C library function localtime. Sets tarray 
to the broken-down time corresponding to stime, which can be 
obtained from the intrinsic time 8. All values are in the local time zone.
tarray must have nine elements:
Seconds since the last minute, ranging 0. . 61 (due to leap seconds)
Minutes since the last hour, ranging 0. . 59
Hours since midnight, ranging 0. .23
Day of month, ranging 0. .31
Month, ranging 0. .11
Years since 1900
Days since Sunday, ranging 0. .6
Days since January 1, ranging 0. .365
Positive if daylight savings time is in effect, zero if not, or 
negative if unknown

mclock, 
mclock8

Fortran interface to the C library function clock. Returns the number 
of clock ticks of CPU time since the start of execution of the process, 
or -1 if this is not known.



C – Supported Fortran Intrinsics
Fortran Intrinsic Extensions

 C-49

or Bitwise Boolean OR

perror like the C library function perror, prints on the stderr stream the 
string followed by a colon, a blank, and the message corresponding 
to the error code from the C library value errno.

rand fortran interface to POSIX function rand. Returns a uniform 
pseudorandom integer. If flag is 0, return the next number in the 
current sequence; if flag is 1, call POSIX function srand (0) ; 
otherwise call srand (flag) to seed a new sequence.

realpart Real part of a complex number (synonym for standard intrinsic real, 
which in Fortran 95 preserves the precision of its argument.)

rename Fortran interface to the C library function rename. Change name of 
file path1 to path2. The function form returns 0 on success or an 
error code from the C library value errno. The subroutine sets 
status to the value which the function would return.
Trailing blanks in file are ignored (you can prevent this by using 
char (0) to place a null character after the last significant character).

rshift Arithmetic (sign-preserving) bitwise right shift. Shift count must 
be nonnegative and less than the bit-size of the data.

secnds return the number of seconds since midnight in the local time zone, 
minus the argument "t".

second The function form returns the sum of user and system CPU time 
consumed by the process since the start of execution. The subroutine 
form sets seconds to that value.

setbuf This is similar to the C library function "setbuf". To disable 
buffering on the specified logical unit (so that output appears 
immediately), pass a variable of type "character(len=0)" or 
type "character*0)". To use a particular buffer in place of the 
default buffer for that logical unit, pass a character string whose 
length is greater than zero. The logical unit must be appropriate 
for sequential formatted output.  In case of error, the function 
returns "errno" or a Fortran "iostat" error code; otherwise it 
returns zero. Note that you must enable this on the command 
line with "-intrinsic=setbuf" or "-intrinsic=EVERY".

setlinebuf Similar to the C library function "setlinebuf", this causes the 
specified logical unit to flush buffered output at the end of every 
line, and before any "read" from the terminal. The logical unit 
must be appropriate for sequential formatted output.  In case of 
error, the function returns "errno" or a Fortran "iostat" error 
code; otherwise it returns zero. Note that you must enable this 
on the command line with "-intrinsic=setlinebuf" or 
"-intrinsic=EVERY".

short Convert to type integer* 2.



C – Supported Fortran Intrinsics
Fortran Intrinsic Extensions

C-50  

signal Fortran interface to the C library function signal. Arrange for the signal 
whose number is number to trigger a call to external procedure 
handler, which should be a subroutine with no arguments; or restore 
the default response to the signal; or ignore the signal.
The optional third argument igndf l takes these values:
-1 Use the second argument to provide a handler, to restore the 
default response to the signal, or to ignore the signal
0 Regardless of the value of the second argument, restore the default 
response to the signal
1 Regardless of the value of the second argument, ignore the signal 
instead

When igndf l is omitted, handler can be an integer, with these 
possible values:
(addre s s) An integer containing the address of the external 
procedure 0 Restore the default response to the signal
1 Ignore the signal
The function form returns the previous state of the signal: zero 
(if the default response was in effect), one (if the signal was 
being ignored), or the address of a handler procedure.

Here is an example using the two-argument form:

C Keyboard interrupt (normally Control-C) 
alternately triggers C handler1 and handler2 until 
4 interrupts have occurred. Then

C restore the default handling, so the fifth 
interrupt stops the C program.



C – Supported Fortran Intrinsics
Fortran Intrinsic Extensions

 C-51

program once

implicit none

external handler1, handler2

common previous, count

integer* 8 previous

integer count

previous = signal(2, handler1)

previous = signal(2, handler2)

count = 4

do while (.true.)

call sleep(100)

end do

end

subroutine handler1() implicit none

common previous, count integer* 8 previous

integer count

print *, ’I am handler1’ count = count - 1

if (count .le. 0) 

then previous = 0

end if

previous = signal(2, previous)

end subroutine handler1 

subroutine handler2 () implicit none

common previous, count integer* 8 previous

integer count

print *, ’I am handler2’ count = count - 1

if (count .le. 0) then 

previous = 0

end if

previous = signal(2, previous)

end subroutine handler2



C – Supported Fortran Intrinsics
Fortran Intrinsic Extensions

C-52  

Here is an example using the three-argument form:
C Keyboard interrupt (normally Control-C) triggers
C handler until 4 interrupts have occurred. Then
C restore the default,so the fifth interrupt stops
C the program.

program single

implicit none

external handler 

intrinsic signal 

integer* 8 previous 

common count

integer count

previous = signal(2, handler, -1)

count = 4

do while (.true.) 

call sleep(100) 

end do

end

subroutine handler () 

implicit none

intrinsic signal 

integer* 8 previous

common count

integer count

print *, ’I am handler’

count = count - 1

if (count .le. 0) then

previous = signal(2, handler, 0) 

else previous = signal(2, handler, -1) 

end if

end subroutine handler

sleep Like the POSIX function sleep, pauses the process for seconds 
seconds.

srand Like the POSIX function s rand, restarts the random number 
sequence for irand or rand using seed as the seed.



C – Supported Fortran Intrinsics
Fortran Intrinsic Extensions

 C-53

stat Fortran interface to the POSIX function stat. Store in array sarray 
information about the file named file; if that is a symbolic link, 
describe the target rather than the link itself (cf. ls tat.). The 
function form returns 0, or an error code from the C library value 
errno.

Trailing blanks in file are ignored (you can prevent this by using 
char (0) to place a null character after the last significant character).

sarray must have thirteen elements:
1. ID of device containing file
2. Inode number
3. File mode
4. Number of links
5. UID of owner
6. GID of owner
7. ID of device containing directory entry for file
8. Size of file in bytes
9. Time of last access
10. Time of last modification
11. Time of last file status change
12. Preferred I/O block size (-1 if not available)
13. Number of blocks allocated (-1 if not available)
Except for elements 12 and 13, values are set to 0 if they are not 
available from the relevant file system.

symlnk Fortran interface to the POSIX function symlink. Creates a symbolic 
link path2 pointing to the same file as path 1. The function form 
returns 0 on success, or an error code from the C library value errno. 
The subroutine form sets status to the value which the function would 
return.
Trailing blanks in path1 and path2 are ignored (you can prevent this 
by using char (0) to place a null character after the last significant 
character).

system Fortran interface to the C library function system. Execute command 
using a command interpreter or shell. The function form returns the 
value returned by the interpreter (conventionally 0 to indicate success 
and nonzero to indicate failure). The subroutine form sets status to 
the value which the function would return.

time, time8 Fortran interface to the POSIX function time. Returns the current 
time as an integer suitable for use with ctime, gmtime, or ltime.



C – Supported Fortran Intrinsics
Fortran Intrinsic Extensions

C-54  

ttynam Fortran interface to the POSIX function ttyname. The function form 
returns the name of the interactive terminal device associated with 
logical unit unit, or blanks if unit is not associated with such a 
device. The subroutine form sets name to the value that the function 
would return.

umask Fortran interface to the POSIX function uma sk. Sets the file creation 
mask to mask. The function form returns the previous value of the 
mask. The subroutine form sets old to the previous value of the mask.

unlink Fortran interface to the POSIX function unlink. Remove the link to 
the file named file. The function form returns 0 on success, or the 
error code from the C library value errno. The subroutine form sets 
status to the value which the function would return.
Trailing blanks in file are ignored (you can prevent this by using char 
(0) to place a null character after the last significant character.)

xor Bitwise Boolean XOR

zabs, zcos, 
zexp, zlog, 
zsin, zsqrt

Specific names for various mathematical functions having an 
argument of type complex*16.



C – Supported Fortran Intrinsics
Fortran Intrinsic Extensions

 C-55

Notes



C – Supported Fortran Intrinsics
Fortran Intrinsic Extensions

C-56  



 D-1

Appendix D
Fortran 90 Dope Vector

Here is an example of a simplified data structure from a Fortran 90 dope vector, 
from the file clibinc/cray/dopevec.h found in the source distribution. See 
section 3.6.6 for more details.

typedef struct _FCD {
char *c_pointer; /* C character pointer */
unsigned long byte_len; /* Length of item (in bytes) */
} _fcd;

typedef struct f90_type {
unsigned int :32; /* used for future development */
enum typecodes {
DVTYPE_UNUSED = 0,
DVTYPE_TYPELESS = 1,
DVTYPE_INTEGER = 2,
DVTYPE_REAL = 3,
DVTYPE_COMPLEX = 4,
DVTYPE_LOGICAL = 5,
DVTYPE_ASCII = 6,
DVTYPE_DERIVEDBYTE = 7,
DVTYPE_DERIVEDWORD = 8
} type :8; /* type code */
unsigned int dpflag :1; /* set if declared double precision
* or double complex */

enum dec_codes {
DVD_DEFAULT = 0, /* KIND= and *n absent, or

* KIND=expression which evaluates to
* the default KIND, ie.:
* KIND(0) for integer
* KIND(0.0) for real
* KIND((0,0)) for complex
* KIND(.TRUE.) for logical
* KIND(˘2019A˘2019) for character
* across on all ANSI-conformant
* implementations. */

DVD_KIND = 1, /* KIND=expression which does not
* qualify to be DVD_DEFAULT or
* DVD_KIND_CONST or DVD_KIND_DOUBLE */

DVD_STAR = 2, /* *n is specified (example: REAL*8 */
DVD_KIND_CONST = 3, /* KIND=expression constant across

* all implementations. */
DVD_KIND_DOUBLE = 4 /* KIND=expression which evaluates to



D – Fortran 90 Dope Vector

D-2  

* KIND(1.0D0) for real across all
* implementations. This code may be
* passed for real or complex type. */

} kind_or_star :3; /* Set if KIND= or *n appears in the
* variable declaration. Values
* are from enum dec_codes */

unsigned int int_len :12; /* internal length in bits of iolist
* entity. 8 for character data to
* indicate size of each character */

unsigned int dec_len :8; /* declared length in bytes for *n
* or KIND value. Ignored if
* kind_or_star==DVD_DEFAULT */

} f90_type_t;
/*
* If DopeVectorType.alloc_cpnt is true, then following the last
* actual dimension or codimension (not necessarily MAXDIM) there
* is a count of the number of allocatable components, followed by
* an array of byte offsets from the beginning of the structure to
* each allocatable component. If DopeVectorType.alloc_cpnt is
* false, neither of these appears.
*/
typedef struct {
unsigned long n_alloc_cpnt;
unsigned long alloc_cpnt_offset[0];
} DopeAllocType;

typedef struct DopeVector {
union {

_fcd charptr; /* Fortran character descriptor */
struct {

void *ptr; /* pointer to base address */
/* or shared data desc */

unsigned long el_len; /* element len in bits */
} a;

} base_addr;
/*
* flags and information fields within word 3 of the header

*/
unsigned int assoc :1; /* associated flag */
unsigned int ptr_alloc :1; /* set if allocated by pointer */
enum ptrarray {

NOT_P_OR_A = 0,
POINTTR = 1,
ALLOC_ARRY = 2

} p_or_a :2; /* pointer or allocatable array. Use */
/* enum ptrarray values. */

unsigned int a_contig :1; /* array storage contiguous flag */
unsigned int alloc_cpnt :1; /* this is an allocatable



D – Fortran 90 Dope Vector

 D-3

*array whose element 
*type is a derived type
* having component(s) 
 which are themselves
* allocatable */

unsigned int :26; /* pad for first 32 bits */
unsigned int :29; /* pad for second 32-bits */
unsigned int n_dim :3; /* number of dimensions */
f90_type_t type_lens; /* data type and lengths */
void *orig_base; /* original base address */
unsigned long orig_size; /* original size */
/*
* Per Dimension Information - array will contain 
* only the necessary number of elements
*/

#define MAXDIM 7
struct DvDimen {

signed long low_bound; /* lower bound for ith dimension */
/* may be negative */

signed long extent; /* number of elts for ith dimension */
/*
* The stride mult is not defined in constant units 
* so that address calculations do not always require
* a divide by 8 or 64. For double and complex, 
* stride mult has a factor of 2 in it. For double 
* complex, stride mult has a factor of 4 in it.
*/
signed long stride_mult; /* stride multiplier */

}dimension[7];
/* DopeAllocType alloc_info; appears following the last 
* actual dimension (there may be fewer than 7 dimensions) 
* if alloc_cpnt is true */

} DopeVectorType;



D – Fortran 90 Dope Vector

D-4  



E – Summary of Compiler Options

 E-1

Appendix E
Summary of Compiler Options 

Options are grouped according to function. A brief listing of defaults and comments 
are also listed; for more detailed information see appendix F

Table E-1. Summary of Compiler Options by Function
General Options Defaults / Comments

-###

-copyright

-dumpversion

-help 

-help: 

-show 

-show-defaults

-show0 

-showt 

-v  

-version 

Code Generation Options Defaults / Comments
-CG:cflow=(ON|OFF) <ON>

-CG:cse_regs=N <positive infinity>
-CG:gcm=(ON|OFF) <ON>

-CG:load_exe=N

-CG:local_fwd_sched=(ON|OFF) <ON> for 32-bit ABI
<OFF> for 64-bit ABI

-CG:movnti=N <1000KB>

-CG:p2align=(ON|OFF) <OFF>

-CG:p2align_freq=N <0>

-CG:prefer_legacy_regs=(ON|OFF) <OFF>

-CG:prefetch=(ON|OFF) <ON>

-CG:ptr_load_use=N 4

-CG:push_pop_int_saved_regs=(ON|OFF) ON for barcelona, 
else OFF

-CG:sse_cse_regs=N <positive infinity>



E – Summary of Compiler Options

E-2  

-CG:use_prefetchnta=(ON|OFF) <OFF>

-CG:use_test=(ON|OFF) <OFF>

Compilation Control Options Defaults / Comments
-A pred=ans -pred=ans cancels -A 

pred=ans

-alignN <64> 
Other options are: 
8,16,32,128

-auto-use module_name[,module_name]... Fortran only
-backslash If used, preprocessor not 

called

-byteswapio Fortran only

-c Do not use with -r option, 
since mutually exclusive

convert conversion <native>
Fortran only

-default64 Synonym for -r8 -i8
Fortran only

-f[no-]check-new C++ only
-fdecoratepath Fortran only

-f[no-]directives -fdirectives

Fortran only
-fe 

-ff2c-abipath Fortran only

-f[no-]unwind-tables -fno-unwind-tables

-f[no-]gnu-keywords C/C++ only
-finhibit-size-directive 

-fabi-version=N <1>

C++ only
-fms-extensions C/C++ only
-fno-asm C/C++ only
-fno-builtin C/C++ only
-fno-common C/C++ only
-f[no-]exceptions <-fexceptions>

C++ only
-fno-ident 

-f[no-]signed-char C/C++ only

Table E-1. Summary of Compiler Options by Function



E – Summary of Compiler Options

 E-3

-fpack-struct C/C++ only
-frandom-seed=string C/C++ only
-f[no-]rtti C++ only
-f[no-]second-underscore Fortran only
-f[no-]signed-bitfields C/C++ only
-f[no-]strict-aliasing C/C++ only
-f[no-]PIC <-fno-PIC>

-fprefix-function-name C/C++ only
-fshared-data C/C++ only
-fshort-double C/C++ only
-fshort-enums C/C++ only
-fshort-wchar C/C++ only
-ftest-coverage Coverage data will map 

better to the source files if 
used without optimization.

-f[no-]underscoring Fortran only
-fuse-cxa-atexit C++ only
-fwritable-strings C/C++ only
-gnu[N] If system compiler is GCC 

3, default is -gnu3; if 
GCC 4,-gnu4.

C/C++ only
-iN  <4> Other arg is <8>

Fortran only
-ignore-suffix 

-[no-]intrinsic=name Fortran only

-module dir

-mp 

-MP Use with -M or -MM
-MQ

-MT 

-nobool 

-nog77mangle Fortran only
-no-pathcc 

-o outfile 

-openmp 

Table E-1. Summary of Compiler Options by Function



E – Summary of Compiler Options

E-4  

-pad-char-literals Fortran only
-pathcc

-r 

-rreal_spec -r4 

REAL(KIND=4) and 
COMPLEX(KIND=4)
Other option is:
-r8 

REAL(KIND=8) and 
COMPLEX(KIND=8)
Fortran only

-S

-U name

-uvar 

-Wc,arg1[,arg2...] Pass argumentss) to 
compiler pass c. 
c can be one of:
p  (preprocessor)
f ( front-end) 
i (inliner) 
b  (backend) 
a  (assembler) 
l  (loader) 

-Yc,path c is same as for -W. Can 
also specify:
I (Where to search for 
include files)
S (Where to search for 
startup files (crt*.o))
L  (Where to search for 
libraries)

Diagnostic / Debugging Options Defaults / Comments
-C For Fortran
-clist C Only. Same as 

-CLIST:=ON

-CLIST:=(ON|OFF) C only. Same as -clist.
-CLIST:dotc_file=filename C only.
-CLIST:doth_file=filename C only.

Table E-1. Summary of Compiler Options by Function



E – Summary of Compiler Options

 E-5

-CLIST:emit_pfetch[=(ON|OFF)] <OFF>
C only.

-CLIST:linelength=N <unlimited>
C only.

-CLIST:show[=(ON|OFF)] <ON>
C only.

-ffortran-bounds-check Fortran only
-flist Fortran only. Same as 

-FLIST:=ON

-FLIST:=(ON|OFF) Fortran only. Same as 
-flist.

-FLIST:ansi_format[=(ON|OFF)] Fortran only.

-FLIST:emit_pfetch[=(ON|OFF)] Fortran only.

-FLIST:ftn_file=file Fortran only.
-FLIST:linelength=N Fortran only.

-FLIST:show=setting Fortran only.

-f[no-]permissive

-fullwarn

-g[0|1|2|3] <0>

-pedantic-errors 

-subverbose

-trapuv Initialize variables to NaN
-zerouv 

FDO Options Defaults / Comments
-fb-create <path>

-fb-opt <prefix for feedback data files> <OFF> 
If used, commonly used 
prefix is fbdata

-fb-phase=(0,1,2,3,4) <0>

Fortran Source Form Options Defaults / Comments
-colN <72>

Fortran only
-extend-source Fortran only
-fixedform .f or .F assumed to be 

written in fixed source 
form
Fortran only

Table E-1. Summary of Compiler Options by Function



E – Summary of Compiler Options

E-6  

-freeform Treats all source files as in 
free source form, 
otherwise default is that 
only .f90 or .F90 suffix files 
are treated this way.
Fortran only

-noextend-source Fortran only
IPA Options Defaults / Comments

-ipa 

-IPA or -IPA: If this is used without 
suboptions, defaults for all 
suboptions will be used. 
Same as -ipa.

-IPA:addressing=(ON|OFF) <OFF>

-IPA:aggr_cprop=(ON|OFF) <ON>

-IPA:alias=(ON|OFF) <ON>

-IPA:callee_limit=N <500>

-IPA:cgi=(ON|OFF) <ON>

-IPA:clone_list=(ON|OFF) <OFF>

-IPA:common_pad_size=N

-IPA:cprop=(ON|OFF) <ON>

-IPA:ctype=(ON|OFF) <OFF>

-IPA:depth=N Identical to 
-IPA:maxdepth=N

-IPA:dfe=(ON|OFF) <ON>

-IPA:dve=(ON|OFF) <ON>

-IPA:echo=(ON|OFF) <OFF>

-IPA:field_reorder=(ON|OFF) <OFF>

-IPA:forcedepth=N

-IPA:ignore_lang=(ON|OFF) <OFF>

-IPA:inline=(ON|OFF) <OFF>

-IPA:keeplight=(ON|OFF) <OFF>

-IPA:linear=(ON|OFF) <OFF>

-IPA:map_limit=N

-IPA:maxdepth=N Identical to 
-IPA:depth=N

-IPA:max_jobs=N (0|1|>1) <1>

Table E-1. Summary of Compiler Options by Function



E – Summary of Compiler Options

 E-7

-IPA:min_hotness=N <10>

-IPA:multi_clone=N <0>

-IPA:node_bloat=N

-IPA:plimit=N <2500>

-IPA:pu_reorder=(0|1|2) <0> for non-C++ programs
<1> for C++ programs

-IPA:relopt=(ON|OFF) <OFF>

-IPA:small_pu=N <30>

-IPA:sp_partition=[setting] <OFF>

-IPA:space=N <no limit>
-IPA:specfile=filename

-IPA:use_intrinsic=(ON|OFF) <OFF>

Inline Processing Options Defaults / Comments
-f[no-]implicit-inline-templates C++
-f[no-]implicit-templates C++
-f[no-]inline-functions C/C++ 
-fkeep-inline-functions C/C++
-inline 

-INLINE Same as -inline 
-INLINE:aggressive=(ON|OFF) <OFF> 

-INLINE:list=(ON|OFF) <OFF>

-INLINE:preempt=(ON|OFF) <OFF>

-noinline

Language Options Defaults / Comments
–LANG:copyinout=(ON|OFF) <OFF> unless -O2 or 

higher.

–LANG:formal_deref_unsafe=(ON|OFF) <OFF>

–LANG:heap_allocation_threshold=size <-1>

–LANG:IEEE_save=setting <ON>
Fortran only.

–LANG:recursive=setting <OFF>

–LANG:rw_const=(ON|OFF) <OFF>

–LANG:short_circuit_conditionals=(ON|OFF) <ON>

Fortran only.
Language Standards Options Defaults / Comments

Table E-1. Summary of Compiler Options by Function



E – Summary of Compiler Options

E-8  

-ansi Fortran version
-ansi C/C++ version
-ffortran2003 Fortran only
-std=c++98 For g++
-std=c89 For gcc/g++
-std=c99 For gcc/g++
-std=c9x For gcc/g++
-std=gnu++98 For g++
-std=gnu89 For gcc/g++
-std=gnu99 For gcc/g++
-std=gnu9x For gcc/g++
-std=iso9899:1990 For gcc/g++
-std=iso9899:199409 For gcc/g++
-std=iso9899:1999 For gcc/g++
-std=iso9899:199x For gcc/g++

Linker / Library Options Defaults / Comments
-ar

-f[no-]fast-stdlib

-H

-Idir

-iquotedir

-isystem dir

-L directory XPG4 mode
-l library XPG4 mode
-nodefaultlibs 

-nostartfiles 

-nostdinc

-nostdinc++ For C++
-nostdlib

-objectlist

-shared 

-shared-libgcc 

-static

-static-data

-static-libgcc 

Table E-1. Summary of Compiler Options by Function



E – Summary of Compiler Options

 E-9

-stdinc

List Options Defaults / Comments
-LIST:=(ON|OFF) <ON> if any LIST 

suboptions are enabled.
-LIST:all_options[=(ON|OFF)] <OFF>

-LIST:notes[=(ON|OFF)] <ON>

-LIST:options[=(ON|OFF)] <OFF>

-LIST:symbols[=(ON|OFF)]

LNO-General Options Defaults / Comments
All -LNO:options require -O3 or higher.

-LNO:apo_use_feedback=(ON|OFF) <OFF>

-LNO:build_scalar_reductions=(ON|OFF) <OFF>

-LNO:blocking=(ON|OFF) <ON>

-LNO:blocking_size=N

-LNO:fission=(0|1|2) <0>

-LNO:full_unroll,fu=N <5>

-LNO:full_unroll_size=N <2000>

-LNO:full_unroll_outer=(ON|OFF) <OFF>

-LNO:fusion=(0|1|2) <1>

-LNO:fusion_peeling_limit=N <5>

-LNO:gather_scatter=(0|1|2) <1>

-LNO:hoistif=(ON|OFF) <ON>

-LNO:ignore_feedback=(ON|OFF) <OFF>

-LNO:ignore_pragmas=(ON|OFF) <OFF>

-LNO:local_pad_size=N

-LNO:minvariant,minvar=(ON|OFF) <ON>

-LNO:non_blocking_loads=(ON|OFF) C/C++ only
If not set, the default of the 
current processor is used.

-LNO:oinvar=(ON|OFF) <ON>

-LNO:opt=(0|1) <1>

-LNO:ou_prod_max=N <16>

-LNO:outer=(ON|OFF) <ON>

-LNO:outer_unroll_max,ou_max=N <5>

-LNO:parallel_overhead=N <4096>

-LNO:prefetch=(0|1|2|3) <2>

Table E-1. Summary of Compiler Options by Function



E – Summary of Compiler Options

E-10  

-LNO:prefetch_ahead=N <2>

-LNO:prefetch_verbose=(ON|OFF) <OFF>

-LNO:processors=N <0>

-LNO:sclrze=(ON|OFF) <ON>

-LNO:simd=(0|1|2) <1>

-LNO:simd_reduction=(ON|OFF) <OFF>

-LNO:svr_phase1=(ON|OFF) <ON>

-LNO:trip_count_assumed_when_unknown,trip_c
ount=N

<1000>

-LNO:vintr=(0|1|2) <1>

-LNO:vintr_verbose=(ON|OFF) <OFF>

LNO-Transformation Options Defaults / Comments
-LNO:interchange=(ON|OFF) <ON>

-LNO:unswitch=(ON|OFF) <ON>

-LNO:unswitch_verbose=(ON|OFF) <OFF>

-LNO:ou=N

-LNO:ou_deep=(ON|OFF) <ON>

-LNO:ou_further=N

-LNO:ou_max=N

-LNO:pwr2=(ON|OFF) C/C++ only
Set to<OFF> to ignore

LNO-Target Cache Memory Options Defaults / Comments
-LNO:assoc1=N, assoc2=N, 
assoc3=N, assoc4=N

<0> indicates no cache at 
that level.

-LNO:cmp1=N, cmp2=N, cmp3=N, cmp4=N, dmp1=N, 
dmp2=N, dmp3=N, dmp4=N

<0> indicates no cache at 
that level.

-LNO:cs1=N, cs2=N, cs3=N, cs4=N <0> indicates no cache at 
that level.

-LNO:is_mem1=(ON|OFF), is_mem2=(ON|OFF), 
is_mem3=(ON|OFF), is_mem4=(ON|OFF)

<OFF> for each option

-LNO:ls1=N, ls2=N, ls3=N, ls4=N <0> indicates no cache at 
that level.

LNO-TLB Options Defaults / Comments
-LNO:ps1=N, ps2=N, ps3=N, ps4=N <N> is hardware 

dependent
-LNO:tlb1=N, tlb2=N, tlb3=N, tlb4=N <N> is hardware 

dependent

Table E-1. Summary of Compiler Options by Function



E – Summary of Compiler Options

 E-11

-LNO:tlbcmp1=N, tlbcmp2=N, tlbcmp3=N, 
tlbcmp4=N, tlbdmp1=N, tlbdmp2=N, tlbdmp3=N, 
tbldmp4=N 

<N> is hardware 
dependent

LNO-Prefetch Options Defaults / Comments
-LNO:pf1=(ON|OFF), pf2=(ON|OFF), 
pf3=(ON|OFF), pf4=(ON|OFF)

-LNO:prefetch=(0|1|2|3) <2>

-LNO:prefetch_ahead=N <2>

-LNO:prefetch_manual=(ON|OFF) <ON>

-LNO:trip_count_assumed_when_unknown Replaces: 
-LNO:assume_unkno
wn_trip_count={0,
1000}

Math Precision Options Defaults / Comments
-f[no-]fast-math Implied by -Ofast
-ffloat-store

-fno-math-errno -fmath-errno

-f[no-]unsafe-math-optimizations

-mx87-precision=(32|64|80) <80>

-noexpopt

Optimization Options Defaults / Comments
-apo

-GRA:home=(ON|OFF) <ON>

-GRA:optimize_boundary=(ON|OFF) <OFF>

-O(0|1|2|3|s) <2> 
This is the global 
optimizer.

-Ofast Equivalent to: –O3 –ipa 
–OPT:Ofast 
–fno–math–errno 
–ffast–math

-OPT:alias=typed <ON> by default when 
-OPT:Ofast is specified

-OPT:alias=restrict <OFF>

-OPT:alias=disjoint <OFF>

-OPT:alias=no_f90_pointer_alias <OFF>

-OPT:align_unsafe=(ON|OFF) <OFF>

-OPT:asm_memory=(ON|OFF) <OFF>

Table E-1. Summary of Compiler Options by Function



E – Summary of Compiler Options

E-12  

-OPT:bb=N <1300>

-OPT:cis=(ON|OFF) <ON>

-OPT:div_split=(ON|OFF) <OFF> but enabled by 
-OPT:Ofast or 
-OPT:IEEE_arithmeti
c=3

-OPT:early_mp=(ON|OFF) <OFF> Has effect only 
under -mp compilation

-OPT:early_intrinsics=(ON|OFF) <OFF>

-OPT:fast_bit_intrinsics=(ON|OFF) <OFF>

-OPT:fast_complex=(ON|OFF) <OFF> but enabled if 
-OPT:roundoff=3

-OPT:fast_exp=(ON|OFF) <OFF> but enabled if -O3 
or -Ofast are 
specified, or 
-OPT:roundoff=1 is 
in effect.

-OPT:fast_io=(ON|OFF) <OFF>

C/C++ only
-OPT:fast_math=(ON|OFF) <OFF> but enabled if 

OPT:roundoff is at 2 or 
above.

-OPT:fast_nint=(ON|OFF) <OFF> but enabled if 
-OPT:roundoff=3

-OPT:fast_sqrt=(ON|OFF) <OFF> if <ON>, 
-OPT:fast_exp must 
also be ON

-OPT:fast_stdlib=(ON|OFF) <ON>

-OPT:fast_trunc=(ON|OFF) <OFF> but enabled if 
OPT:roundoff is at 1 or 
above.

-OPT:fold_reassociate=(ON|OFF) <OFF> but enabled if 
OPT:roundoff is at 2 or 
above.

-OPT:fold_unsafe_relops=(ON|OFF) <OFF> but enabled if -O3

-OPT:fold_unsigned_relops=(ON|OFF) <OFF>

-OPT:goto=(ON|OFF) <OFF> but enabled if -O2 
or higher

Table E-1. Summary of Compiler Options by Function



E – Summary of Compiler Options

 E-13

-OPT:IEEE_arithmetic,
IEEE_arith=(1|2|3)

<1> when -O0, -O1 and 
-O2 are in effect, <2> 
when -O3 in effect

-OPT:IEEE_NaN_Inf=(ON|OFF) <ON>

-OPT:inline_intrinsics=(ON|OFF) <ON>

-OPT:malloc_algorithm=(0|1) or 
-OPT:malloc_alg=(0|1)

<0>
x86/x86-64 only

-OPT:Ofast Equivalent to: 
-OPT:ro=2:Olimit=0:
div_split=ON:alias=
typed

-OPT:Olimit=N <6000>

-OPT:pad_common=(ON|OFF) <OFF>

-OPT:recip=(ON|OFF) <OFF>

-OPT:reorg_common=(ON|OFF) <ON> when -O3 is in effect
<OFF> when files that 
contain common block 
compiled at -O2 or below

-OPT:roundoff=(0|1|2|3) or -OPT:ro=(0|1|2|3) <0> when -O0, -O1 and 
-O2 are in effect,
<1> when -O3 is in effect,
<2> when -OPT:Ofast 
is enabled.

-OPT:rsqrt=(0|1|2) <0> 
<1> if -OPT:roundoff is 
at 2 or above

-OPT:space=(ON|OFF) <OFF>, unless -Os is 
specified.

-OPT:speculate=(ON|OFF) <OFF>

-OPT:transform_to_memlib=(ON|OFF) <ON>

-OPT:treeheight=(ON|OFF) <OFF>

-OPT:unroll_analysis=(ON|OFF) <ON>

-OPT:unroll_times_max=N <4>

-OPT:unroll_size=N <40>

-OPT:wrap_around_unsafe_opt=(ON|OFF) <OFF> when -O0 is in 
effect,
<ON> when -O3 is in effect

Preprocessor Options Defaults / Comments
-C C version

Table E-1. Summary of Compiler Options by Function



E – Summary of Compiler Options

E-14  

-cpp

–Dvar=[def][,var=[def]...]
-d-lines Fortran only

-fcoco[=setfile] Fortran only

-f[no-]preprocessed

-ftpp Fortran only
-E

-M

-MD 

-MDtarget

-MDupdate

-MF

-MG Use with -M or -MM
-MM

-MMD 

-macro-expand Fortran only
-nocpp Fortran only

-no-gcc Fortran only

-P

-traditional

-Uvar

Processor Target Description Defaults / Comments
-m32 32-bit ABI
-m3dnow <OFF>

-m64 64-bit if 
-march/-mcpu/-mtu
ne is 64-bit,
otherwise 32-bit ABI

-march=<cpu-type> <auto>, which optimizes 
for platform compiler is 
running on. Explicit 
choices are: opteron, 
athlon, athlon64, 
athlon64fx, em64t, 
pentium4, xeon, 
core, anyx86

-mcmodel=(small|medium) <small> usually 
sufficient

Table E-1. Summary of Compiler Options by Function



E – Summary of Compiler Options

 E-15

-mcpu=<cpu-type> Same as -march
-mno-sse SSE2 cannot be disabled 

under -m64
-mno-sse2 Same as -mno-sse

-mno-sse3

-msse2 <ON> under -m64 and 
-m32

-msse3 <ON> under 
march=em64t and 
march=core, otherwise 
<OFF>

-mtune=<cpu-type> Same as -march
Profiling Options Defaults / Comments

-pg Use when compiling and 
linking

-profile Use when compiling and 
linking

Target Environment Options Defaults / Comments
-TENV:frame_pointer=(ON|OFF) <ON> for C++, otherwise 

<OFF>

-TENV:X=(0..4) <1>

-TENV:simd_imask=(ON|OFF) <ON>

-TENV:simd_dmask=(ON|OFF) <ON>

-TENV:simd_zmask=(ON|OFF) <ON>

-TENV:simd_omask=(ON|OFF) <ON>

-TENV:simd_umask=(ON|OFF) <ON>

-TENV:simd_pmask=(ON|OFF) <ON>

Warning Options Defaults / Comments
-Wall

-Wdeclaration-after-statement C/C++ only
-Werror-implicit-function-declaration C/C++ only
-W[no-]aggregate-return C/C++ only
-W[no-]bad-function-cast

-W[no-]cast-align C/C++ only
-Wno-cast-qual C/C++ only
-W[no-]char-subscripts C/C++ only
-W[no-]comment C/C++ only

Table E-1. Summary of Compiler Options by Function



E – Summary of Compiler Options

E-16  

-W[no-]conversion C/C++ only
-W[no-]deprecated

-Wno-deprecated-declarations

-W[no-]disabled-optimization

-W[no-]div-by-zero

-W[no-]endif-labels

-W[no-]error

-W[no-]float-equal

-W[no-]format C/C++ only
-Wno-format-extra-args C/C++ only
-W[no-]format-nonliteral C/C++ only
-W[no-]format-security C/C++ only
-Wno-format-y2k C/C++ only
-W[no-]id-clash C/C++ only
-W[no-]implicit C/C++ only
-W[no-]implicit-function-declaration C/C++ only
-W[no-]implicit-int C/C++ only
-W[no-]import

-W[no-]inline C/C++ only
-W[no-]larger-than-<number>

-Wno-long-long C/C++ only
-W[no-]main C/C++ only
-W[no-]missing-braces C/C++ only
-W[no-]missing-declarations C/C++ only
-W[no-]missing-format-attribute C/C++ only
-W[no-]missing-noreturn C/C++ only
-W[no-]missing-prototypes C/C++ only
-W[no-]multichar C/C++ only
-W[no-]nested-externs C/C++ only
-Wno-non-template-friend C/C++ only
-W[no-]non-virtual-dtor C/C++ only
-W[no-]old-style-cast C/C++ only
-W[no-]overloaded-virtual C/C++ only
-W[no-]packed C/C++ only
-W[no-]padded C/C++ only

Table E-1. Summary of Compiler Options by Function



E – Summary of Compiler Options

 E-17

-W[no-]parentheses C/C++ only
-Wno-pmf-conversions C/C++ only
-W[no-]pointer-arith C/C++ only
-W[no-]redundant-decls C/C++ only
-W[no-]reorder C/C++ only
-W[no-]return-type C/C++ only
-W[no-]sequence-point C/C++ only
-W[no-]shadow C/C++ only
-W[no-]sign-compare C/C++ only
-W[no-]sign-promo C/C++ only
-W[no-]strict-aliasing C/C++ only
-W[no-]strict-prototypes C/C++ only
-W[no-]switch C/C++ only
-W[no-]system-headers C/C++ only
-W[no-]synth C/C++ only
-W[no-]traditional C/C++ only
-W[no-]trigraphs C/C++ only
-W[no-]undef

-W[no-]uninitialized Has effect when -O2 or 
above.

-W[no-]unknown-pragmas

-W[no-]unreachable-code

-W[no-]unused

-W[no-]unused-function

-W[no-]unused-label

-W[no-]unused-parameter

-W[no-]unused-value

-W[no-]unused-variable

-W[no-]write-strings

-Wnonnull C/C++ only
-Wswitch-default C/C++ only
-Wswitch-enum C/C++ only
-w Suppress warning 

messages
-woff

-woffall

Table E-1. Summary of Compiler Options by Function



E – Summary of Compiler Options

E-18  

-woffoptions

-woffnum

Options Affecting Global Optimizer (–O2 or Above) Defaults / Comments
-WOPT:aggstr=N <11>

-WOPT:const_pre=(ON|OFF) <ON>

-WOPT:if_conv=(0|1|2) <1>

-WOPT:ivar_pre=(ON|OFF) <ON>

-WOPT:mem_opnds=(ON|OFF) <OFF>

-WOPT:retype_expr=(ON|OFF) <OFF>

-WOPT:unroll=(0|1|2) <1>

-WOPT:val=(0|1|2) <1>

Table E-1. Summary of Compiler Options by Function



 F-1

Appendix F
eko man Page

There are online manual pages (’man pages’) available describing the flags and 
options for the PathScale Compiler Suite. 

The man pages distributed as part of the PathScale Compiler Suite are:

You can view this same information online by typing:

$ man <man_page_name>

The eko man page information begins on the following page. For the most 
complete and up-to-date listing, please refer to the online version which can 
be found in the support section at the PathScale web site 
(http://www.pathscale.com/support.html).

pathCC 1 Invoke the PathScale(TM) C or C++ compiler
pathcc 1 Invoke the PathScale(TM) C or C++ compiler
pathf95 1 Invoke the PathScale(TM) Fortran 77, 90, and 95 compil-

ers
eko 7 The complete list of options and flags for the Path-

Scale(TM) Compiler Suite
pathscale_intro 7 Introductory page for the PathScale(TM) Compiler Suite
compiler.defaults 5 Default options for the PathScale(TM) Compiler Suite
explain 1 PathScale Fortran compiler and runtime error message

explanation utility
pathhow-compiled 1 PathScale(TM) display compiled options utility
pathopt2 1 utility used to aid in tuning the PathScale(TM) compiler

for higher performance with specific codes
pathdb 1 The PathScale(TM) Debugger



F – eko man Page

 F-2

NAME
eko - The complete list of options and flags for the PathScale(TM) Compiler Suite 

CG, INLINE, IPA, LANG, LNO, OPT, TENV, WOPT – other major topics covered 

DESCRIPTION
This man page describes the various flags available for use with the PathScale 
pathcc, pathCC, and pathf95 compilers. 

OPTIMIZATION FLAGS
Some suboptions either enable or disable the feature. To enable a feature, either 
specify only the suboption name or specify =1, =ON, or =TRUE. Disabling a feature, 
is accomplished by adding =0, =OFF, or =FALSE. These values are insensitive to 
case: ’on’ and ’ON’ mean the same thing. Below, ON and OFF are used to indicate 
the enabling or disabling of a feature. 

Many options have an opposite ("no-") counterpart. This is represented as [no-] in 
the option description and if used, will turn off or prevent the action of the option. If 
no [no-] is shown, there is no opposite option to the listed option. 

OPTION GROUPS
There are twelve available compiler option groups: CG (Code Generation), CLIST 
(C Listing), FLIST (Fortran Listing), GRA (Global Register Allocator), INLINE 
(Subprogram Inlining), IPA (Inter-procedural Analyzer), LANG (Language), LIST 
(Listing), LNO (Loop Nest Optimizer), OPT (Miscellaneous), TENV (Target 
Environment), and WOPT (Global Optimizer Modification). The general usage 
format is: 

-PARENT_OPTION:suboption=arg 

Two options, -INLINE and -IPA, have separate behavior for the PARENT_OPTION 
without any suboptions. Additionally, -INLINE and -inline mean the same thing; the 
case is similar for -IPA and -ipa. Specifying -clist is equivalent to -CLIST:=ON. 
Specifying -flist is equivalent to enabling all the  -FLIST options. 

-### 

Like the –v option, only nothing is run and args are quoted. 

-A pred=ans 

Make an assertion with the predicate ’pred’ and answer ’ans’. The –pred=ans form 
cancels an assertion with predicate ’pred’ and answer ’ans’. 

-alignN 

Align data on common blocks to specified boundaries. The alignN specifications 
are as follows: 



F – eko man Page

 F-3

Option Action 

-align32 Align data in common blocks 32–bit boundaries. 

-align64 Align data in common blocks to 64–bit boundaries. This is the default. 

When an alignment is specified, objects smaller than the specification are aligned 
on boundaries according to their sizes. For example, when align64 is specified, 
objects smaller than 64 bits but at least 32 bits in size are aligned on 32–bit 
boundaries; objects smaller than 32 bits but at least 16 bits in size are aligned on 
16–bit boundaries; and objects smaller than 16 bits are aligned on 8–bit boundaries. 

-ansi 

(For Fortran only) Generate messages about constructs which violate standard 
Fortran syntax rules and constraints, plus messages about obsolescent and deleted 
features. This also disables all nonstandard intrinsic functions and subroutines, and 
implies –ffortran2003. Specifying –ansi in conjunction with –fullwarn causes all 
messages, regardless of level, to be generated. 

-ansi 

(For C/C++ only) Enable pure ANSI/ISO C mode. 

-apo 

This auto-parallelizing option signals the compiler to automatically convert 
sequential code into parallel code when it is safe and beneficial to do so. The 
resulting executable can then run faster on a machine with more than one CPU. 

-ar 

Create an archive using ar(1) instead of a shared object or executable. The name 
of the archive is specified by using the –o option. Template entities required by the 
objects being archived are instantiated before creating the archive. The pathCC 
command implicitly passes the –r and –c options of ar to ar in addition to the name 
of the archive and the objects being created. Any other option that can be used in 
conjunction with the –c option of ar can be passed to ar using –WR,option_name. 
NOTE: The objects specified with this option must include all of the objects that will 
be included in the archive. Failure to do so may cause prelinker internal errors. In 
the following example, liba.a is an archive containing only a.o, b.o, and c.o. The 
a.o, b.o, and c.o objects are prelinked to instantiate any required template entities, 
and the ar –r –c –v liba.a a.o b.o c.o command is executed. All three objects must 
be specified with –ar even if only b.o needs to be replaced in lib.a. 

pathCC –ar –WR,–v –o liba.a a.o b.o c.o

See the ld(1) man page for more information about shared libraries and archives. 

-auto-use module_name[, module_name]... 

(For Fortran only) Direct the compiler to behave as if a USE module_name statement 
were entered in your Fortran source code for each module_name. The USE 
statements are entered in every program unit and interface body in the source file 



F – eko man Page

 F-4

being compiled (for example, pathf95 –auto-use mpi_interface or pathf95 –auto-use 
shmem_interface). Using this option can add compiler time in some situations. 

-backslash 

Treat a backslash as a normal character rather than as an escape character. When 
this option is used, the preprocessor will not be called. 

-byteswapio 

(For Fortran only) Swap bytes during I/O so that unformatted files on a little-endian 
processor are read and written in big-endian format (or vice versa.) In sequential 
unformatted files, this affects record headers as well as data. To be effective, the 
option must be used when compiling the Fortran main program. Setting the 
environment variable FILENV when running the program will override the 
compiled-in choice in favor of the choice established by the command assign(1). 

-C  

(For Fortran only) Perform runtime subscript range checking. Subscripts that are 
out of range cause fatal runtime errors. If you set the 
F90_BOUNDS_CHECK_ABORT environment variable to YES, the program aborts. 

-C  

(For C only) Keep comments after preprocessing. 

-c  

Create an intermediate object file for each named source file, but does not link the 
object files. The intermediate object file name corresponds to the name of the source 
file; a .o suffix is substituted for the suffix of the source file. 
Because they are mutually exclusive, do not specify this option with the –r option. 

-CG[:...] 

The Code Generation option group controls the optimizations and transformations 
of the instruction–level code generator. 

-CG:cflow=(ON|OFF) 

OFF disables control flow optimization in the code generation. Default is ON. 

-CG:cse_regs=N 

When performing common subexpression elimination during code generation, 
assume there are N extra integer registers available over the number provided by 
the CPU. N can be positive, zero, or negative. The default is positive infinity. See 
also -CG:sse_cse_regs. 

-CG:gcm=(ON|OFF) 

Specifying OFF disables the instruction–level global code motion optimization 
phase. The default is ON. 



F – eko man Page

 F-5

-CG:inflate_reg_request=N

The local register allocator will inflate its register request by N percent for innermost 
loops.

Default is 0.

-CG:load_exe=N 

Specify the threshold for subsuming a memory load operation into the operand of 
an arithmetic instruction. The value of 0 turns off this subsumption optimization. If 
N is 1, this subsumption is performed only when the result of the load has only one 
use. This subsumption is not performed if the number of times the result of the load 
is used exceeds the value N, a non–negative integer. The default value varies based 
on processor target and source language. 

-CG:local_sched_alg=(0|1|2) 

Select the basic block instruction scheduling algorithm. If 0, perform backward 
scheduling, where instructions are scheduled from the bottom of the basic block to 
the top. If 1, perform forward scheduling. If 2, schedule the instructions twice - once 
in the forward direction and once in the backward direction - and take the better of 
the two schedules. The default value of this option is determined by the compiler 
during compilation.

-CG:locs_best=(ON|OFF)

Run the local instruction scheduler several times using different heuristics and pick 
the best

schedule generated. If enabled, this option supercedes other options that control 
local instruction

scheduling, such as Å|CG:local_sched_alg and Å|CG:locs_shallow_depth. The 
default is OFF.

-CG:locs_reduce_prefetch=(ON|OFF)

If ON, delete prefetch instructions that cannot be scheduled into unused processor 
cycles. The

deletion occurs only for backward instruction scheduling. The default is OFF.

-CG:locs_shallow_depth=(ON|OFF)

When performing local instruction scheduling to reduce register usage, give priority 
to instructions

that have shallow depths in the dependence graph. The default is OFF.

-CG:movnti=N 

Convert ordinary stores to non–temporal stores when writing memory blocks of size 
larger than N KB. When N is set to 0, this transformation is avoided. The default 
value is 1000 (KB). 



F – eko man Page

 F-6

-CG:p2align=(ON|OFF) 

Align loop heads to 64-byte boundaries. The default is OFF. 

-CG:p2align_freq=N 

Align branch targets based on execution frequency. This option is meaningful only 
under feedback–directed compilation. The default value N=0 turns off the alignment 
optimization. Any other value specifies the frequency threshold at or above which 
this alignment will be performed by the compiler. 

-CG:post_local_sched=(ON|OFF)

Enable the local scheduler phase after register allocation. The default is ON.

-CG:pre_local_sched=(ON|OFF)

Enable the local scheduler phase before register allocation. The default is ON.

-CG:prefer_legacy_regs=(ON|OFF) 

Tell the local register allocator to use the first 8 integer and SSE registers whenever 
possible (%rax-%rbp, %xmm0-%xmm7). Instructions using these registers have 
smaller instruction sizes. The default is OFF. 

-CG:prefetch=(ON|OFF) 

Enable generation of prefetch instructions in the code generator. The default is ON.  
(-CG:prefetch=OFF and -LNO:prefetch=0 both suppress the generation of prefetch 
instructions, but -LNO:prefetch=0 also affects LNO optimizations that depend on 
prefetch.) 

-CG:ptr_load_use=N 

Add a latency of N cycles between an instruction that loads a pointer and an 
instruction that uses the pointer. The extra latency will force the instruction scheduler 
to schedule the pointer load earlier. In general, it is beneficial to load pointers as 
soon as possible so that dependent memory instructions can begin execution. N is 
4 by default. ("Load pointer" instructions include load-execute instructions that 
compute a pointer result.)

-CG:push_pop_int_saved_regs=(ON|OFF) 

Use the x86 push and pop instructions to save the integer callee-saved registers 
at function prologues and epilogues instead of mov instructions to and from memory 
locations based off the stack pointer. The default is ON when CPU target is 
barcelona, and OFF otherwise. 

-CG:sse_cse_regs=N 

When performing common subexpression elimination during code generation, 
assume there are N extra SSE registers available over the number provided by the 
CPU. N can be positive, zero, or negative. The default is positive infinity. See also 
-CG:cse_regs. 



F – eko man Page

 F-7

-CG:use_prefetchnta=(ON|OFF) 

Prefetch when data is non–temporal at all levels of the cache hierarchy. This is for 
data streaming situations in which the data will not need to be re-used soon. The 
default is OFF. 

-CG:use_test=(ON|OFF) 

Make the code generator use the TEST instruction instead of CMP. See Opteron’s 
instruction description for the difference between these two instructions. The default 
is OFF. 

-clist 

(For C only) Enable the C listing. Specifying –clist is the equivalent of specifying 
–CLIST:=ON. 

-CLIST: ... 

(For C only) The CLIST option group controls emission of the compiler’s internal 
program representation back into C code, after IPA inlining and loop–nest 
transformations. This is a diagnostic tool, and the generated  C code may not always 
be compilable. The generated C code is written to two files, a header file containing 
file–scope declarations, and a file containing function definitions. With the exception 
of –CLIST:=OFF, any use of this option implies –clist. The individual controls in this 
group are as follows: 

-CLIST:=(ON|OFF) 

Enable the C listing. This option is implied by any of the others, but may be used 
to enable the listing when no other options are required. For example, specifying 
–CLIST:=ON is the equivalent of specifying –clist. 

-CLIST:dotc_file=filename 

Write the program units into the specified file, filename. The default source file name 
has the extension .w2c.c. 

-CLIST:doth_file=filename 

Specify the file into which file–scope declarations are deposited. Defaults to the 
source file name with the extension .w2c.h. 

-CLIST:emit_pfetch[=(ON|OFF)] 

Display prefetch information as comments in the transformed source. If ON or OFF 
is not specified, the default is OFF. 

-CLIST:linelength=N 

Set the maximum line length to N characters. The default is unlimited. 

-CLIST:show[=(ON|OFF)] 

Print the input and output file names to stderr. If ON or OFF is not specified, the 
default is ON. 



F – eko man Page

 F-8

-colN  

(Fortran only) Specify the line width for fixed–format source lines. Specify 72, 80, 
or 120 for N (-col72, -col80, or -col120). By default, fixed–format lines are 72 
characters wide. Specifying –col120 implies –extend-source and recognizes lines 
up to 132 characters wide. For more information on specifying line length, see the 
–extend-source and –noextend-source options. 

-convert conversion 

(For Fortran only) Control the swapping of bytes during I/O so that unformatted files 
on a little-endian processor are read and written in big-endian format (or vice versa). 
In sequential unformatted files, this affects record headers as well as data. To be 
effective, the option must be used when compiling the Fortran main program. Setting 
the environment variable FILENV when running the program will override the 
compiled-in choice in favor of the choice established by the command assign(1). 

Legal values of conversion are: 

native No conversion (the default) 

big_endian Files are big-endian 

little_endian Files are little-endian 

-copyright 

Show the copyright for the compiler being used. 

-cpp  

Run the preprocessor, cpp, on all input source files, regardless of suffix, before 
compiling. This preprocessor automatically expands macros outside of 
preprocessor statements. 

The default is to run the C preprocessor (cpp) if the input file ends in a .F or .F90 
suffix. 

For more information on controlling preprocessing, see the –ftpp, –E, and –nocpp 
options.  For information on enabling macro expansion, see the –macro-expand 
option. By default, no preprocessing is performed on files that end in a .f or .f90 suffix.

-Dvar=[def][,var=[def]...] 

Define variables used for source preprocessing as if they had been defined by a 
#define directive. If no def is specified, 1 is used. For information on undefining 
variables, see the –Uvar option. 

-d-lines 

(Fortran only) Compile lines with a D in column 1. 

-default64 

(For Fortran only) Set the sizes of default integer, real, logical, and double precision 
objects. This option is a synonym for the pair of options: –r8 –i8. Calling a routine 
in a specialized library, such as SCSL, requires that its 64–bit entry point be specified 



F – eko man Page

 F-9

when 64–bit data are used. Similarly, its 32–bit entry point must be specified when 
32–bit data are used. 

-dumpversion 

Show the version of the compiler being used and nothing else. 

-E 

Run only the source preprocessor files, without considering suffixes, and write the 
result to stdout. This option overrides the –nocpp option. The output file contains 
line directives.  To generate an output file without line directives, see the –P option.  
For more information on controlling source preprocessing, see the –cpp, –ftpp, 
–macro-expand, and –nocpp options. 

-extend-source 

(For Fortran only) Specify a 132–character line length for fixed–format source lines. 
By default, fixed–format lines are 72 characters wide. For more information on 
controlling line length, see the –coln option. 

-fabi-version=N 

(For C++ only) Use version N of the C++ ABI. Version 1 is the version of the C++ 
ABI that first appeared in G++ 3.2. Version 0 will always be the version that conforms 
most closely to the C++ ABI specification. Therefore, the ABI obtained using version 
0 will change as ABI bugs are fixed. The default is version 1. 

-fb-create <path> 

Used to specify that an instrumented executable program is to be generated. Such 
an executable is suitable for producing feedback data files with the specified prefix 
for use in feedback-directed compilation (FDO). The commonly used prefix is 
<fbdata>. This is OFF by default. 

-fb-opt <prefix for feedback data files> 

Used to specify feedback–directed compilation (FDO) by extracting feedback data 
from files with the specified prefix, which were previously generated using 
–fb-create. The commonly used prefix is "fbdata". The same optimization flags must 
have been used in the –fb-create compile. Feedback data files created from 
executables compiled with different optimization flags will give checksum errors. 
FDO is OFF by default. 

-fb-phase=(0,1,2,3,4) 

Used to specify the compilation phase at which instrumentation for the collection of 
profile data is performed, so is useful only when used with –fb-create. The values 
must be in the range 0 to 4. The default value is 0, and specifies the earliest phase 
for instrumentation, which is after the front-end processing. 

-f[no-]check-new 

(For C++ only) Check the result of new for NULL. When –fno–check–new is used, 
the compiler will not check the result of an operator of NULL. 



F – eko man Page

 F-10

-fcoco[=setfile] 

(For Fortran only) Run the ISO/IEC 1539-3 conditional compilation preprocessor 
on input Fortran source files before compiling. This overrides the default whereby 
files suffixed with .F, .F90, or .F95 are preprocessed with cpp but files suffixed with 
.f, .f90 or .f95 are not preprocessed. 

If no setfile is specified, the preprocessor looks for coco.set in the current working 
directory. Any –I flags are passed to the preprocessor, and take precedence over 
the setfile. 

Any –D flags are passed to the preprocessor to assign values to constants, 
overriding values assigned within the source files. If the flag contains "=", the value 
on the right side must be an integer, and the name on the left side must be declared 
as an integer constant within the source files. Otherwise, the name must be declared 
as a logical constant within the source files, and will be set true. Constants defined 
by -D should not be defined in the setfile. 

-fdecoratepath 

(For Fortran only) Specify how to "decorate" external Fortran identifiers to generate 
linker symbols. Ordinarily we apply the rules established by options 
–f[no-]underscoring and –f[no-]second-underscore, but –fdecorate overrides those 
rules for specific identifiers. The file path should contain two blank- or tab-delimited 
tokens per line. The first token is a Fortran identifier and the second is the linker 
symbol to use for that identifier. An abbreviation is allowed in place of the second 
token: "0" says to append no underscore to the Fortran identifier, "1" says to append 
a single underscore, and "2" says to append two underscores if the Fortran identifier 
contains an underscore but otherwise to append one. If an identifier appears twice, 
the second rule overrides the first. 

You may repeat this option to specify multiple files. 

-f[no-]directives 

(For Fortran only) –fno-directives ignores all directives (such as "!$OMP" or "C*$* 
PREFETCH_REF") inside comments. The default is –fdirectives, which scans the 
comments for directives (although certain directives may have no effect unless 
additional options, such as –mp, are present.) 

-fe 

Stop after the front-end is run. 

-f[no-]exceptions 

(For C++ only) –fexceptions enables exception handling. This is the default. 
–fno-exceptions disables exception handling. This option has a subset of the effects 
of –fno-gnu-exceptions. Hence, it can be used on some C++ applications, on which 
–fno-gnu-exceptions cannot be applied. 



F – eko man Page

 F-11

-ff2c-abipath 

(For Fortran only) Use the GNU f2c ABI when calling any functions listed in the file 
at path. On the x86_64 platform, the g77 compiler generates code that does not 
follow the documented platform ABI in some cases (involving functions returning 
complex or single-precision real values). You must use this flag if you are mixing 
code generated by g77 with code generated by the PathScale Fortran compiler. 

The format of an f2c ABI description file is simply a list of Fortran function names, 
one per line, without any of the trailing underscores that are added in object files.  
To generate files in this format, you can use the fsymlist(1) utility. 

-f[no-]fast-math 

–ffast-math improves FP speed by relaxing ANSI & IEEE rules.  –ffast-math is 
implied by –Ofast.  –fno-fast–math tells the compiler to conform to ANSI and IEEE 
math rules at the expense of speed.  –ffast-math implies –OPT:IEEE_arithmetic=2 
-fno-math-errno. -fno-fast-math implies -OPT:IEEE_arithmetic=1 -fmath-errno. 

-f[no-]fast-stdlib 

The –ffast-stdlib flag improves application performance by generating code to link 
against special versions of some standard library routines, and linking against the 
PathScale compiler runtime library. This option is enabled by default. 
If –fno–fast–stdlib is used during compilation, the compiler will not emit code to link 
against fast versions of standard library routines. During compilation, –ffast–stdlib 
implies –OPT:fast_stdlib=on. 
If –fno–fast–stdlib is used during linking, the compiler will not link against the 
PathScale compiler runtime library. 
If you link code with –fno–fast–stdlib that was not also compiled with this flag, you 
may see linker errors. Much of the PathScale compiler Fortran runtime is compiled 
with –ffast–stdlib, so it is not advised to link Fortran applications with –fno-fast–stdlib. 

-ffloat-store 

Do not store floating point variables in registers, and inhibit other options that might 
change whether a floating point value is taken from a register or memory. This option 
prevents undesirable excess precision on the X87 floating-point unit where all 
floating-point computations are performed in one precision regardless of the original 
type. (see -mx87–precision). If the program uses floating point values with less 
precision, the extra precision in the X87 may violate the precise definition of IEEE 
floating point.  -ffloat–store causes all pertinent immediate computations to be stored 
to memory to force truncation to lower precision. However, the extra stores will slow 
down program execution substantially. -ffloat–store has no effect under -msse2, 
which is the default under both -m64 and -m32. 

-ffortran2003 

When you apply the Fortran intrinsic real, dble, or cmplx to a boz constant such as 
z’3ff00000’, the compiler traditionally converts the constant to an integer and returns 
the real value whose magnitude matches that integer. This option makes each 



F – eko man Page

 F-12

intrinsic behave as Fortran 2003 requires, returning the real value whose bit pattern 
matches the boz constant. 

-ffortran-bounds-check 

(For Fortran only) Check bounds. 

-f[no-]gnu-exceptions 

(For C++ only) –fgnu-exceptions enables exception handling, and is equivalent to 
–fexceptions. This is the default. –fno-gnu-exceptions disables exception handling, 
and is equivalent to GNU option –fno-exceptions. 

-f[no-]gnu-keywords 

(For C/C++ only) Recognize ’typeof’ as a keyword. If -fno-gnu-keywords is 
used, do not recognize ’typeof’ as a keyword. 

-f[no-]implicit-inline-templates 

(For C++ only) -fimplicit-inline-templates emits code for inline templates 
instantiated implicitly. -fno-implicit-inline-templates tells the compiler to 
never emit code for inline templates instantiated implicitly. 

-f[no-]implicit-templates 

(For C++ only) The -fimplicit-templates option emits code for non–inline 
templates instantiated implicitly. With –fno-implicit-templates the compiler 
will not emit code for non–inline templates instantiated implicitly. 

-finhibit-size-directive 

Do not generate .size directives. 

-f[no-]inline 

-finline requests inline processing (same as -inline). -fno-inline disables 
inlining (same as -noinline).

-f[no-]inline-functions 

(For C/C++ only) -finline-functions automatically integrates simple functions 
into their callers. -fno-inline-functions does not automatically integrate 
simple functions into their callers. 

-finstrument-functions

Insert instrumentation calls into each function, just after the function entry and just 
before the function returns. Refer to -OPT:cyg_instr for more details. 
-finstrument-functions is equivalent to -OPT:cyg_instr=3.

-fixedform 

(For Fortran only) Treat all input source files, regardless of suffix, as if they were 
written in fixed source form (f77 72-column format), instead of F90 free format. By 
default, only input files suffixed with .f or .F are assumed to be written in fixed source 
form. 



F – eko man Page

 F-13

-fkeep-inline-functions 

(For C/C++ only) Generate code for functions even if they are fully inlined. 

-flist 

Invoke all Fortran listing control options. The effect is the same as if all –FLIST 
options are enabled. 

-FLIST:... 

Invoke the Fortran listing control group, which controls production of the compiler’s 
internal program representation back into Fortran code, after IPA inlining and 
loop–nest transformations. This is used primarily as a diagnostic tool, and the 
generated Fortran code may not always compile. With the exception of 
–FLIST:=OFF, any use of this option implies –flist. The arguments to the –FLIST 
option are as follows: 

-FLIST:=setting 

Enable or disable the listing. Setting can be either ON or OFF. The default is OFF. 
This option is enabled when any other –FLIST options are enabled, but it can also 
be used to enable a listing when no other options are enabled. 

-FLIST:ansi_format=setting 

Set ANSI format. setting can be either ON or OFF. When set to ON, the compiler 
uses a space (instead of tab) for indentation and a maximum of 72 characters per 
line. The default is OFF. 

-FLIST:emit_pfetch=setting 

Writes prefetch information, as comments, in the transformed source file. setting 
can be either ON or OFF. The default is OFF. 

In the listing, PREFETCH identifies a prefetch and includes the variable reference 
(with an offset in bytes), an indication of read/write, a stride for each dimension, and 
a number in the range from 1 (low) to 3 (high), which reflects the confidence in the 
prefetch analysis. Prefetch identifies the reference(s) being prefetched by the 
PREFETCH descriptor. The comments occur after a read/write to a variable and 
note the identifier of the PREFETCH–spec for each level of the cache. 

-FLIST:ftn_file=file 

Write the program to file. By default, the program is written to file.w2f.f. 

-FLIST:linelength=N 

Set the maximum line length to N characters. 

-FLIST:show=setting 

Write the input and output filenames to stderr. setting can be either ON or OFF. The 
default is ON. 

-fms-extensions 

(For C/C++ only) Accept broken MFC extensions without warning. 



F – eko man Page

 F-14

-fno-asm 

(For C/C++ only) Do not recognize the ’asm’ keyword. 

-fno-builtin 

(For C/C++ only) Do not recognize any built in functions. 

-fno-common 

(For C/C++ only) Use strict ref/def initialization model. 

-fno-ident 

Ignore #ident directives. 

-fno-math-errno 

Do not set ERRNO after calling math functions that are executed with a single 
instruction, e.g. sqrt. A program that relies on IEEE exceptions for math error 
handling may want to use this flag for speed while maintaining IEEE arithmetic 
compatibility. This is implied by –Ofast. The default is –fmath-errno. 

-fpack-struct 

(For C/C++ only) Pack structure members together without holes. 

-f[no-]permissive 

–fpermissive will downgrade messages about non–conformant code to warnings. 
–fno–permissive keeps messages about non–conformant code as errors. 

-f[no-]PIC 

–fPIC tells the compiler to generate position independent code, if possible. The 
default is –fno–PIC, which tells the compiler not to generate position independent 
code. 

-fprefix-function-name 

(For C/C++ only) Add a prefix to all function names. 

-f[no-]preprocessed 

–fpreprocessed tells the preprocessor that input has already been preprocessed. 
Using –fno–preprocessed tells preprocessor that input has not already been 
preprocessed. 

-frandom-seed=string 

(For C/C++ only) The compiler normally uses a random number to generate names 
that have to be different in each compiled file. These names include certain symbol 
names, unique stamps in coverage data, and the object files that produce these 
data. Use -frandom-seed to override that random number; this will force 
reproducibility across different compilations. You should use a different string to 
compile each source file. 



F – eko man Page

 F-15

-freeform 

(For Fortran only) Treats all input source files, regardless of suffix, as if they were 
written in free source form. By default, only input files suffixed with .f90 or .F90 are 
assumed to be written in free source form. 

-f[no-]rtti 

(For C++ only) Using –frtti will generate runtime type information. The –fno-rtti option 
will not generate runtime type information. 

-f[no-]second-underscore 

(For Fortran only) –fsecond-underscore appends a second underscore to symbols 
that already contain an underscore. –fno–second-underscore tells the compiler not 
to append a second underscore to symbols that already contain an underscore. 

-f[no-]signed-bitfields 

(For C/C++ only) –fsigned-bitfields makes bitfields be signed by default. The 
–fno-signed-bitfields will make bitfields be unsigned by default. 

-f[no-]signed-char 

(For C/C++ only) –fsigned–char makes ’char’ signed by default. –fno–signed–char 
makes ’char’ unsigned by default. 

-f[no-]strict-aliasing 

(For C/C++ only) –fstrict–aliasing tells the compiler to assume strictest aliasing 
rules. –fno–strict–aliasing tells the compiler not to assume strict aliasing rules. 

-fshared-data 

(For C/C++ only) Mark data as shared rather than private. 

-fshort-double 

(For C/C++ only) Use the same size for double as for float. 

-fshort-enums 

(For C/C++ only) Use the smallest fitting integer to hold enums. 

-fshort-wchar 

(For C/C++ only) Use short unsigned int for wchar_t instead of the default underlying 
type for the target. 

-ftest-coverage 

Create data files for the pathcov(1) code-coverage utility. The data file names begin 
with the name of your source file: 

SOURCENAME.bb 
A mapping from basic blocks to line numbers, which pathcov uses to associate 
basic block execution counts with line numbers. 



F – eko man Page

 F-16

SOURCENAME.bbg 
A list of all arcs in the program flow graph. This allows pathcov to reconstruct the 
program flow graph, so that it can compute all basic block and arc execution counts 
from the information in the SOURCENAME.da file. 

Use –ftest-coverage with –fprofile-arcs; the latter option adds instrumentation to 
the program, which then writes execution counts to another data file: 

SOURCENAME.da 
Runtime arc execution counts, used in conjunction with the arc information in the 
file SOURCENAME.bbg. 

Coverage data will map better to the source files if –ftest-coverage is used without 
optimization. See the gcc man pages for more information. 

-ftpp 

Run the Fortran source preprocessor on input Fortran source files before compiling. 
By default, files suffixed with .F or .F90 are run through the C source preprocessor 
(cpp). Files that are suffixed with .f or .f90 are not run through any preprocessor by 
default. 

The Fortran source preprocessor does not automatically expand macros outside of 
preprocessor statements, so you need to specify –macro-expand if you want 
macros expanded. 

-fullwarn 

Request that the compiler generate comment–level messages. These messages 
are suppressed by default. Specifying this option can be useful during software 
development. 

-f[no-]underscoring 

(For Fortran only) –funderscoring appends underscores to symbols. 
–fno-underscoring tells the compiler not to append underscores to symbols. 

-f[no-]unsafe-math-optimizations 

–funsafe-math-optimizations improves FP speed by violating ANSI and IEEE rules. 
–fno-unsafe-math-optimizations makes the compilation conform to ANSI and IEEE 
math rules at the expense of speed. This option is provided for GCC compatibility 
and is equivalent to –OPT:IEEE_arithmetic=3 –fno–math–errno. 

-f[no-]unwind-tables 

–funwind-tables emits unwind information. –fno-unwind-tables tells the compiler 
never to emit any unwind information. This is the default. Flags to enable exception 
handling automatically enable -funwind-tables. 

-fuse-cxa-atexit 

(For C++ only) Register static destructors with __cxa_atexit instead of atexit. 

-fwritable-strings 

(For C/C++ only) Attempt to support writable-strings K&R style C. 



F – eko man Page

 F-17

-g[N]  

Specify debugging support and to indicate the level of information produced by the 
compiler. The supported values for N are: 

0  No debugging information for symbolic debugging is produced. This is the 
default. 

1   Produces minimal information, enough for making backtraces in parts of the 
program that you don’t plan to debug. This is also the flag to use if the user 
wants backtraces but does not want the overhead of full debug information. 
This flag also causes ––export–dynamic to be passed to the linker. 

2   Produces debugging information for symbolic debugging. Specifying -g without 
a debug level is equivalent to specifying -g2. If there is no explicit optimization 
flag specified, the -O0 optimization level is used in order to maintain the 
accuracy of the debugging information. If optimization options -O1, -O2, or -O3 
are explicitly specified, the optimizations are performed accordingly but the 
accuracy of the debugging cannot be guaranteed. If -ipa is specified along with 
option -g2, then IPA is disabled.

3   Produces additional debugging information for debugging macros. 

-gnu[N] 

(For C/C++ only) Direct the compiler to generate code compatible with the GNU N 
series of compilers, where N is either 3 (GCC 3.3) or 4 (GCC 4.2). On systems 
whose system compiler is GCC 3, the default is -gnu3; on GCC 4 systems the 
default is -gnu4. Use -show-defaults to display the default. (-gnu40 is also 
supported which selects GCC 4.0.) 

-GRA:... 

Option group for Global Register Allocator. 

-GRA:home=(ON|OFF) 

Turn off the rematerialization optimization for non–local user variables in the Global 
Register Allocator. Default is ON. 

-GRA:optimize_boundary=(ON|OFF) 

Allow the Global Register Allocator to allocate the same register to different variables 
in the same basic-block. Default is OFF. 

-GRA:prioritize_by_density=(ON|OFF)

Tell the Global Register Allocator to prioritize register assignment to variables based 
on the variable’s

reference density instead of the variable’s reference count. Default is OFF.

-help 

List all available options. The compiler is not invoked. 



F – eko man Page

 F-18

-help: 

Print list of possible options that contain a given string. 

-H  

Print the name of each header file used. 

-Idir 

Specify a directory to be searched. This is used for the following types of files: 

• Files named in INCLUDE lines in the Fortran source file that do not begin with 
a slash (/) character 

• Files named in #include source preprocessing directives that do not begin with 
a slash (/) character 

• Files specified on Fortran USE statements 

Files are searched in the following order: first, in the directory that contains the input 
file; second, in the directories specified by dir; and third, in the standard directory, 
/usr/include. 

-iN 

(For Fortran only) Specify the length of default integer constants, default integer 
variables, and logical quantities. Specify one of the following: 

Option Action 

–i4 Specifies 32–bit (4 byte–) objects. The default. 

–i8 Specifies 64–bit (8 byte–) objects. 

-ignore-suffix 

Determine the language of the source file being compiled by the command used to 
invoke the compiler. By default, the language is determined by the file suffixes (.c, 
.cpp, .C, .cxx, .f, .f90, .s). When the –ignore-suffix option is specified, the pathcc 
command invokes the C compiler, pathCC invokes the C++ compiler, and pathf95 
invokes the Fortran 95 compiler. 

-inline 

Request inline processing. 

-INLINE:... 

Option group for subprogram inlining. May not always compile. With the exception 
of –INLINE:=OFF, any use of this option implies –inline. 
If you have included inlining directives in your source code, the –INLINE option must 
be specified in order for those directives to be honored. 

-INLINE:aggressive=(ON|OFF) 

Tell the compiler to be more aggressive about inlining. The default is 
–INLINE:aggressive=OFF. 



F – eko man Page

 F-19

-INLINE:list=(ON|OFF) 

Tell the inliner to list inlining actions as they occur to stderr. The default is 
–INLINE:list=OFF. 

-INLINE:preempt=(ON|OFF) 

Perform inlining of functions marked preemptible in the light-weight inliner. Default 
is OFF. This inlining prevents another definition of such a function, in another DSO, 
from preempting the definition of the function being inlined. 

-[no-]intrinsic=name 

(For Fortran only) Add a procedure to (or remove a procedure from) the set of 
intrinsic functions and subroutines that the compiler recognizes. By default, the 
compiler recognizes only some of the intrinsics that it can support. The name can 
be the lower-case name of any intrinsic that the compiler can support, or it can be 
an upper-case name representing a predefined "family" of intrinsics. You can use 
the options to "tune" the compiler to provide all the intrinsics a program needs, while 
eliminating the ones whose names conflict with those of the program’s own functions 
and subroutines. The options may appear multiple times, and will be interpreted in 
order. For example, "-no-intrinsic=EVERY -intrinsic=G77 -no-intrinsic=abort" would 
remove all intrinsics, then add the family of G77 intrinsics, and then remove the 
individual intrinsic "abort". 

Predefined families are: 

EVERY Every intrinsic that the pathf95 compiler can support 

ANSI Intrinsics defined in the ANSI standard; this is the default for the 
–ansi option. 

G77 Intrinsics known to the GNU compiler 

PGI Intrinsics known to the PGI(TM) compiler 

OMP Intrinsics defined by the OpenMP standard (automatically enabled 
by the -mp option; see the eko(7) man page for more information) 

TRADITIONAL 
Intrinsics known to pathf95 prior to version 2.0; this is the default in 
the absence of the –ansi option. 

A family like "PGI" contains intrinsics supported by both pathf95 and the PGI 
compiler; that does not imply that pathf95 supports every intrinsic in the PGI 
compiler. 

-ipa  

Invoke inter-procedural analysis (IPA). Specifying this option is identical to 
specifying –IPA or –IPA:. Default settings for the individual IPA suboptions are used. 

-IPA: ... 

The inter-procedural analyzer option group controls application of inter-procedural 
analysis and optimization, including inlining, constant propagation, common block 



F – eko man Page

 F-20

array padding, dead function elimination, alias analysis, and others. Specify –IPA 
by itself to invoke the inter-procedural analysis phase with default options. If you 
compile and link in distinct steps, you must specify at least –IPA for the compile 
step, and specify –IPA and the individual options in the group for the link step. If 
you specify –IPA for the compile step, and do not specify –IPA for the link step, you 
will receive an error. 

-IPA:addressing=(ON|OFF) 

Invoke the analysis of address operator usage. The default is Off. –IPA:alias=ON 
is a prerequisite for this option. 

-IPA:aggr_cprop=(ON|OFF) 

Enable or disable aggressive inter-procedural constant propagation. Setting can be 
ON or OFF. This attempts to avoid passing constant parameters, replacing the 
corresponding formal parameters by the constant values. Less aggressive 
inter-procedural constant propagation is done by default. The default setting is ON. 

-IPA:alias=(ON|OFF) 

Invoke alias/mod/ref analysis. The default is ON. 

-IPA:callee_limit=N 

Functions whose size exceeds this limit will never be automatically inlined by the 
compiler. The default is 500. 

-IPA:cgi=(ON|OFF) 

Invoke constant global variable identification. This option marks non-scalar global 
variables that are never modified as constant, and propagates their constant values 
to all files. Default is ON. 

-IPA:clone_list=(ON|OFF) 

Tell the IPA function cloner to list cloning actions as they occur to stderr. The default 
is OFF. 

-IPA:common_pad_size=N 

This specifies the amount by which to pad common block array dimensions. The 
value of N can affect cache behavior for common block array accesses. The default 
is 0.

-IPA:cprop=(ON|OFF) 

Turn on or off inter-procedural constant propagation. This option identifies the formal 
parameters that always have a specific constant value. Default is ON. See also 
-IPA:aggr_cprop. 

-IPA:ctype=(ON|OFF) 

When ON, causes the compiler to generate faster versions of the <ctype.h> macros 
such as isalpha, isascii, etc. This flag is unsafe both in multi-threaded programs 
and in all locales other than the 7-bit ASCII (or "C") locale. The default is OFF. Do 



F – eko man Page

 F-21

not turn this on unless the program will always run under the 7-bit ASCII (or "C")  
locale and is single-threaded. 

-IPA:depth=N 

Identical to maxdepth=N. 

-IPA:dfe=(ON|OFF) 

Enable or disable dead function elimination. Removes any functions that are inlined 
everywhere they are called. The default is ON. 

-IPA:dve=(ON|OFF) 

Enable or disable dead variable elimination. This option removes variables that are 
never referenced by the program. Default is ON. 

-IPA:echo=(ON|OFF) 

Option to echo (to stderr) the compile commands and the final link commands that 
are invoked from IPA. Default is OFF. This option can help monitor the progress of 
a large system build. 

-IPA:field_reorder=(ON|OFF) 

Enable the re–ordering of fields in large structs based on their reference patterns 
in feedback compilation to minimize data cache misses. The default is OFF. 

-IPA:forcedepth=N 

This option sets inline depths, directing IPA to attempt to inline all functions at a 
depth of (at most) N in the callgraph, instead of using the default inlining heuristics. 
This option ignores the default heuristic limits on inlining. Functions at depth 0 make 
no calls to any sub-functions. Functions only making calls to depth 0 functions are 
at depth 1, and so on. By default, this optimization is not done.

-IPA:ignore_lang=(ON|OFF) 

Enable/disable inlining across language boundaries of Fortran on one side, and 
C/C++ on the other. The compiler may not always be aware of the correct effective 
language semantics if this optimization is done, making it unsafe in some scenarios. 
The default is OFF. 

-IPA:inline=(ON|OFF) 

This option performs inter-file subprogram inlining during the main IPA processing. 
The default is ON. Does not affect the light-weight inliner. 

-IPA:keeplight=(ON|OFF) 

This option directs IPA not to send –keep to the compiler, in order to save space. 
The default is OFF. 

-IPA:linear=(ON|OFF) 

Controls conversion of a multi-dimensional array to a single dimensional (linear) 
array that covers the same block of memory. When inlining Fortran subroutines, 
IPA tries to map formal array parameters to the shape of the actual parameter. In 



F – eko man Page

 F-22

the case that it cannot map the parameter, it linearizes the array reference. By 
default, IPA will not inline such callsites because they may cause performance 
problems. The default is OFF. 

-IPA:map_limit=N 

Direct when IPA enables sp_partition. N is the maximum size (in bytes) of input files 
mapped before IPA invokes -IPA:sp_partition. 

-IPA:maxdepth=N 

This option directs IPA to not attempt to inline functions at a depth of more than N 
in the callgraph; where functions that make no calls are at depth 0, those that call 
only depth 0 functions are at depth 1, and so on. The default is a very large number. 
This inlining remains subject to overriding limits on code expansion. Also see

IPA:forcedepth, IPA:space, and IPA:plimit. 

-IPA:max_jobs=N 

This option limits the maximum parallelism when invoking the compiler after IPA to 
(at most) N compilations running at once. The option can take the following values: 

0  The parallelism chosen is equal to either the number of CPUs, the number of 
cores, or the number of hyperthreading units in the compiling system, whichever 
is greatest. 

1  Disable parallelization during compilation (default) 

>1  Specifically set the degree of parallelism 

-IPA:min_hotness=N 

When feedback information is available, a call site to a procedure must be invoked 
with a count that exceeds the threshold specified by N before the procedure will be 
inlined at that call site. The default is 10. 

-IPA:multi_clone=N 

This option specifies the maximum number of clones that can be created from a 
single procedure. Default value is 0. Aggressive procedural cloning may provide 
opportunities for inter-procedural optimization, but may also significantly increase 
the code size. 

-IPA:node_bloat=N 

When this option is used in conjunction with –IPA:multi_clone, it specifies the 
maximum percentage growth of the total number of procedures relative to the 
original program. The default is 100.

-IPA:plimit=N 

This option stops inlining into a specific subprogram once it reaches size N in the 
intermediate representation. Default is 2500. 



F – eko man Page

 F-23

-IPA:pu_reorder=(0|1|2) 

Control re–ordering the layout of program units based on their invocation patterns 
in feedback compilation to minimize instruction cache misses. This option is ignored 
unless under feedback compilation. 

0  Disable procedure reordering. This is the default for non–C++ programs. 

1  Reorder based on the frequency in which different procedures are invoked. 
This is the default for C++ programs. 

2  Reorder based on caller-callee relationship. 

-IPA:relopt=(ON|OFF) 

This option enables optimizations similar to those achieved with the compiler options 
–O and –c, where objects are built with the assumption that the compiled objects 
will be linked into a call-shared executable later. The default is OFF. In effect, 
optimizations based on position-dependent code (non-PIC) are performed on the 
compiled objects. 

-IPA:small_pu=N 

A procedure with size smaller than N is not subjected to the plimit restriction. The 
default is 30. 

-IPA:sp_partition=[setting] 

This option enables partitioning for disk/addressing–saving purposes. The default 
is OFF. Mainly used for building very large programs. Normally, partitioning would 
be done by IPA internally. 

-IPA:space=N 

Inline until a program expansion of N% is reached. For example, -IPA:space=20 
limits code expansion due to inlining to approximately 20%. Default is no limit. 

-IPA:specfile=filename 

Opens a filename to read additional options. The specification file contains zero or 
more lines with inliner options in the form expected on the command line. The 
specfile option cannot occur in a specification file, so specification files cannot 
invoke other specification files. 

-IPA:use_intrinsic=(ON|OFF) 

Enable/disable loading the intrinsic version of standard library functions. The default 
is OFF. 

-iquote dir 

Search dir for header files specified by "#include "file"", but not for header files 
specified by "#include <file>". Dir is searched before all directories specified by -I 
and the standard system directories. 



F – eko man Page

 F-24

-isystem dir 

Search dir for header files, after all directories specified by –I but before the standard 
system directories. Mark it as a system directory, so that it gets the same special 
treatment as is applied to the standard system directories. 

-keep 

Write all intermediate compilation files. file.s contains the generated assembly 
language code. file.i contains the preprocessed source code. These files are 
retained after compilation is finished. If IPA is in effect and you want to retain file.s, 
you must specify –IPA:keeplight=OFF in addition to –keep. 

-keepdollar 

(For Fortran only) Treat the dollar sign ($) as a normal last character in symbol 
names. 

-L directory 

In XPG4 mode, changes the algorithm of searching for libraries named in –L 
operands to look in the specified directory before looking in the default location. 
Directories specified in –L options are searched in the specified order. Multiple 
instances of –L options can be specified. 

-l library 

In XPG4 mode, searches the specified library. A library is searched when its name 
is encountered, so the placement of a –l operand is significant. 

-LANG:... 

This controls the language option group. The following sections describe the 
suboptions available in this group. 

-LANG:copyinout=(ON|OFF) 

When an array section is passed as the actual argument in a call, the compiler 
sometimes copies the array section to a temporary array and passes the temporary 
array, thus promoting locality in the accesses to the array argument. This 
optimization is relevant only to Fortran, and this flag controls the aggressiveness 
of this optimization. The default is ON for –O2 or higher and OFF otherwise. 

-LANG:formal_deref_unsafe=(ON|OFF) 

Tell the compiler whether it is unsafe to speculate a dereference of a formal 
parameter in Fortran. The default is OFF, which is better for performance. 

-LANG:global_asm=(ON|OFF)

When  a  program  has a file-scope asm statement, this option may be used if the  
asm  allocates  objects  to sections. Enabling this option disables some alignment 
optimizations so that the compiler's  allocations  are compatible  with  those  in  the  
asm  statement.  The default is OFF.



F – eko man Page

 F-25

-LANG:heap_allocation_threshold=size 

Determine heap or stack allocation. If the size of an automatic array or compiler 
temporary exceeds size bytes it is allocated on the heap instead of the stack. If size 
is –1, objects are always put on the stack. If size is 0, objects are always put on the 
heap. 
The default is –1 for maximum performance and for compatibility with previous 
releases. 

-LANG:IEEE_minus_zero=setting 

Enable or disable the SIGN(3I) intrinsic function’s ability to recognize negative 
floating–point zero (–0.0). Specify either ON or OFF for setting. The default is OFF, 
which suppresses the minus sign. The minus sign is suppressed by default to 
prevent problems from hardware instructions and optimizations that can return a 
–0.0 result from a 0.0 value. To obtain a minus sign (–) when printing a negative 
floating–point zero (–0.0), use the –z option on the assign(1) command. 

-LANG:IEEE_save=setting 

(For Fortran only) the ISO standard requires that any procedure which accesses 
the standard IEEE intrinsic modules via a "use" statement must save the floating 
point flags, halting mode, and rounding mode on entry; must restore the halting 
mode and rounding mode on exit; and must OR the saved flags with the current 
flags on exit. Setting this option OFF may improve execution speed by skipping 
these steps. 

-LANG:recursive=setting 

Invoke the language option control group to control recursion support. setting can 
be either ON or OFF. The default is OFF. 
In either mode, the compiler supports a recursive, stack–based calling sequence. 
The difference lies in the optimization of statically allocated local variables, as 
described in the following paragraphs. 
With –LANG:recursive=ON, the compiler assumes that a statically allocated local 
variable could be referenced or modified by a recursive procedure call. Therefore, 
such a variable must be stored into memory before making a call and reloaded 
afterwards. 
With –LANG:recursive=OFF, the compiler can safely assume that a statically 
allocated local variable is not referenced or modified by a procedure call. This setting 
enables the compiler to optimize more aggressively. 

-LANG:rw_const=(ON|OFF) 

Tell the compiler whether to treat a constant parameter in Fortran as read-only or 
read-write. If treated as read-write, the compiler has to generate extra code in 
passing these constant parameters so as to tolerate their being modified in the 
called function. The default is OFF, which is more efficient but will cause 
segmentation fault if the constant parameter is written into. 



F – eko man Page

 F-26

-LANG:short_circuit_conditionals=(ON|OFF) 

Handle .AND. and .OR. via short-circuiting, in which the second operand is not 
evaluated if unnecessary, even if it contains side effects. Default is ON. This flag is 
applicable only to Fortran, the flag has no effect on C/C++ programs. 

-LIST: ... 

The list option group controls information that gets written to a listing (.lst) file. The 
individual controls in this group are: 

-LIST:=(ON|OFF) 

Enable or disable writing the listing file. The default is ON if any –LIST: group options 
are enabled. By default, the listing file contains a list of options enabled. 

-LIST:all_options[=(ON|OFF)] 

Enable or disable listing of most supported options. The default is OFF. 

-LIST:notes[=(ON|OFF)] 

If an assembly listing is generated (for example, on –S), various parts of the compiler 
(such as software pipelining) generate comments within the listing that describe 
what they have done. Specifying OFF suppresses these comments. The default is 
ON. 

-LIST:options[=(ON|OFF)] 

Enable or disable listing of the options modified (directly in the command line, or 
indirectly as a side effect of other options). The default is OFF. 

-LIST:symbols[=(ON|OFF)] 

Enable or disable listing of information about the symbols (variables) managed by 
the compiler. 

-LNO:... 

This group specifies options and transformations performed on loop nests by the 
Loop Nest Optimizer (LNO). The –LNO options are enabled only if the optimization 
level of –O3 or higher is in effect. 

For information on the LNO options that are in effect during a compilation, use the 
–LIST:all_options=ON option. 

-LNO:apo_use_feedback=(ON|OFF) 

Effective only when specified with –apo under feedback–directed compilation, this 
flag tells the auto-parallelizer whether to use the feedback data of the loops in 
deciding whether each loop should be parallelized. When the compiler parallelizes 
a loop, it generates both a serial and a parallel version. If the trip count of the loop 
is small, it is not beneficial to use the parallel version during execution. When this 
flag is set to ON and the feedback data indicates that the loop has small trip count, 
the auto–parallelizer will not generate the parallel version, thus saving the runtime 
check needed to decide whether to execute the serial or parallel version of the loop. 
The default is OFF. 



F – eko man Page

 F-27

-LNO:build_scalar_reductions=(ON|OFF) 

Build scalar reductions before any loop transformation analysis. Using this flag may 
enable further loop transformations involving reduction loops. The default is OFF. 
This flag is redundant when -OPT:roundoff=2 or greater is in effect. 

-LNO:blocking=(ON|OFF) 

Enable or disable the cache blocking transformation. The default is ON. 

-LNO:blocking_size=N 

This option specifies a block size that the compiler must use when performing any 
blocking. N must be a positive integer number that represents the number of 
iterations. 

-LNO:fission=(0|1|2) 

This option controls loop fission. The option can be one of the following: 

0  Disable loop fission (default) 

1  Perform normal fission as necessary 

2  Specify that fission be tried before fusion 

Because -LNO:fusion is on by default, turning on fission without turning off fusion 
may result in their effects being nullified. Ordinarily, fusion is applied before fission. 
Specifying -LNO:fission=2 will turn on fission and cause it to be applied before 
fusion. 

-LNO:

full_unroll,fu=N 
Fully unroll loops with trip_count <= N inside LNO. N can be any integer between 
0 and 100. The default value for N is 5. Setting this flag to 0 disables full unrolling 
of small trip count loops inside LNO. 

-LNO:full_unroll_size=N 

Fully unroll loops with unrolled loop size <= N inside LNO. N can be any integer 
between 0 and 10000. The conditions implied by the full_unroll option must also be 
satisfied for the loop to be fully unrolled. The default value for N is 2000. 

-LNO:full_unroll_outer=(ON|OFF) 

Control the full unrolling of loops with known trip count that do not contain a loop 
and are not contained in a loop. The conditions implied by both the full_unroll and 
the full_unroll_size options must be satisfied for the loop to be fully unrolled. The 
default is OFF. 

-LNO:fusion=(0|1|2) 

Perform loop fusion. The option can be one of the following: 

0   Loop fusion is off. 

1  Perform conservative loop fusion. This is the default. 



F – eko man Page

 F-28

2  Perform aggressive loop fusion. 

-LNO:fusion_peeling_limit=N 

This option sets the limit for the number of iterations allowed to be peeled in fusion, 
where N>= 0. N=5 by default. 

-LNO:gather_scatter=(0|1|2) 

This option enables gather-scatter optimizations. The option can be one of the 
following: 

0  Disable all gather-scatter optimizations. 

1  Perform gather-scatter optimizations in non-nested IF statements. This is the 
default. 

2  Perform multi-level gather-scatter optimizations. 

-LNO:hoistif=(ON|OFF) 

This option enables or disables hoisting of IF statements inside inner loops to 
eliminate redundant loops. Default is ON. 

-LNO:ignore_feedback=(ON|OFF) 

If the flag is ON then feedback information from the loop annotations will be ignored 
in LNO transformations. The default is OFF. 

-LNO:ignore_pragmas=(ON|OFF) 

This option specifies that the command-line options override directives in the source 
file. Default is OFF. 

-LNO:local_pad_size=N 

This option specifies the amount by which to pad local array dimensions. The 
compiler automatically (by default) chooses the amount of padding to improve cache 
behavior for local array accesses. 

-LNO:minvariant,minvar=(ON|OFF) 

Enable or disable moving loop-invariant expressions out of loops. The default is ON. 

-LNO:non_blocking_loads=(ON|OFF) 

(For C/C++ only) The option specifies whether the processor blocks on loads. If not 
set, the default of the current processor is used. 

-LNO:oinvar=(ON|OFF) 

This option controls outer loop hoisting. Default is ON. 

-LNO:opt=(0|1) 

This option controls the LNO optimization level. The options can be one of the 
following: 

0  Disable nearly all loop nest optimizations. 

1  Perform full loop nest transformations. This is the default. 



F – eko man Page

 F-29

-LNO:ou_prod_max=N 

This option indicates that the product of unrolling of the various outer loops in a 
given loop nest is not to exceed N, where N is a positive integer. The default is 16. 

-LNO:outer=(ON|OFF) 

This option enables or disables outer loop fusion. Default is ON. 

-LNO:outer_unroll_max,ou_max=N 

The Outer_unroll_max option indicates that the compiler may unroll outer loops in 
a loop nest by as many as N per loop, but no more. The default is 5. 

-LNO:parallel_overhead=N 

Effective only when specified with -apo, the parallel_overhead option controls the 
auto-parallelizing compiler’s estimate of the overhead (in processor cycles) incurred 
by invoking the parallel version of a loop. When the compiler parallelizes a loop, it 
generates both a serial and a parallel version. If the amount of work performed by 
the loop is small, it may not be beneficial to use the parallel version during execution. 
The set value of parallel_overhead is used in this determination during execution 
time when the number of processors and the iteration count of the loop are taken 
into account. The default value is 4096. Because the optimal value varies across 
systems and programs, this option can be used for parallel performance tuning. 

-LNO:prefetch=(0|1|2|3) 

This option specifies the level of prefetching. 

0  Prefetch disabled. 

1  Prefetch is done only for arrays that are always referenced in each iteration of 
a loop. 

2  Prefetch is done without the above restriction. This is the default. 

3  Most aggressive. 

-LNO:prefetch_ahead=N 

Prefetch N cache line(s) ahead. The default is 2. 

-LNO:prefetch_verbose=(ON|OFF) 

–LNO:prefetch_verbose=ON prints verbose prefetch info to stdout. Default is OFF. 

-LNO:processors=N 

Tells the compiler to assume that the program compiled under -apo will be run on 
a system with the given number of processors. This helps in reducing the amount 
of computation during execution for determining whether to enter the parallel or 
serial versions of loops that are parallelized (see the –LNO:parallel_overhead 
option). The default is 0, which means unknown number of processors. The default 
value of 0 should be used if the program is intended to run in different systems with 
different number of processors. If the option is set to non-zero and the value is 
different from the number of processors, the parallelized code will not perform 
optimally. 



F – eko man Page

 F-30

-LNO:sclrze=(ON|OFF) 

Turn ON or OFF the optimization that replaces an array by a scalar variable. The 
default is ON. 

-LNO:simd=(0|1|2) 

This flag controls inner loop vectorization which makes use of SIMD instructions 
provided by the native processor. 

0  Turn off the vectorizer. 

1  Default. Vectorize only if the compiler can determine that there is no undesirable 
performance impact due to sub-optimal alignment. Vectorize only if 
vectorization does not introduce accuracy problems with floating-point 
operations. 

2  Most aggressive. Vectorize without any constraints. 

-LNO:simd_reduction=(ON|OFF) 

This flag controls whether reduction loops will be vectorized. Default is ON. 

-LNO:simd_verbose=(ON|OFF) 

–LNO:simd_verbose=ON prints verbose vectorizer info to stdout. Default is OFF. 

-LNO:svr_phase1=(ON|OFF) 

This flag controls whether the scalar variable naming phase should be invoked 
before first phase of LNO. The default is ON. 

-LNO:trip_count_assumed_when_unknown,trip_count=N 

This flag is to provide an assumed loop trip-count if it is unknown at compile time. 
LNO uses this information for loop transformations and prefetch, etc. N can be any 
positive integer, and the default value is 1000. 

-LNO:vintr=(0|1|2) 

This flag controls loop vectorization to make use of vector intrinsic routines (Note: 
a vector intrinsic routine is called once to compute a math intrinsic for the entire 
vector). –LNO:vintr=1 is the default. –LNO:vintr=0 turns off the vintr optimization. 
Under –LNO:vintr=2 the compiler will do aggressive optimization for all vector 
intrinsic routines. Note that –LNO:vintr=2 could be unsafe in that some of these 
routines could have accuracy problems. 

-LNO:vintr_verbose=(ON|OFF) 

–LNO:vinter_verbose=ON prints verbose information to stdout on optimizing for 
vector intrinsic routines. Default is OFF. This flag will let you know which loops are 
vectorized to make use of vector intrinsic routines. 

Following are LNO Transformation Options. Loop transformation arguments allow 
control of cache blocking, loop unrolling, and loop interchange. They include the 
following options. 



F – eko man Page

 F-31

-LNO:interchange=(ON|OFF) 

Disable the loop interchange transformation in the loop nest optimizer. Default is ON. 

-LNO:unswitch=(ON|OFF) 

Turn ON or OFF the optimization that performs a simple form of loop unswitching. 
The default is ON. 

-LNO:unswitch_verbose=(ON|OFF) 

–LNO:unswitch_verbose=ON prints verbose info to stdout on unswitching loops. 
Default is OFF. 

-LNO:ou=N 

This option indicates that all outer loops for which unrolling is legal should be unrolled 
by N, where N is a positive integer. The compiler unrolls loops by this amount or 
not at all. 

-LNO:ou_deep=(ON|OFF) 

This option specifies that for loops with 3-deep (or deeper) loop nests, the compiler 
should outer unroll the wind-down loops that result from outer unrolling loops further 
out. This results in large code size, but generates faster code (whenever wind-down 
loop execution costs are important). Default is ON. 

-LNO:ou_further=N 

This option specifies whether or not the compiler performs outer loop unrolling on 
wind-down loops. N must be specified and be an integer. 

Additional unrolling can be disabled by specifying –LNO:ou_further=999999. 
Unrolling is enabled as much as is sensible by specifying –LNO:ou_further=3. 

-LNO:ou_max=N 

This option enables the compiler to unroll as many as N copies per loop, but no more. 

-LNO:pwr2=(ON|OFF) 

(For C/C++ only) This option specifies whether to ignore the leading dimension (set 
this to OFF to ignore). 

Following are LNO Target Cache Memory Options. These arguments allow you to 
describe the target cache memory system. In the following arguments, the numbering 
starts with the cache level closest to the processor and works outward. 

-LNO:assoc1=N, assoc2=N, assoc3=N, assoc4=N 

This option specifies the cache set associativity. For a fully associative cache, such 
as main memory, N should be set to any sufficiently large number, such as 128. 
Specify a positive integer for N; specifying N=0 indicates there is no cache at that 
level. 



F – eko man Page

 F-32

-LNO:cmp1=N, cmp2=N, cmp3=N, cmp4=N, dmp1=N, dmp2=N, dmp3=N, 
dmp4=N 

This option specifies, in processor cycles, the time for a clean miss (cmpx=) or a 
dirty miss (dmpx=) to the next outer level of the memory hierarchy. This number is 
approximate because it depends on a clean or dirty line, read or write miss, etc. 
Specify a positive integer for N; specifying N=0 indicates there is no cache at that 
level. 

-LNO:cs1=N, cs2=N, cs3=N, cs4=N 

This option specifies the cache size. N can be 0 or a positive integer followed by 
one of the following letters: k, K, m, or M. These letters specify the cache size in 
Kbytes or Mbytes. Specifying 0 indicates there is no cache at that level. 

cs1 is the primary cache, cs2 refers to the secondary cache, cs3 refers to memory, 
and cs4 is the disk. Default cache size for each type of cache depends on your 
system. Use –LIST:all_options=ON to see the default cache sizes used during 
compilation. 

-LNO:is_mem1=(ON|OFF), is_mem2=(ON|OFF), is_mem3=(ON|OFF), 
is_mem4=(ON|OFF) 

This option specifies that certain memory hierarchies should be modeled as memory 
not cache. Default is OFF for each option. 

Blocking can be attempted for this memory level, and blocking appropriate for 
memory, rather than cache, is applied. No prefetching is performed, and any 
prefetching options are ignored. If –OPT:is_memx=(ON|OFF) is specified, the 
corresponding assocx=N specification is ignored, any cmpx=N and dmpx=N 
options on the command line are ignored. 

-LNO:ls1=N, ls2=N, ls3=N, ls4=N 

This option specifies the line size in bytes. This is the number of bytes, specified in 
the form of a positive integer number (N), that are moved from the memory hierarchy 
level further out to this level on a miss. Specifying N=0 indicates there is no cache 
at that level. 

Following are LNO TLB Options. These arguments control the TLB, a cache for the 
page table, assumed to be fully associative. The TLB control arguments are the 
following. 

-LNO:ps1=N, ps2=N, ps3=N, ps4=N 

This option specifies the number of bytes in a page, with N as positive integer. The 
default for N depends on your system hardware. 

-LNO:tlb1=N, tlb2=N, tlb3=N, tlb4=N 

This option specifies the number of entries in the TLB for this cache level, with N 
as a positive integer. The default for N depends on your system hardware. 



F – eko man Page

 F-33

-LNO:tlbcmp1=N, tlbcmp2=N, tlbcmp3=N, tlbcmp4=N, tlbdmp1=N, 
tlbdmp2=N, tlbdmp3=N, tbldmp4=N 

This option specifies the number of processor cycles it takes to service a clean TLB 
miss (the tlbcmpx= options) or a dirty TLB miss (the tlbdmpx= options), with N as 
a positive integer. The default for N depends on your system hardware. 

Following are LNO Prefetch Options. These arguments control the prefetch operation. 

-LNO:assume_unknown_trip_count={0,1000} 

This flag is no longer supported. It has been promoted to 
–LNO:trip_count_assumed_when_unknown 

-LNO:pf1=(ON|OFF), pf2=(ON|OFF), pf3=(ON|OFF), pf4=(ON|OFF) 

This options selectively disables or enables prefetching for cache level x, for 
pfx=(ON|OFF) 

-LNO:prefetch=(0|1|2|3) 

This option specifies the levels of prefetching. The options can be one of the 
following: 

0  Prefetch disabled. 

1  Prefetch is done only for arrays that are always referenced in each iteration of 
a loop. 

2  Prefetch is done without the above restriction. This is the default. 

3  Most aggressive. 

-LNO:prefetch_ahead=N 

This option prefetches the specified number of cache lines ahead of the reference. 
Specify a positive integer for N; default is 2. 

-LNO:prefetch_manual=(ON|OFF) 

This option specifies whether manual prefetches (through directives) should be 
respected or ignored. 

OFF Ignores directives for prefetches. 

ON Respects directives for prefetches. This is the default. 

-M  

Run cpp and print list of make dependencies. 

-m32 

Compile for 32-bit ABI, also known as x86 or IA32. See -m64 for defaults. 

-m3dnow 

Enable use of 3DNow instructions. The default is OFF. 



F – eko man Page

 F-34

-m64 

Compile for 64-bit ABI, also known as AMD64, x86_64, or IA32e. On a 32-bit host, 
the default is 32-bit ABI. On a 64-bit host, the default is 64-bit ABI if the target 
platform (-march/-mcpu/-mtune) is 64-bit; otherwise the default is 32-bit. 

-macro-expand 

Enable macro expansion in preprocessed Fortran source files throughout each file. 
Without this option specified, macro expansion is limited to preprocessor # directives 
in files processed by the Fortran preprocessor. When this option is specified, macro 
expansion occurs throughout the source file. 

-march=<cpu-type> 

Compiler will optimize code for the selected cpu type: opteron, athlon, athlon64, 
athlon64fx, barcelona, em64t, pentium4, xeon, core, anyx86, auto. auto means to 
optimize for the platform that the compiler is running on, which the compiler 
determines by reading /proc/cpuinfo. anyx86 means a generic x86 processor. Under 
32-bit ABI, anyx86 is a processor without SSE2/SSE3/3DNow!support; under 64-bit 
ABI it is a processor with SSE2 but without SSE3/3DNow!. Core refers to the Intel 
Core Microarchitecture, used by 64-bit CPUs such as Woodcrest. The default is 
auto. 

-mcmodel=(small|medium) 

Select the code size model to use when generating offsets within object files. Most 
programs will work with –mcmodel=small (using 32–bit pointers), but some need 
–mcmodel=medium (using 32–bit pointers for code and 64–bit pointers for data). 

-mcpu=<cpu-type> 

Behaves like -march. See -march. 

-MD 

Write dependencies to .d output file 

-MDtarget 

Use the following as the target for Make dependencies. 

-MDupdate 

Update the following file with Make dependencies. 

-MF 

Write dependencies to specified output file. 

-MG 

With –M or –MM, treat missing header files as generated files. 

-MM 

Output user dependencies of source file. 

-MMD 

Write user dependencies to .d output file. 



F – eko man Page

 F-35

-mno-sse 

Disable the use of SSE2/SSE3 instructions. SSE2 cannot be disabled under -m64 
and will result in a warning. 

-mno-sse2 

Disable the use of SSE2/SSE3 instructions. SSE2 cannot be disabled under -m64 
and will result in a warning. 

-mno-sse3 

Disable the use of SSE3 instructions. 

-mno-sse4a 

Disable the use of SSE4A instructions. 

-module dir 

Create the ".mod" file corresponding to a "module" statement in the directory dir 
instead of the current working directory. Also, when searching for modules named 
in "use" statements, examine the directory dir before the directories established by 
-Idir options. 

-mp 

Interpret OpenMP directives to explicitly parallelize regions of code for execution 
by multiple threads on a multi–processor system. Most OpenMP 2.0 directives are 
supported by pathf95, pathcc and pathCC. See the PathScale Compiler Suite User 
Guide for more information on these directives. 

-MP 

With –M or –MM, add phony targets for each dependency. 

-MQ 

Same as –MT, but quote characters that are special to Make. 

-msse2 

Enable use of SSE2 instructions. This is the default under both –m64 and –m32. 

-msse3 

Enable use of SSE3 instructions. Default is ON under -march=barcelona, 
–march=em64t, and –march=core. Otherwise, it is OFF by default. 

-msse4a 

Enable use of SSE4A instructions. Default is OFF. 

-mtune=<cpu-type> 

Behaves like -march. See -march. 

-MT 

Change the target of the generated dependency rules. 



F – eko man Page

F-36  

-mx87-precision=(32|64|80) 

Specify the precision of x87 floating-point calculations. The default is 80-bits. 

-nobool 

Do not allow boolean keywords. 

-nocpp 

(For Fortran only) Disable the source preprocessor. 

See the –cpp, –E, and –ftpp options for more information on controlling 
preprocessing. 

-nodefaultlibs 

Do not use standard system libraries when linking. 

-noexpopt 

Do not optimize exponentiation operations. 

-noextend-source 

Restrict Fortran source code lines to columns 1 through 72. 

See the –coln and –extend-source options for more information on controlling line 
length. 

-no-gcc 

(For Fortran only) –no-gcc turns off the __GNUC__ and other predefined 
preprocessor macros.

-nog77mangle 

The PathScale Fortran compiler modifies Fortran symbol names by appending an 
underscore, so a name like "foo" in a source file becomes "foo_" in an object file. 

However, if a name in a Fortran source file contains an underscore, the compiler 
appends a second underscore in the object file, so "foo_bar" becomes "foo_bar__", 
and "baz_" becomes "baz___". 

The –nog77mangle option suppresses the addition of this second underscore. 

-noinline 

Suppress expansion of inline functions. When this option is specified, copies of 
inline functions are emitted as static functions in each compilation unit where they 
are called. If you are using IPA, –IPA:inline=OFF must be specified to suppress 
inlining. 

-no-pathcc 

–no–pathcc turns off the __PATHSCALE__ and other predefined preprocessor 
macros. 

-nostartfiles 

Do not use standard system startup files when linking. 



F – eko man Page

 F-37

-nostdinc 

Direct the system to skip the standard directory, /usr/include, when searching for 
#include files and files named on INCLUDE statements. 

-nostdinc++ 

Do not search for header files in the standard directories specific to C++. 

-nostdlib 

No predefined libraries or startfiles. 

-o outfile 

When this option is used in conjunction with the –c option and a single C source 
file, a relocatable object file named outfile is produced. When specified with the –S 
option, the –o option is ignored. If –o and –c are not specified, a file named a.out 
is produced. If specified, writes the executable file to out_file rather than to a.out. 

-O(0|1|2|3|s) 

Specify the basic level of optimization desired. The options can be one of the 
following: 

0  Turn off all optimizations. 

1  Turn on local optimizations that can be done quickly. 

2  Turn on extensive optimization. This is the default. The optimizations at this 
level are generally conservative, in the sense that they are virtually always 
beneficial, provide improvements commensurate to the compile time spent to 
achieve them, and avoid changes which affect such things as floating point 
accuracy. 

3  Turn on aggressive optimization. The optimizations at this level are 
distinguished from –O2 by their aggressiveness, generally seeking 
highest–quality generated code even if it requires extensive compile time. They 
may include optimizations that are generally beneficial but may hurt 
performance. 

This includes but is not limited to turning on the Loop Nest Optimizer, 
–LNO:opt=1, and setting 
–OPT:ro=1:IEEE_arith=2:Olimit=9000:reorg_common=ON. 

s  Specify that code size is to be given priority in tradeoffs with execution time. 

If no value is specified, 2 is assumed. 

-objectlist 

Read the following file to get a list of files to be linked. 

-Ofast 

Equivalent to –O3 –ipa –OPT:Ofast –fno–math–errno –ffast–math. Use 
optimizations selected to maximize performance. Although the optimizations are 
generally safe, they may affect floating point accuracy due to rearrangement of 



F – eko man Page

F-38  

computations. 
NOTE: –Ofast enables –ipa (inter-procedural analysis), which places limitations on 
how libraries and .o files are built. 

-openmp 

Interpret OpenMP directives to explicitly parallelize regions of code for execution 
by multiple threads on a multi–processor system. Most OpenMP 2.0 directives are 
supported by pathf95, pathcc and pathCC. See the PathScale Compiler Suite User 
Guide for more information on these directives. 

-OPT:... 

This option group controls miscellaneous optimizations. These options override 
defaults based on the main optimization level. 

-OPT:alias=<name> 

Specify the pointer aliasing model to be used. By specifying one or more of the 
following for <name>, the compiler is able to make assumptions throughout the 
compilation: 

Option Action 

typed Assume that the code adheres to the ANSI/ISO C standard which 
states that two pointers of different types cannot point to the same 
location in memory. This is ON by default when –OPT:Ofast is 
specified. 

restrict Specify that distinct pointers are assumed to point to distinct, 
non–overlapping objects. This is OFF by default. 

disjoint Specify that any two pointer expressions are assumed to point to 
distinct, non–overlapping objects. This is OFF by default. 

no_f90_pointer_alias Specify that any two different f90 pointers are assumed to 
point to distinct, non-overlapping objects. This is OFF by default. 

-OPT:align_unsafe=(ON|OFF) 

Instruct the vectorizer (invoked at –O3) to aggressively perform vectorization by 
assuming that array parameters are aligned at 128-bit boundaries. The vectorizer 
will then generate 128-bit aligned load and store instructions, which are faster than 
their unaligned counterparts. If the assumption is incorrect, the aligned memory 
accesses will result in run-time segmentation faults. The default is OFF. 

-OPT:asm_memory=(ON|OFF) 

A debugging option to be used when debugging suspected buggy inline assembly. 
If ON, the compiler assumes each asm has "memory" specified even if it is not there. 
The default is OFF. 

-OPT:bb=N 

This specifies the maximum number of instructions a basic block (straight line 
sequence of instructions with no control flow) can contain in the code generator’s 



F – eko man Page

 F-39

program representation. Increasing this value can improve the quality of 
optimizations that are applied at the basic block level, but can increase compilation 
time in programs that exhibit such large basic blocks. The default is 1300. If 
compilation time is an issue, use a smaller value. 

-OPT:cis=(ON|OFF) 

Convert SIN/COS pairs using the same argument to a single call calculating both 
values at once. The default is ON. 

-OPT:cyg_instr=(0|1|2|3|4) 

Insert instrumentation calls into each function, just after the function entry and just 
before the function returns:

void __cyg_profile_func_entry (void *func_address, void *return_address);

void __cyg_profile_func_exit (void *func_address, void *return_address);

The first argument is the address at the start of the current function. The second 
argument is the return address into the caller of the current function.

Instrumentation is also performed on the bodies of the inlined functions. In this case, 
the original, uninlined function will not be deleted, because its address is passed 
as the first argument to the profiling calls.

The value of -OPT:cyg_instr controls which functions are not instrumented:

0: Don’t instrument any function [default].

1: Don’t instrument functions the GNU front-end selects for inlining.

2: Don’t instrument functions marked "inline" in the source.

3: Don’t instrument functions marked "extern inline" or always_inline.

4: Instrument all functions. Disable deletion of "extern inline" functions. (On 
some codes, this can cause linking and runtime errors.)

The option -finstrument-function is equivalent to -OPT:cyg_instr=3.

Instrumentation will be suppressed for any function assigned the attribute 
no_instrument_function. (In particular, __cyg_profile_func_enter and 
__cyg_profile_func_exit must not be instrumented.)

-OPT:div_split=(ON|OFF) 

Enable or disable changing x/y into x*(recip(y)). This is OFF by default, but enabled 
by –OPT:Ofast or –OPT:IEEE_arithmetic=3. This transformation generates fairly 
accurate code. 

-OPT:early_mp=(ON|OFF) 

This flag has any effect only under –mp compilation. It controls whether the 
transformation of code to run under multiple threads should take place before or 
after the loop nest optimization (LNO) phase in the compilation process. The default 
is OFF, when the transformation occurs after LNO. Some OpenMP programs can 



F – eko man Page

F-40  

yield better performance by enabling –OPT:early_mp because LNO can sometimes 
generate more appropriate loop transformation when working on the multi-threaded 
forms of the loops. If –apo is specified, the transformation of code to run under 
multiple threads can only take place after the LNO phase, in which case this flag is 
ignored. 

-OPT:early_intrinsics=(ON|OFF) 

When ON, this option causes calls to intrinsics to be expanded to inline code early 
in the backend compilation. This may enable more vectorization opportunities if 
vector forms of the expanded operations exist. Default is OFF. 

-OPT:fast_bit_intrinsics=(ON|OFF) 

Setting this to ON will turn off the check for the bit count being within range for 
Fortran intrinsics (like BTEST and ISHFT). The default setting is OFF. 

-OPT:fast_complex=(ON|OFF) 

Setting fast_complex=ON enables fast calculations for values declared to be of the 
type complex. When this is set to ON, complex absolute value (norm) and complex 
division use fast algorithms that overflow for an operand (the divisor, in the case of 
division) that has an absolute value that is larger than the square root of the largest 
representable floating-point number. This would also apply to an underflow for a 
value that is smaller than the square root of the smallest representable floating point 
number. OFF is the default. fast_complex=ON is enabled if –OPT:roundoff=3 is in 
effect. 

-OPT:fast_exp=(ON|OFF) 

This option enables optimization of exponentiation by replacing the runtime call for 
exponentiation by multiplication and/or square root operations for certain 
compile-time constant exponents (integers and halfs). This can produce differently 
rounded results that those from the runtime function. fast_exp is OFF unless –O3 
or –Ofast are specified, or –OPT:roundoff=1 is in effect. 

-OPT:fast_io=(ON|OFF) 

(For C/C++ only) This option enables inlining of printf(), fprintf(), sprintf(),scanf(), 
fscanf(), sscanf(), and printw(). –OPT:fast_io is only in effect when the candidates 
for inlining are marked as intrinsic to the stdio.h and curses.h files. Default is OFF. 

-OPT:fast_math=(ON|OFF) 

Setting this to ON will tell the compiler to use the fast math functions tuned for the 
processor. The affected math functions include log, exp, sin, cos, sincos, expf and 
pow.   The default setting is OFF. It is turned on automatically when -OPT:roundoff 
is at 2 or above. 

-OPT:fast_nint=(ON|OFF) 

This option uses hardware features to implement NINT and ANINT (both single- 
and double-precision versions). Default is OFF but fast_nint=ON is enabled by 
default if –OPT:roundoff=3 is in effect. 



F – eko man Page

 F-41

-OPT:fast_sqrt=(ON|OFF) 

This option calculates square roots using the identity sqrt(x)=x*rsqrt(x), where rsqrt 
is the reciprocal square root operation. This transformation generates fairly accurate 
code.  Default is OFF. (Note that in order for –OPT:fast_sqrt=ON to take effect, 
–OPT:fast_exp must be ON which tells the compiler to emit inlined instructions 
instead of calling the library pow function. Also note that –OPT:fast_sqrt is 
independent of –OPT:rsqrt, which transforms 1/sqrt(x) to rsqrt(x). Unlike –OPT:rsqrt, 
the compiler does not generate extra code to refine the rsqrt result for 
–OPT:fast_sqrt.) 

-OPT:fast_stdlib=(ON|OFF) 

This option controls the generation of calls to faster versions of some standard 
library functions. Default is ON. 

-OPT:fast_trunc=(ON|OFF) 

This option inlines the NINT, ANINT, and AMOD Fortran intrinsics, both single- and 
double-precision versions. Default is OFF. fast_trunc is enabled automatically if 
–OPT:roundoff=1 or greater is in effect. 

-OPT:fold_reassociate=(ON|OFF) 

This option allows optimizations involving reassociation of floating point quantities. 
Default is OFF. fold_reassociate=ON is enabled automatically when 
–OPT:roundoff=2 or greater is in effect. 

-OPT:fold_unsafe_relops=(ON|OFF) 

This option folds relational operators in the presence of possible integer overflow. 
The default is ON for –O3 and OFF otherwise. 

-OPT:fold_unsigned_relops=(ON|OFF) 

This option folds unsigned relational operators in the presence of possible integer 
overflow. Default is OFF. 

-OPT:goto=(ON|OFF) 

Disable or enable the conversion of GOTOs into higher-level structures like FOR 
loops. The default is ON for –O2 or higher. 

-OPT:IEEE_arithmetic,IEEE_arith=(1|2|3) 

Specify the level of conformance to IEEE 754 floating pointing roundoff/overflow 
behavior. Note that –OPT:IEEE_a is a valid abbreviation for this flag. The options 
can be one of the following: 

1 Adhere to IEEE accuracy. This is the default when optimization levels –O0, –O1 
and –O2 are in effect. 

2 May produce inexact result not conforming to IEEE 754. This is the default when 
–O3 is in effect. 

3 All mathematically valid transformations are allowed. 



F – eko man Page

F-42  

-OPT:IEEE_NaN_Inf=(ON|OFF) 

–OPT:IEEE_NaN_inf=ON forces all operations that might have IEEE-754 NaN or 
infinity operands to yield results that conform to ANSI/IEEE 754-1985, the IEEE 
Standard for Binary Floating–point Arithmetic, which describes a standard for NaN 
and inf operands. Default is ON. 

-OPT:IEEE_NaN_inf=OFF 

Produces non-IEEE results for various operations. For example, x=x is treated as 
TRUE without executing a test and x/x is simplified to 1 without dividing. OFF can 
enable many common optimizations that can help performance. 

-OPT:inline_intrinsics=(ON|OFF) 

When OFF, this option turns all Fortran intrinsics that have a library function into a 
call to that function. Default is ON. 

-OPT:madd_height=N

Allow at most N multiply-add instructions that follow one another. If more than N 
multiply-add instructions, break them into chains of size N and sum the resulting 
chains. Available only for the MIPS family of processors (not available for 
x86/x86-64).

-OPT:malloc_algorithm=(0|1) or -OPT:malloc_alg=(0|1) 

Select an alternate malloc algorithm which may improve speed. The compiler adds 
setup code in the C/C++/Fortran "main" function to enable the chosen algorithm. 
The default is generally set to 0. Available only for the x86/x86-64 family of 
processors (not available for MIPS). 

-OPT:Ofast 

Use optimizations selected to maximize performance. Although the optimizations 
are generally safe, they may affect floating point accuracy due to rearrangement of 
computations. This effectively turns on the following optimizations: 
–OPT:ro=2:Olimit=0:div_split=ON:alias=typed. 

-OPT:Olimit=N 

Disable optimization when size of program unit is > N. When N is 0, program unit 
size is ignored and optimization process will not be disabled due to compile time 
limit. The default is 0 when –OPT:Ofast is specified, 9000 when –O3 is specified; 
otherwise the default is 6000. 

-OPT:pad_common=(ON|OFF) 

This option reorganizes common blocks to improve the cache behavior of accesses 
to members of the common block. This may involve adding padding between 
members and/or breaking a common block into a collection of blocks. Default is OFF. 

This option should not be used unless the common block definitions (including 
EQUIVALENCE) are consistent among all sources making up a program. In 
addition, pad_common=ON should not be specified if common blocks are initialized 



F – eko man Page

 F-43

with DATA statements. If specified, pad_common=ON must be used for all of the 
source files in the program. 

-OPT:recip=(ON|OFF) 

This option specifies that faster, but potentially less accurate, reciprocal operations 
should be performed. Default is OFF. 

-OPT:reorg_common=(ON|OFF) 

This option reorganizes common blocks to improve the cache behavior of accesses 
to members of the common block. The reorganization is done only if the compiler 
detects that it is safe to do so. 

reorg_common=ON is enabled when –O3 is in effect and when all of the files that 
reference the common block are compiled at –O3. 

reorg_common=OFF is set when the file that contains the common block is 
compiled at –O2 or below. 

-OPT:roundoff=(0|1|2|3) or –OPT:ro=(0|1|2|3) 

Specify the level of acceptable departure from source language floating–point, 
round–off, and overflow semantics. The options can be one of the following: 

0  Inhibit optimizations that might affect the floating–point behavior. This is the 
default when optimization levels –O0, –O1, and –O2 are in effect. 

1  Allow simple transformations that might cause limited round–off or overflow 
differences. Compounding such transformations could have more extensive 
effects. This is the default when –O3 is in effect. 

2  Allow more extensive transformations, such as the reordering of reduction 
loops. This is the default level when –OPT:Ofast is specified. 

3  Enable any mathematically valid transformation. 

-OPT:rsqrt=(0|1|2) 

This option calculates reciprocal square roots using the rsqrt machine instruction. 
rsqrt is faster but potentially less accurate than the regular square root operation. 
0 means not to use rsqrt. 1 means to use rsqrt followed by instructions to refine the 
result. 2 means to use rsqrt by itself. Default is 1 when -OPT:roundoff=2 or greater, 
else the default is 0. 

-OPT:space=(ON|OFF) 

When ON, this option specifies that 
code size is to be given priority in tradeoffs with execution time in optimization 
choices. Default is OFF. This can be turned on either directly or by compiling with 
-Os. 

-OPT:speculate=(ON|OFF) 

When ON, this option makes the compiler 
convert short-circuiting conditionals to their equivalent non-short-circuited forms 



F – eko man Page

F-44  

whenever possible. This eliminates branches at the expense of more computations. 
Default is OFF. 

-OPT:transform_to_memlib=(ON|OFF) 

When ON, this option enables transformation of loop constructs to calls to memcpy 
or memset. Default is ON. 

-OPT:treeheight=(ON|OFF) 

The value ON enables re–association in expressions to reduce the expressions’ 
tree height. The default is OFF. 

-OPT:unroll_analysis=(ON|OFF) 

The default value of ON lets the compiler analyze the content of the loop to determine 
the best unrolling parameters, instead of strictly adhering to the 
–OPT:unroll_times_max and –OPT:unroll_size parameters. 

–OPT:unroll_analysis=ON can have the negative effect of unrolling loops less than 
the upper limit dictated by the –OPT:unroll_times_max and –OPT:unroll_size 
specifications. 

-OPT:unroll_times_max=N 

Unroll inner loops by a maximum of N. The default is 4. 

-OPT:unroll_size=N 

Set the ceiling of maximum number of instructions for an unrolled inner loop. If N=0, 
the ceiling is disregarded. At -O3 the default is 128, otherwise the default is 40. 

-OPT:wrap_around_unsafe_opt=(ON|OFF)

–OPT:wrap_around_unsafe_opt=OFF disables both the induction variable 
replacement and linear function test replacement optimizations. By default these 
optimizations are enabled at –O3. This option is disabled by default at –O0. 

Setting –OPT:wrap_around_unsafe_opt to OFF can degrade performance. It is 
provided as a diagnostic tool. 

-P 

When used with -E, the source preprocessor will not generate # lines in the output. 

-pad-char-literals 

(For Fortran only) Blank pad all character literal constants that are shorter than the 
size of the default integer type and that are passed as actual arguments. The 
padding extends the length to the size of the default integer type. 

-pathcc 

Define __PATHCC__ and other macros. 

-pedantic-errors 

Issue warnings needed by strict compliance to ANSI C. 



F – eko man Page

 F-45

-pg 

Generate extra code to profile information suitable for the analysis program 
pathprof(1). You must use this option when compiling the source files you want data 
about, and you must also use it when linking. This option turns on application level 
profiling but not library level profiling (see also -profile). See the gcc man pages for 
more information. 

-profile 

Generate extra code to profile information suitable for the analysis program 
pathprof(1). You must use this option when compiling the source files you want data 
about, and you must also use it when linking. This option turns on application level 
and library level profiling (see also -pg). 

-r 

Produce a relocatable .o and stop. 

-rreal_spec 

(For Fortran only) Specify the default kind specification for real values. 

Option Kind value 

–r4 Use REAL(KIND=4) and COMPLEX(KIND=4) for real and complex 
variables, respectively (the default). 

–r8 Use REAL(KIND=8) and COMPLEX(KIND=8) for real and complex 
variables, respectively. 

-S 

Generate an assembly file, file.s, rather than an object file (file.o). 

-shared 

DSO–shared PIC code. 

-shared-libgcc 

Force the use of the shared libgcc library. 

-show 

Print the passes as they execute with their arguments and their input and output files. 

-show-defaults 

Show the processor target settings and the default options in the 
compiler.defaults(5) file. For C/C++, also shows the GNU GCC version compitability. 

-show0 

Show what phases would be called, but don’t invoke anything. 

-showt 

Show time taken by each phase.



F – eko man Page

F-46  

--static 

Same as -static, except --static does not cause the compiler to warn about possible 
confusion with -static-data.

-static 

Suppress dynamic linking at runtime for shared libraries; use static linking instead. 

-static-data 

Statically allocate all local variables. Statically allocated local variables are initialized 
to zero and exist for the life of the program. This option can be useful when porting 
programs from older systems in which all variables are statically allocated. 

When compiling with the –static–data option, global data is allocated as part of the 
compiled object (file.o) file. The total size of any file.o cannot exceed 2 GB, but the 
total size of a program loaded from multiple .o files can exceed 2 GB. An individual 
common block cannot exceed 2 GB, but you can declare multiple common blocks 
each having that size. 

If a parallel loop in a multi-processed program calls an external routine, that external 
routine cannot be compiled with the –static–data option. You can mix static and 
multi-processed object files in the same executable, but a static routine cannot be 
called from within a parallel region. 

-static-libgcc 

Force the use of the static libgcc library. 

-std=c++98 

-std option for g++. 

-std=c89 

-std option for gcc/g++. 

-std=c99 

-std option for gcc/g++. 

-std=c9x 

-std option for gcc/g++. 

-std=gnu++98 

-std option for g++. 

-std=gnu89 

-std option for gcc/g++. 

-std=gnu99 

-std option for gcc/g++. 

-std=gnu9x 

-std option for gcc/g++. 



F – eko man Page

 F-47

-std=iso9899:1990 

-std option for gcc/g++. 

-std=iso9899:199409 

-std option for gcc/g++. 

-std=iso9899:1999 

-std option for gcc/g++. 

-std=iso9899:199x 

-std option for gcc/g++. 

-stdinc 

Predefined include search path list. 

-subverbose 

Produce diagnostic output about the subscription management for the compiler. 

-TENV: ... 

This option specifies the target environment option group. These options control 
the target environment assumed and/or produced by the compiler. 

-TENV:frame_pointer=(ON|OFF) 

Default is ON for C++ and OFF otherwise. Local variables in the function stack 
frame are addressed via the frame pointer register. Ordinarily, the compiler will 
replace this use of frame pointer by addressing local variables via the stack pointer 
when it determines that the stack pointer is fixed throughout the function invocation. 
This frees up the frame pointer for other purposes. Turning this flag on forces the 
compiler to use the frame pointer to address local variables. This flag defaults to 
ON for C++ because the exception handling mechanism relies on the frame pointer 
register being used to address local variables. This flag can be turned OFF for C++ 
for programs that do not throw exceptions. 

-TENV:X=(0..4) 

Specify the level of enabled exceptions that will be assumed for purposes of 
performing speculative code motion (default is level 1 at all optimization levels). In 
general, an instruction will not be speculated (i.e. moved above a branch by the 
optimizer) unless any exceptions it might cause are disabled by this option. 

0  No speculative code motion may be performed. 

1  Safe speculative code motion may be performed, with IEEE–754 underflow 
and inexact exceptions disabled. 

2  All IEEE–754 exceptions are disabled except divide by zero. 

3  All IEEE–754 exceptions are disabled including divide by zero. 

4  Memory exceptions may be disabled or ignored. 



F – eko man Page

F-48  

-TENV:simd_imask=(ON|OFF) 

Default is ON. Turning it OFF unmasks SIMD floating-point invalid-operation 
exception. 

-TENV:simd_dmask=(ON|OFF) 

Default is ON. Turning it OFF unmasks SIMD floating-point denormalized-operand 
exception. 

-TENV:simd_zmask=(ON|OFF) 

Default is ON. Turning it OFF unmasks SIMD floating-point zero-divide exception. 

-TENV:simd_omask=(ON|OFF) 

Default is ON. Turning it OFF unmasks SIMD floating-point overflow exception. 

-TENV:simd_umask=(ON|OFF) 

Default is ON. Turning it OFF unmasks SIMD floating-point underflow exception. 

-TENV:simd_pmask=(ON|OFF) 

Default is ON. Turning it OFF unmasks SIMD floating-point precision exception. 

-traditional 

Attempt to support traditional K&R style C. 

-trapuv 

Trap uninitialized variables. Initialize variables to the value NaN, which helps your 
program crash if it uses uninitialized variables. Affects local scalar and array 
variables and memory returned by alloca(). Does not affect the behavior of globals, 
malloc()ed memory, or Fortran common data. 

-U name 

Remove any initial definition of name. 

-Uvar 

Undefine a variable for the source preprocessor. See the –Dvar option for 
information on defining variables. 

-uvar 

Make the default type of a variable undefined, rather than using default Fortran 90 
rules. 

-v  

Print (on standard error output) the commands executed to run the stages of 
compilation. Also print the version number of the compiler driver program and of 
the preprocessor and the compiler proper. 

-version 

Write compiler release version information to stdout. No input file needs to be 
specified when this option is used. 



F – eko man Page

 F-49

-Wc,arg1[,arg2...] 

Pass the argument(s) argi to the compiler pass c where c is one of [pfibal]. The c 
selects the compiler pass according to the following table: 

Character Name 

p preprocessor 

f front-end 

i inliner 

b backend 

a assembler 

l loader 

Sets of these phase names can be used to select any combination of phases. For 
example, –Wba,–o,foo passes the option –o foo to the b and a phases. 

-Wall 

Enable most warning messages.         

-WB,:  

–WB,<arg> passes <arg> to the backend via ipacom.   

-W[no-]aggregate–return 

(For C/C++ only) –Waggregate–return warns about returning structures, unions or 
arrays. –Wno-aggregate-return will not warn about returning structures, unions, or 
arrays. 

-W[no-]bad-function-cast 

–Wbad–function-cast attempts to support writable-strings K&R style C. 
–Wno–bad–function-cast tells the compiler not to warn when a function call is cast 
to a non-matching type. 

-W[no-]cast-align 

(For C/C++ only) –Wcast–align warns about pointer casts that increase alignment. 
–Wno–cast–align instructs the compiler not warn about pointer casts that increase 
alignment. 

-W[no-]char-subscripts 

(For C/C++ only) –Wchar–subscripts warns about subscripts whose type is ’char’. 
The –Wno–char–subscripts option tells the compiler not warn about subscripts 
whose type is ’char’. 

-W[no-]comment 

(For C/C++ only) –Wcomment warns if nested comments are detected. 
–Wno–comment tell the compiler not to warn if nested comments are detected. 



F – eko man Page

F-50  

-W[no-]conversion 

(For C/C++ only) –Wconversion warns about possibly confusing type conversions. 
–Wno–conversion tells the compiler not to warn about possibly confusing type 
conversions. 

-Wdeclaration-after-statement 

(For C/C++ only) Warn about declarations after statements (pre-C99). 

-W[no-]deprecated 

–Wdeprecated will announce deprecation of compiler features. –Wno–deprecated 
tells the compiler not to announce deprecation of compiler features. 

-W[no-]disabled-optimization 

–Wdisabled-optimization warns if a requested optimization pass is disabled. 
–Wno–disabled-optimization tells the compiler not warn if a requested optimization 
pass is disabled. 

-W[no-]div-by-zero 

–Wdiv-by-zero warns about compile–time integer division by zero. 
–Wno–div-by-zero suppresses warnings about compile-time integer division by 
zero. 

-W[no-]endif-labels 

–Wendif-labels warns if #if or #endif is followed by text. –Wno–endif-labels tells the 
compiler not to warn if #if or #endif is followed by text. 

-W[no-]error 

–Werror makes all warnings into errors. –Wno–error tells the compiler not to make 
all warnings into errors. 

-Werror-implicit-function-declaration 

(For C/C++ only) Give an error when a function is used before being declared. 

-W[no-]float-equal 

–Wfloat-equal warns if floating point values are compared for equality. 
–Wno–float-equal tells the compiler not to warn if floating point values are compared 
for equality. 

-W[no-]format 

(For C/C++ only) –Wformat warns about printf format anomalies. –Wno–format tells 
the compiler not to warn about printf format anomalies. 

-W[no-]format-nonliteral 

(For C/C++ only) With the –Wformat–nonliteral option, and if –Wformat, warn if 
format string is not a string literal. For –Wno–format–nonliteral do not warn if format 
string is not a string literal. 



F – eko man Page

 F-51

-W[no-]format-security 

(For C/C++ only) For –Wformat-security, if –Wformat, warn on potentially insecure 
format functions.–Wfno–format-security, do not warn on potentially insecure format 
functions. 

-W[no-]id-clash 

(For C/C++ only) –Wid-clash warns if two identifiers have the same first <num> 
chars. –Wid-clash tells the compiler not to warn if two identifiers have the same first 
<num> chars. 

-W[no-]implicit 

(For C/C++ only) –Wimplicit warns about implicit declarations of functions or 
variables. –Wno–implicit tells the compiler not to warn about implicit declarations 
of functions or variables. 

-W[no-]implicit-function-declaration 

(For C/C++ only) –Wimplicit-function-declaration warns when a function is used 
before being declared. –Wimplicit-function-declaration tells the compiler not to warn 
when a function is used before being declared. 

-W[no-]implicit-int 

(For C/C++ only) –Wimplicit-int warns when a declaration does not specify a type. 
–Wno-implicit-int tells the compiler not to warn when a declaration does not specify 
a type. 

-W[no-]import 

–Wimport warns about the use of the #import directive. –Wno–import tells the 
compiler not to warn about the use of the #import directive. 

-W[no-]inline 

(For C/C++ only) –Winline warns if a function declared as inline cannot be inlined. 
–Wno–inline tells the compiler not to warn if a function declared as inline cannot be 
inlined. 

-W[no-]larger-than-<number> 

–Wlarger–than– warns if an object is larger than <number> bytes. 
–Wno–larger–than– tells the compiler not to warn if an object is larger than 
<number> bytes. 

-W[no-]main 

(For C/C++ only) –Wmain warns about suspicious declarations of main. –Wno–main 
tells the compiler not warn about suspicious declarations of main. 

-W[no-]missing-braces 

(For C/C++ only) –Wmissing-braces warns about possibly missing braces around 
initializers. –Wno–missing-braces tells the compiler not warn about possibly missing 
braces around initializers. 



F – eko man Page

F-52  

-W[no-]missing-declarations 

(For C/C++ only) –Wmissing-declarations warns about global funcs without 
previous declarations. –Wno–missing-declarations tells the compiler not warn about 
global funcs without previous declarations. 

-W[no-]missing-format-attribute 

(For C/C++ only) For the –Wmissing-format-attribute option, if –Wformat is used, 
warn on candidates for ‘format’ attributes. For –Wno–missing-format-attribute do 
not warn on candidates for ‘format’ attributes. 

-W[no-]missing-noreturn 

(For C/C++ only) –Wmissing–noreturn warns about functions that are candidates 
for ’noreturn’ attribute. –Wno–missing-noreturn tells the compiler not to warn about 
functions that are candidates for ’noreturn’ attribute. 

-W[no-]missing-prototypes 

(For C/C++ only) –Wmissing-prototypes warns about global funcs without 
prototypes. –Wno–missing-prototypes tells the compiler not to warn about global 
funcs without prototypes. 

-W[no-]multichar 

(For C/C++ only) –Wmultichar warns if a multi-character constant is used. 
–Wno–multichar tells the compiler not to warn if a multi-character constant is used. 

-W[no-]nested-externs 

(For C/C++ only) –Wnested-externs warns about externs not at file scope level. 
–Wno–nested-externs tells the compiler not to warn about externs not at file scope 
level. 

-Wno-cast-qual 

(For C/C++ only) –Wcast-qual warns about casts that discard qualifiers. 
–Wno–cast-qual tells the compiler not to warn about casts that discard qualifiers. 

-Wno-deprecated-declarations 

Do not warn about deprecated declarations in code.   

-Wno-format-extra-args 

(For C/C++ only) Do not warn about extra arguments to printf-like functions. 

-Wno-format-y2k 

(For C/C++ only) Do not warn about ‘strftime’ formats that yield two-digit years. 

-Wno-long-long 

(For C/C++ only)  –Wlong-long warns if the long long type is used. –Wno–long–long 
tells the compiler not to warn if the long long type is used. 

-Wno-non-template-friend 

(For C++ only) Do not warn about friend functions declared in templates. 



F – eko man Page

 F-53

-Wno-pmf-conversions 

(For C++ only) Do not warn about converting PMFs to plain pointers. 

-W[no-]non-virtual-dtor 

(For C++ only) –Wnon-virtual-dtor will warn when a class declares a dtor (destructor) 
that should be virtual.–Wno-non-virtual-dtor tells the compiler not to warn when a 
class declares a dtor that should be virtual. 

-Wnonnull 

(For C/C++ only) Warn when passing null to functions requiring non-null pointers. 

-W[no-]old-style-cast 

(For C/C++ only) –Wold-style-cast will warn when a C-style cast to a non-void type 
is used. –Wno-old-style-cast tells the compiler not to warn when a C-style cast to 
a non-void type is used. 

-WOPT: 

Specifies options that affect the global optimizer are enabled at –O2 or above. 

-WOPT:aggstr=N 

This controls the aggressiveness of the strength reduction optimization performed 
by the scalar optimizer, in which induction expressions within a loop are replaced 
by temporaries that are incremented together with the loop variable. When strength 
reduction is overdone, the additional temporaries increase register pressure, 
resulting in excessive register spills that decrease performance. The value specified 
must be a positive integer value, which specifies the maximum number of induction 
expressions that will be strength-reduced across an index variable increment. When 
set at 0, strength reduction is only performed for non-trivial induction expressions. 
The default is 11. 

-WOPT:const_pre=(ON|OFF) 

When OFF, disables the placement optimization for loading constants to registers. 
Default is ON. 

-WOPT:if_conv=(0|1|2) 

Controls the optimization that translates simple IF statements to conditional move 
instructions in the target CPU. Setting to 0 suppresses this optimization. The value 
of 1 designates conservative if-conversion, in which the context around the IF 
statement is used in deciding whether to if-convert. The value of 2 enables 
aggressive if-conversion by causing it to be performed regardless of the context. 
The default is 1. 

-WOPT:ivar_pre=(ON|OFF) 

When OFF, disables the partial redundancy elimination of indirect loads in the 
program. Default is ON. 



F – eko man Page

F-54  

-WOPT:mem_opnds=(ON|OFF) 

Makes the scalar optimizer preserve any memory operands of arithmetic operations 
so as to help bring about subsumption of memory loads into the operands of 
arithmetic operations. Load subsumption is the combining of an arithmetic 
instruction and a memory load into one instruction. Default is OFF. 

-WOPT:retype_expr=(ON|OFF) 

Enables the optimization in the compiler that converts 64-bit address computation 
to use 32-bit arithmetic as much as possible. Default is OFF. 

-WOPT:unroll=(0|1|2) 

Control the unrolling of innermost loops in the scalar optimizer.   Setting to 0 
suppresses this unroller. The default is 1, which makes the scalar optimizer unroll 
only loops that contain IF statements. Setting to 2 makes the unrolling to also apply 
to loop bodies that are straight line code, which duplicates the unrolling done in the 
code generator, and is thus unnecessary. The default setting of 1 makes this 
unrolling complementary to what is done in the code generator. This unrolling is not 
affected by the unrolling options under the –OPT group. 

-WOPT:val=(0|1|2) 

Control the number of times the value-numbering optimization is performed in the 
global optimizer, with the default being 1. This optimization tries to recognize 
expressions that will compute identical runtime values and changes the program to 
avoid re–computing them. 

-W[no-]overloaded-virtual 

(For C++ only) The –Woverloaded-virtual option will warn when a function 
declaration hides virtual functions. –Wno-overloaded-virtual tells the compiler not 
to warn when a function declaration hides virtual functions. 

-W[no-]packed 

(For C/C++ only) –Wpacked warns when packed attribute of a struct has no effect. 
–Wno–packed tells the compiler not to warn when packed attribute of a struct has 
no effect. 

-W[no-]padded 

(For C/C++ only) –Wpadded warns when padding is included in a struct. 
–Wno–padded tells the compiler not to warn when padding is included in a struct. 

-W[no-]parentheses 

(For C/C++ only) –Wparentheses warns about possible missing parentheses. 
–Wno–parentheses tells the compiler not to warn about possible missing 
parentheses. 

-W[no-]pointer-arith 

(For C/C++ only) –Wpointer-arith warns about function pointer arithmetic. 
–Wno–pointer-arith tells the compiler not to warn about function pointer arithmetic. 



F – eko man Page

 F-55

-W[no-]redundant-decls 

(For C/C++ only) –Wredundant–decls warns about multiple declarations of the same 
object. –Wno–redundant–decls tells the compiler not to warn about multiple 
declarations of the same object. 

-W[no-]reorder 

(For C/C++ only) The –Wreorder option warns when reordering member initializers. 
–Wno-reorder tells the compiler not to warn when reordering member initializers. 

-W[no-]return-type 

(For C/C++ only) –Wreturn–type warns when a function return type defaults to int. 
–Wno–return–type tells the compiler not to warn when a function return type defaults 
to int. 

-W[no-]sequence-point 

(For C/C++ only) –Wsequence–point warns about code violating sequence point 
rules. –Wno–sequence–point tells the compiler not to warn about code violating 
sequence point rules. 

-W[no-]shadow 

(For C/C++ only) –Wshadow warns when one local variable shadows another. 
–Wno–shadow tells the compiler not to warn when one local variable shadows 
another. 

-W[no-]sign-compare 

(For C/C++ only) –Wsign–compare warns about signed/unsigned comparisons. 
–Wsign–compare tells the compiler not to warn about signed/unsigned 
comparisons. 

-W[no-]sign-promo 

(For C/C++ only) The –Wsign–promo option warns when overload resolution 
promotes from unsigned to signed. –Wno–sign–promo tells the compiler not to warn 
when overload resolution promotes from unsigned to signed. 

-W[no-]strict-aliasing 

(For C/C++ only) –Wstrict–aliasing warns about code that breaks strict aliasing 
rules. –Wno–strict–aliasing tells the compiler not to warn about code that breaks 
strict aliasing rules. 

-W[no-]strict-prototypes 

(For C/C++ only) –Wstrict–prototypes warns about non–prototyped function decls. 
–Wno–strict–prototypes tells the compiler not to warn about non-prototyped function 
decls. 

-W[no-]switch 

(For C/C++ only) –Wswitch warns when a switch statement is incorrectly indexed 
with an enum. –Wno–switch tells the compiler not to warn when a switch statement 
is incorrectly indexed with an enum. 



F – eko man Page

F-56  

-Wswitch-default 

(For C/C++ only) Warn when a switch statement has no default. 

-Wswitch-enum 

(For C/C++ only) Warn when a switch statement is missing a case for an enum 
member. 

-W[no-]system-headers 

(For C/C++ only) –Wsystem–headers prints warnings for constructs in system 
header files. –Wno–system–headers tells the compiler not to print warnings for 
constructs in system header files. 

-W[no-]synth 

(For C++ only) The –Wsynth option warns about synthesis that is not backward 
compatible with cfront. –Wno–synth tells the compiler not to warn about synthesis 
that is not backwards compatible with cfront. 

-W[no-]traditional 

(For C/C++ only) –Wtraditional warns about constructs whose meanings change in 
ANSI C. –Wno–traditional tells the compiler not to warn about constructs whose 
meanings change in ANSI C. 

-W[no-]trigraphs 

(For C/C++ only) –Wtrigraphs warns when trigraphs are encountered. 
–Wno–trigraphs tells the compiler not to warn when trigraphs are encountered. 

-W[no-]undef 

–Wundef warns if an undefined identifier appears in a #if directive. –Wno–undef 
tells the compiler not to warn if an undefined identifier appears in a #if directive. 

-W[no-]uninitialized 

–Wuninitialized warns about uninitialized automatic variables. Because the analysis 
to find uninitialized variables is performed in the global optimizer invoked at -O2 or 
above, this option has no effect at –O0 and –O1. –Wno–uninitialized tells the 
compiler not to warn about uninitialized automatic variables. 

-W[no-]unknown-pragmas 

–Wunknown–pragmas warns when an unknown #pragma directive is encountered. 
–Wno–unknown–pragmas tells the compiler not to warn when an unknown #pragma 
directive is encountered. 

-W[no-]unreachable-code 

–Wunreachable–code warns about code that will never be executed. 
–Wno–unreachable–code tells the compiler not to warn about code that will never 
be executed.    



F – eko man Page

 F-57

-W[no-]unused 

–Wunused warns when a variable is unused. –Wno–unused tells the compiler not 
to warn when a variable is unused. 

-W[no-]unused-function 

–Wunused–function warns about unused static and inline functions. 
–Wno–unused–function tells the compiler not to warn about unused static and inline 
functions. 

-W[no-]unused-label 

–Wunused–label warns about unused labels. –Wno–unused–label tells the 
compiler not to warn about unused labels. 

-W[no-]unused-parameter 

–Wunused–parameter warns about unused function parameters. 
–Wno–unused–parameter tells the compiler not to warn about unused function 
parameters. 

-W[no-]unused-value 

–Wunused–value warns about statements whose results are not used. 
–Wno–unused–value tells the compiler not to warn about statements whose results 
are not used. 

-W[no-]unused-variable 

–Wunused–variable warns about local and static variables that are not used. 
–Wunused–variable tells the compiler not to warn about local and static variables 
that are not used. 

-W[no-]write-strings 

–Wwrite–strings marks strings as ’const char*’.  –Wno–write–strings tells the 
compiler not to mark strings as ’const char *’. 

-w  

Suppress warning messages. 

-woff 

Turn off named warnings 

-woffall 

Turn off all warnings. 

-woffoptions 

Turn off warnings about options. 

-woffnum 

Specify message numbers to suppress. Examples: 



F – eko man Page

F-58  

• Specifying –woff2026 suppresses message number 2026. 

• Specifying –woff2026–2352 suppresses messages 2026 through 2352. 

• Specifying –woff2026–2352,2400–2500 suppresses messages 2026 through 
2352 and messages 2400 through 2500. 

In the message–level indicator, the message numbers appear after the dash. 

-Xlinker option 

Pass option to the linker. To pass an option that requires an argument, you must 
use -Xlinker twice -- once for the option and once for the argument.

-Yc,path 

Set the path in which to find the associated phase, using the same phase names 
as given in the –W option. The following characters can also be specified: 

I  Specifies where to search for include files 

S  Specifies where to search for startup files (crt*.o) 

L  Specifies where to search for libraries 

-zerouv 

Set uninitialized variables to zero. Affects local scalar and array variables and 
memory returned by alloca(). Does not affect the behavior of globals, malloc()ed 
memory, or Fortran common data. 

file.suffix[90][file.suffix[90]]... 

(Fortran) File or files to be processed, where suffix is either an uppercase F or a 
lowercase f for source files. Files ending in .i, .o, and .s are also accepted. The 
Fortran source files are compiled, and an executable object file is produced. The 
default name of the executable object file is a.out. For example, the following 
command line produces a.out: 

pathf95 myprog.f

By default, several files are created during processing. The  compiler adds a suffix 
to the file portion of the file name and places the files it creates into your working 
directory. See the FILES section for more information on files used and generated. 

files  

(C/C++) Indicates the source files to be compiled or assembled. File suffixes and 
the commands that accept them are as follows: 

Command File Suffix 

pathCC .c, .C, .ii, .c++, .C++, .cc, .cxx, .CXX, .CC, .cpp, and .CPP 

pathcc .c and .i 



F – eko man Page

 F-59

ENVIRONMENT VARIABLES
F90_BOUNDS_CHECK_ABORT 

(Fortran) Set to YES, causes the program to abort on the first bounds check violation. 

F90_DUMP_MAP 

(Fortran) When set to YES, if a segmentation fault occurs, print the current process’s 
memory map before aborting. The memory map describes how the process’s 
address space is allocated. The Fortran runtime will print the address of the 
segmentation fault; you can examine the memory map to see which mapped area 
was nearest to the fault address. This can help distinguish between program bugs 
that involve running out of stack space and null pointer dereferences. The memory 
map is displayed using the same format as the file /proc/self/maps. 

FILENV 

The location of the assign file. See the assign (1) man page for more details. 

FTN_SUPPRESS_REPEATS 

(Fortran) Output multiple values instead of using the repeat factor, used at runtime. 

NLSPATH 

(Fortran) Flags for runtime and compile-time messages. 

PSC_CFLAGS 

(C) Flags to pass to the C compiler, pathcc. 

PSC_COMPILER_DEFAULTS_PATH 

Specifies a path or colon-separated list of paths, designating where the compiler is 
to look for the compiler.defaults(5) file. If the environment variable is set, the path 
/opt/pathscale/etc will not be used. If the file cannot be found, then no defaults file 
will be used, even if one is present in /opt/pathscale/etc. 

PSC_PROBLEM_REPORT_DIR 

Name a directory in which to save problem reports and preprocessed source files, 
if the compiler encounters an internal error. If not specified, the directory used is 
$HOME/.ekopath-bugs. 

PSC_CXXFLAGS 

(C++) Flags to pass to the C++ compiler, pathCC.

PSC_ENABLE_SEGV_HANDLER

(Fortran) The Fortran runtime system provides a signal handler to print helpful 
information if a segmentation violation occurs. If this variable exists, a value of "0" 
disables the handler and any other value enables it. If this variable does not exist, 
then the handler is disabled if the operating system core file limit (see "ulimit(1)") is 
not zero. Core file stack traces often work better without the handler.

PSC_FFLAGS 

(Fortran) Flags to pass to the Fortran compiler, pathf95. 



F – eko man Page

F-60  

PSC_GENFLAGS 

Generic flags passed to all compilers. 

PSC_STACK_LIMIT 

(Fortran) Controls the stack size limit the Fortran runtime attempts to use. This string 
takes the format of a floating-point number, optionally followed by one of the 
characters "k" (for units of 1024 bytes), "m" (for units of 1048576 bytes), "g" (for 
units of 1073741824 bytes), or "%" (to specify a percentage of physical memory). 
If the specifier is following by the string "/cpu", the limit is divided by the number of 
CPUs the system has. For example, a limit of "1.5g" specifies that the Fortran 
runtime will use no more than 1.5 gigabytes (GB) of stack. On a system with 2GB 
of physical memory, a limit of "90%/cpu" will use no more than 0.9GB of stack 
(2/2*0.90). 

PSC_STACK_VERBOSE 

(Fortran) If this environment variable is set, the Fortran runtime will print detailed 
information about how it is computing the stack size limit to use. 

Standard OpenMP Runtime Environment Variables 
These environment variables can be used with OpenMP in either Fortran or C and C++. 

OMP_DYNAMIC 

Enables or disables dynamic adjustment of the number of threads available for 
execution. Default is FALSE, since this mechanism is not supported. 

OMP_NESTED 

Enables or disables nested parallelism. Default is FALSE. 

OMP_SCHEDULE 

This environment variable only applies to DO and PARALLEL_DO directives that 
have schedule type RUNTIME. Type can be STATIC, DYNAMIC, or GUIDED. 
Default is STATIC, with no chunk size specified. 

OMP_NUM_THREADS 

Set the number of threads to use during execution. Default is number of CPUs in 
the machine. 

PathScale OpenMP Environment Variables 
These environment variables can be used with OpenMP in both Fortran and C and C++, 
except as indicated. 

PSC_OMP_AFFINITY 

When TRUE, the operating system’s affinity mechanism (where available) is used 
to assign threads to CPUs, otherwise no affinity assignments are made. The default 
value is TRUE. 



F – eko man Page

 F-61

PSC_OMP_AFFINITY_GLOBAL 

This environment variable controls where thread global ID or local ID values are 
used when assigning threads to CPUs. The default is TRUE so that global ID values 
are used for calculating thread assignments. 

PSC_OMP_AFFINITY_MAP 

This environment variable allows the mapping from threads to CPUs to be fully 
specified by the user. It must be set to a list of CPU identifiers separated by commas. 
The list must contain at least one CPU identifier, and entries in the list beyond the 
maximum number of threads supported by the implementation (256) are ignored. 
Each CPU identifier is a decimal number between 0 and one less than the number 
of CPUs in the system (inclusive). 

The implementation generates a mapping table that enumerates the mapping from 
each thread to CPUs. The CPU identifiers in the PSC_OMP_AFFINITY_MAP list 
are inserted in the mapping table starting at the index for thread 0 and increasing 
upwards. If the list is shorter than the maximum number of threads, then it is simply 
repeated over and over again until there is a mapping for each thread. This repeat 
feature allows short lists to be used to specify repetitive thread mappings for all 
threads. 

PSC_OMP_CPU_STRIDE 

This specifies the striding factor used when mapping threads to CPUs. It takes an 
integer value in the range of 0 to the number of CPUs (inclusive). The default is a 
stride of 1, which causes the threads to be linearly mapped to consecutive CPUs. 
When there are more threads than CPUs the mapping wraps around giving a 
round-robin allocation of threads to CPUs. The behavior for a stride of 0 is the same 
as a stride of 1. 

PSC_OMP_CPU_OFFSET 

This specifies an integer value that is used to offset the CPU assignments for the 
set of threads. It takes an integer value in the range of 0 to the number of CPUs 
(inclusive). When a thread is mapped to a CPU, this offset is added onto the CPU 
number calculated after PSC_OMP_CPU_STRIDE has been applied. If the 
resulting value is greater than the number of CPUs, then the remainder is used from 
the division of this value by the number of CPUs. 

PSC_OMP_GUARD_SIZE 

This environment variable specifies the size in bytes of a guard area that is placed 
below pthread stacks. This guard area is in addition to any guard pages created by 
your O/S. 

PSC_OMP_GUIDED_CHUNK_DIVISOR 

The value of PSC_OMP_GUIDED_CHUNK_DIVISOR is used to divide down the 
chunk size assigned by the guided scheduling algorithm. 



F – eko man Page

F-62  

PSC_OMP_GUIDED_CHUNK_MAX 

This is the maximum chunk size that will be used by the loop scheduler for guided 
scheduling. 

PSC_OMP_LOCK_SPIN 

This chooses the locking mechanism used by critical sections and OMP locks. 

PSC_OMP_SILENT 

If you set PSC_OMP_SILENT to anything, then warning and debug messages from 
the libopenmp library are inhibited. 

PSC_OMP_STACK_SIZE 

(Fortran) Stack size specification follows the syntax in described in the OpenMP in 
Fortran section of PathScale Compiler Suite User Guide. 

PSC_OMP_STATIC_FAIR 

This determines the default static scheduling policy when no chunk size is specified. 
It is discussed in the OpenMP in Fortran section of PathScale Compiler Suite User 
Guide. 

PSC_OMP_THREAD_SPIN 

This takes a numeric value and sets the number of times that the spin loops will 
spin at user-level before falling back to O/S schedule/reschedule mechanisms. 

FILES
The following is a file summary: 

File Type 

a.out Executable output file. 

file.a Object file archive. 

file.B Intermediate file written by the front-end of the compiler. To retain 
this file, specify the –keep option. 

file.c C source file 

file.f or file.F Input Fortran source file in fixed source form. If file ends in .F, the C 
preprocessor is invoked. 

file.f90, file.f95, file.F90, or file.F95
Input Fortran source file in free source form. If file ends in .F90 or 
.F95, the C preprocessor is invoked. 

file.i File generated by the source preprocessor. If using Fortran, and you 
want to retain this file, specify the –P option. 

file.ii Pre-processed C++ source file 

file.l Listing file 



F – eko man Page

 F-63

file.mod Fortran module file. Compiling a module generates both a module 
file, which must be available before compiling "use" statements that 
refer to that module, and an object file, which must be available when 
linking the program. When compiling multiple source files at once, 
you must order them so that each module is compiled before any 
"use" statement which refers to that module. 

file.o Object file. 

file.s Assembly language file. To retain this file, specify the –S option. 

file.so Dynamic Shared Object (DSO) library. 

ii_files Directory that contains .ii files 

/usr/include Standard directory for #include files 

/usr/bin/ld Loader 

/tmp/cc* Temporary files 

COPYRIGHT
Copyright (C) 2007, 2008 PathScale, LLC. All Rights Reserved.

Copyright (C) 2006, 2007 QLogic Corp. All Rights Reserved. 

Copyright (C) 2003, 2004, 2005, 2006 PathScale, Inc. All Rights Reserved. 

SEE ALSO
pathcc(1), pathCC(1), pathf95(1), compiler.defaults(5), pathopt2(1), assign (1), 
explain(1), fsymlist(1), pathscale_intro(7), pathdb(1) 

PathScale Compiler Suite and Subscription Manager Install Guide 

PathScale Compiler Suite User Guide 

PathScale Compiler Suite Support Guide 

PathScale Debugger User Guide 

Online documentation available at http://www.pathscale.com/docs.html 

For the most current information on supported features, please see the Release 
Notes and README files for your current release. 



F – eko man Page

F-64  



G – Glossary

 G-1

Appendix G
Glossary

This section describes common terms that are used in connection with the 
PathScale Compiler Suite.

ABI Describes the interface between program components 
at the binary level. It encompasses details such as 
procedure calling convention (how parameters and 
return values are passed), the mangling (encoding) of 
function and variable names, and the dedication of 
registers for different usages.

affinity Processor affinity is used to specify the preferred 
processor or subset of processors for scheduling a 
thread. An affinity setting might be made in order to bind 
a thread close to a resource and to prevent the kernel 
from rescheduling the thread to another processor 
further away from that resource. Affinity is particularly 
important on NUMA (non-uniform memory 
architectures) since memory access latency and 
bandwidth may vary based on the relative locations of 
the processor and memory.

AMD64 AMD’s 64-bit extensions to Intel’s IA32 (more 
commonly known as "x86") architecture. 

alias An alternate name used for identification, such as for 
naming a field or a file.

aliasing Two variables are said to be "aliased" if they potentially 
are in the same location in memory. This inhibits 
optimization. A common example in the C language is 
two pointers; if the compiler cannot prove that they point 
to different locations, a write through one of the pointers 
will cause the compiler to believe that the second 
pointer’s target has changed. 

assertion A statement in a program that a certain condition is 
expected to be true at this point. If it is not true when 
the program runs, execution stops with an output of 
where the program stopped and what the assertion was 
that failed. 

base Set of standard flags used in SPEC runs with compiler. 



G – Glossary

G-2  

bind To link subroutines in a program. Applications are often 
built with the help of many standard routines or object 
classes from a library, and large programs may be built 
as several program modules. Binding links all the 
pieces together. Symbolic tags are used by the 
programmer in the program to interface to the routine. 
At binding time, the tags are converted into actual 
memory addresses or disk locations. Or (bind) to link 
any element, tag, identifier or mnemonic with another 
so that the two are associated in some manner. See 
alias and linker.

BSS (Block Started by Symbol) Section in a Fortran output 
object module that contains all the reserved but 
unitialized space. It defines its label and the reserved 
space for a given number of words.

CG Code generation; a pass in the PathScale Compiler.
common block A Fortran term for variables shared between 

compilation units (source files). Common blocks are a 
Fortran-77 language feature that creates a group of 
global variables. The PathScale compiler does 
sophisticated padding of common blocks for higher 
performance when the Inter-Procedural Analysis (IPA) 
is in use. 

constant A constant is a variable with a value known at compile 
time.

DSO (dynamic shared object) A library that is linked in at 
runtime. In Linux, the C library (glibc) is commonly 
dynamically linked in. In Windows, such libraries are 
called DLLs. 

DWARF A debugging file format used by many compilers and 
debuggers to support source level debugging. It is 
architecture-independent and applicable to any 
processor or operating system. It is widely used on 
Unix, Linux, and other operating systems, as well in 
stand-alone environments.

EBO The Extended Block Optimization pass in the 
PathScale compiler.

EM64T The Intel ®Extended Memory 64 Technology family of 
chips. 

equivalence A Fortran feature similar to a C/C++ union, in which 
several variables occupy the same are of memory.



G – Glossary

 G-3

executable The file created by the compiler (and linker) whose 
contents can be interpreted and run by a computer. The 
compiler can also create libraries and debugging 
information from the source code.

feedback  A compiler optimization technique in which information 
from a run of the program is then used by the compiler 
to generate better code. ThePathScale Compiler Suite 
uses feedback information for branches, loop counts, 
calls, switch statements, and variable values.

flag A command line option for the compiler, usually an 
option relating to code optimization.

gcov A utility used to determine if a test suite exercises all 
code paths in a program.

IPA (Inter-Procedural Analysis) A sophisticated compiler 
technique in which multiple functions and subroutines 
are optimized together. 

IR (Intermediate Representation) A step in compilation 
where code is linked in an intermediate representation 
so that inter-procedual analysis and optimization can 
take place.

linker A utility program that links a compiled or assembled 
program to a particular environment. Also known as a 
"link editor," the linker unites references between 
program modules and libraries of subroutines. Its 
output is a load module, which is executable code ready 
to run in the computer.

LNO (loop nest optimizer) Performs transformation on a loop 
nest, improves data cache performance, improves 
optimization opportunities in later phases of compiling, 
vectorizes loops by calling vector intrinsics, parallelizes 
loops, computes data dependency information for use 
by code generator, can generate listing of transformed 
code in source form.

MP Multiprocessor.
NUMA Non-uniform memory access is a method of configuring 

a cluster of microprocessors in a multiprocessing 
system so that they can share memory locally, 
improving performance and the ability of the system to 
be expanded. NUMA is used in a symmetric 
multiprocessing (SMP) system.

object_file The intermediate representation of code generated by 
a compiler after it processes a source file.



G – Glossary

G-4  

pathcov The version of gcov that PathScale supports with its 
compilers. Other versions of gcov may not work with 
code generated by the PathScale Compiler Suite, and 
are not supported by PathScale.

pathprof The version of gprof that PathScale supports with its 
compilers. Other versions of gprof may not work with 
code generated by the PathScale Compiler Suite, and 
are not supported by PathScale.

peak Set of optional flags used with compiler in SPEC runs 
to optimize performance.

SIMD (Single Instruction Multiple Data) An i386/AMD64 
instruction set extension which allows the CPU to 
operate on multiple pieces of datacontained in a single, 
wide register. These extensions were in three parts, 
named MMX, SSE, and SSE2.

SMP Symmetric multiprocessing is a "tightly-coupled," 
"share everything" system in which multiple processors 
working under a single operating system access each 
other’s memory over a common bus or "interconnect" 
path.

source_file A software program, usually made up of several text 
files, written in a programming language, that can be 
converted into machine-readable code through the use 
of a compiler.

SPEC (Standard Performance Evaluation Corporation) SPEC 
provides a standardized suite of source code based 
upon existing applications that has already been ported 
to a wide variety of platforms by its membership. The 
benchmarker takes this source code, compiles it for the 
system in question and tunes the system for the best 
results. See http://www.spec.org/ for more information. 

SSE3 Instruction set extension to Intel˘2019s IA_32 and 
IA_64 architecture to speed processing. These new 
instructions are supposed to enable and improve 
hyperthreading rather than floating-point operations.

TLB Translation Look aside Buffer.
vectorization An optimization technique that works on multiple pieces 

of data at once. For example, the PathScale Compiler 
Suite will turn a loop computing the mathematical 
function sin() into a call to the vsin() function, which 
is twice as fast.



G – Glossary

 G-5

WHIRL The intermediate language (IR) used by compilers 
allowing the C, C++, and Fortran front-ends to share a 
common backend. It was developed at Silicon Graphics 
Inc. and is used by the Open64 compilers.

x86_64 The Linux 64-bit application binary interface (ABI).



G – Glossary

G-6  



 Index-1

Index

Symbols
_PSC_ftn_init 3-29
-apo 8-2
-C 3-29
-CG

see Code Generation 7-17
-CLIST 7-44
-cpp 2-6, 3-1, 3-24
-fb-create 7-7
-fb-opt 7-7
-fcoco 3-25
-ff2c-abi 3-39
-ffast-math 7-21
-fixedform 3-1
-FLIST 7-44
-fno-second-underscore 3-38
-fno-underscoring 3-38
-fPIC 2-10
-freeform 3-1
-ftpp 3-1, 3-24, 3-26
-g 3-42, 4-7, 7-1
-i8 3-21
-IPA

max_jobs 7-13
-ipa 3-2, 6-1, 7-3, 7-8
-lm 2-8, 4-7
-LNO

fission 7-14
fusion 7-14
ignore_pragmas 3-22
opt 7-2

-march=anyx86 2-5
-mcmodel=medium 2-9, 10-3
-mcmodel=small 2-9
-mcpu 5-4
-mp 8-2, 8-3, 8-6
-O 3-2, 7-1
-O0 3-2, 7-1
-O1 3-2, 7-1
-O2 3-2, 7-1, 9-1

-O3 3-2, 9-1
-Ofast 4-2, 7-12, 7-14
-OPT:alias 7-19
-OPT:early_mp 8-28
-OPT:fast_math 7-21
-OPT:IEEE_arithmetic 7-20, 7-21
-OPT:Ofast 6-1, 6-3, 7-1
-OPT:reorg_common=OFF 10-3
-OPT:wrap_around_unsafe_opt=OFF 10-5
-p 9-1
-pg 2-11
-r8 3-21
-S 7-29, 7-43
-trapuv 10-1
-v 2-2
-Wuninitialized 10-1
-zerouv 10-1
.F 2-6, 3-1, 3-25, 3-26
.f 2-6, 3-25
.F90 2-6, 3-1, 3-25, 3-26
.f90 2-6, 3-25
.F95 2-6, 3-1, 3-25, 3-26
.f95 2-6, 3-25
.o files 7-3
#define 3-27, 4-5
#pragma 4-7, 8-6
$OMP 8-3

A
ACML 10-4
Alias analysis 7-19
aliasing 3-43
Aliasing rule (Fortran) 3-44
AMD Core Math Library (ACML) 3-40
AMD64 2-1
ANSI 3-1, 5-4, 7-20
Application Binary Interface (ABI) 3-39
apropos pathscale F-1
asm 10-4



PathScale Compiler Suite User Guide
Version 3.2

Index-2  

assign or ASSIGN() 3-35
athlon64 2-4
athlon64fx 2-4
Autoparallelization 8-1, 8-2

B
barcelona 2-4, E-1, F-6, F-34, F-35
Big-endian format 3-35
BIOS

settings for OpenMP 8-28
setup 7-25

BLAS 3-39, 3-40
Bounds checking 3-29
BSS 2-9

C
Cache blocking 7-16
Call graph 7-4
Call-graph profile 9-3
Calls between C and Fortran 3-30
CMOVE 7-23
Code generation 7-17
Code tuning example 9-1
COMMON block 10-3
Compilation

unit 7-3
Compiler

C 4-1
C++ 4-1
invoking the 2-1
options, common 2-8
quick reference 2-1

Compiler defaults file 2-4
compiler.defaults 2-4
Compilers

using the C/C++ 4-2
Compiling on alternate platforms 2-5
COMPLEX 3-39
Conditional complilation sentinels 8-3
core 2-5
cosin() 7-17
Cray pointer 3-21
CRITICAL directive 8-25

D
Debugging

C/C++ 4-7
Fortran 3-42
general information 10-1

Default
optimization level 4-2
options 2-3

Directives
about 3-22
ATOMIC 8-5, B-4
BARRIER 8-5
changing optimization flags with 3-24
CRITICAL 8-5
DO 8-4
FLUSH 8-5
MASTER 8-5
ORDERED 8-5
PARALLEL 8-4
PARALLEL DO 8-5
PARALLEL SECTIONS 8-5
PARALLEL WORKSHARE 8-5
SECTIONS 8-4
SINGLE 8-5
THREADPRIVATE 8-5
WORKSHARE 8-5

Dope vector 3-28, D-1
DWARF 3-42, 4-7, 10-1
DYNAMIC scheduling algorithm 8-30

E
em64t 2-4
Environment variables

Fortran 3-41
OpenMP 8-11, 8-12
pathopt2 7-36
PathScale OpenMP 8-12

Environment variables, C
PSC_CFLAGS A-1

Environment variables, C++
PSC_CXXFLAGS A-1

Environment variables, Fortran
F90_BOUNDS_CHECK_ABORT A-1
F90_DUMP_MAP A-1



PathScale Compiler Suite User

 Index-3

PathScale Compiler Suite User Guide
Version 3.2

FTN_SUPPRESS_REPEATS A-1
NLS_PATH A-1
PSC_FDEBUG_ALLOC A-1
PSC_FFLAGS A-2
PSC_STACK_LIMIT A-2
PSC_STACK_VERBOSE A-2

Environment variables, language-independent
FILENV A-2
PSC_COMPILER_DEFAULTS_PATH A-2
PSC_GENFLAGS A-2
PSC_PROBLEM_REPORT_DIR A-2

Environment variables, OpenMP
OMP_DYNAMIC A-3
OMP_NESTED A-3
OMP_NUM_THREADS A-3
OMP_SCHEDULE A-3

Environment variables, PathScale OpenMP
PSC_OMP_AFFINITY A-3
PSC_OMP_AFFINITY_GLOBAL A-3
PSC_OMP_AFFINITY_MAP A-4
PSC_OMP_CPU_OFFSET A-4
PSC_OMP_CPU_STRIDE A-4
PSC_OMP_GUARD_SIZE A-4
PSC_OMP_GUIDED_CHUNK_DIVISOR 

A-4
PSC_OMP_GUIDED_CHUNK_MAX A-4
PSC_OMP_LOCK_SPIN A-5
PSC_OMP_SILENT A-5
PSC_OMP_STACK_SIZE A-5
PSC_OMP_STATIC_FAIR A-5
PSC_OMP_THREAD_SPIN A-5

EVERY intrinsics family C-2
Execute target 7-32
explain

command 3-27
used with iostat= 3-28

extension, source file name 2-6

F
F90_BOUNDS_CHECK_ABORT 3-29
Fast-math functions 7-21
FDO (Feedback Directed Optimization) 6-2, 

7-18
FFT 3-40

FILENV 3-35
Final object code 7-3
fixed-form 3-2
Fixed-form files 3-1, 3-2
Floating point calculations 10-1
Format

big-endian 3-35
little-endian 3-35

Fortran
accessing common blocks 3-33
compiler commands 3-1
debugging 3-42
dope vector data structure 3-28
file units 3-37
KIND attribute 3-37
modules 3-3
preprocessor 3-1, 3-24, 3-25
runtime libraries 3-29
stack size 3-2, 3-46, 8-11, 8-21, 8-23

Fortran intrinsics
abort C-42, C-47
access C-42
alarm C-42
and C-42
besyn C-42
cdsqrt C-42
chdir C-42
chmod C-43
ctime C-43
date C-43
dbesyn C-43
dcmplx C-43
dconj C-43
derfc C-43
dfloat C-43
dimag C-43
dreal C-43
dtime C-43
erfc C-43
etime C-44
exit C-44
fdate C-44
fget C-44
fgetc C-44
flush C-44



PathScale Compiler Suite User Guide
Version 3.2

Index-4  

fnum C-44
fput C-44
fputc C-44
fseek C-44
fstat C-45
ftell C-45
gerror C-45
getarg C-45
getcwd C-45
getenv C-46
getgid C-46
getlog C-46
getpid C-46
getuid C-46
gmtime C-46
hostnm C-46
iargc C-46
idate C-46
ierrno C-47
imag C-47
imagpart C-47
int2 C-47
int4 C-47
int8 C-47
irand C-47
isatty C-47
itime C-47
kill C-47
link C-47
lnblnk C-47
loc C-47
lshift C-47
lstat C-48
ltime C-48
mclock8 C-48
or C-49
perror C-49
rand C-49
realpart C-49
rename C-49
rshift C-49
secnds C-49
second C-49
setbuf C-49
setlinebuf C-49

short C-49
signal C-50
sleep C-52
srand C-52
stat C-53
symlink C-53
system C-53
time8 C-53
ttynam C-54
umask C-54
unlink C-54
xor C-54
zsqrt C-54

Free-form files 3-2
fsymlist 3-39

G
g77 3-37, 3-38, 3-39, 5-1
gcc 5-1
gcc compatibility wrapper script 5-5
gcc compilers 4-2
gcov 2-11, 2-12
GDB 2-11, 10-1
Global ID 8-13
gmon.out 2-11
gprof 8-29
Group optimizations 7-2
GUIDED scheduling algorithm 8-30

H
Higher optimization levels 10-3

I
Implementation-defined behavior B-1
Induction variable 10-5
Initialize Fortran runtime library 3-29
Inlining 7-4
Inner loop unrolling 7-16
Interleaving 7-25
Intermediate representation (IR) 7-3
Intrinsics

Fortran 5-3



PathScale Compiler Suite User

 Index-5

PathScale Compiler Suite User Guide
Version 3.2

see also Appendix C
iostat 3-28
IPA 7-3

.o files 7-4
ISA target 2-5

L
L2 cache size 7-15
LAPACK 3-40
Large object files, linking or assembly of 10-4
lat_mem_rd tool 7-26
libg2c 10-4
libopenmp 8-11, 8-21, 8-23
Library

ACML 3-39
BLAS 3-39
FFTW 3-39
MPICH 3-39

limit command 3-2
Linker symbol 3-30
linuxthreads 8-23
Little-endian format 3-35
LMBench tool 7-26
Load balancing, using OProfile 8-29
Load balancing, using top 8-29
Local ID 8-13
Loop unrolling 7-16

M
Macros, pre-defined 3-26
Makefile 2-7, 4-2, 5-5, 7-3
man pages 1-2, 2-2, F-1
Math intrinsic functions, vectorizing 7-17
Memory allocation, Fortran 3-44
Memory model 2-9
Memory, non-overlapping 3-43
Mixed code 3-29
Multiple sub-options 7-2
Multiprocessor memory (MP) 7-25

N
Name-mangling 5-4

NaN 10-1
Non-Temporal at All (NTA) 7-17
Non-uniform memory (NUMA) 7-25
NUMA, OpenMP 8-29
Numerical libraries and OpenMP 8-28

O
Object files, generating from .f90 files 2-7
OMP_DYNAMIC 8-12
OMP_NESTED 8-12, 8-30
OMP_NUM_THREADS 8-12
OMP_SCHEDULE 8-12, 8-29
OpenMP 8-1
OProfile 8-29
opteron 2-4
Optimization, basic 6-1
Options

-ansi C-2
-apo 8-2
-byteswapio 3-36
-C 3-29
-c 2-8
-CG:gcm 7-17
-CG:load_exe 7-17
-CG:use_prefetchnta 7-17
-CLIST 7-44
-convert conversion 3-36
-cpp 3-1, 3-24
-dD 4-5
-F 3-36
-fb-create 7-18
-fb-opt 7-18
-fcoco 3-24
-fdecorate 3-30, 3-33
-ff2c 3-39
-ff2c-abi 3-39
-ffast-math 7-21
-fixedform 3-1
-FLIST 7-44
-fno-math-errno 6-2
-fno-second-underscore 3-38
-fno-underscoring 3-38
-fPIC 2-10
-freeform 3-1



PathScale Compiler Suite User Guide
Version 3.2

Index-6  

-ftpp 3-1, 3-24
-g 2-8, 2-11, 3-42, 7-1
-gnu4 4-2
-I 2-4, 2-8
-i8 3-21
-INLINE 7-7
-INLINE:aggressive 7-9
-INLINE:list 7-8
-INLINE:must 7-8
-INLINE:never 7-8
-INLINE:none 7-8
-intrinsic 3-33, 5-4, C-1
-IPA 7-12
-ipa 3-2, 4-2, 6-1, 7-8, 10-4
-IPA:addressing 7-10
-IPA:alias 7-10
-IPA:callee_limit 7-8
-IPA:cgi 7-10
-IPA:common_pad_size 7-9
-IPA:cprop 7-10
-IPA:ctype 7-10
-IPA:dfe 7-10
-IPA:dve 7-10
-IPA:field_reorder 7-10
-IPA:forcedepth 7-9
-IPA:inline 7-8
-IPA:linear 7-9
-IPA:max_jobs 7-13
-IPA:maxdepth 7-9
-IPA:min hotness 7-9
-IPA:multi_clone 7-9
-IPA:node_bloat 7-9
-IPA:plimit 7-8
-IPA:pu_reorder 7-10
-IPA:small_pu 7-8
-IPA:space 7-8
-IPA:split 7-10
-keep 4-5
-L 2-4
-l 2-8
-LANG:formal_deref_unsafe 3-43
-LIST:options 7-16
-lm 2-8, 4-7
-LNO 3-24, 4-2
-LNO:assoc1=n,assoc2=n,assoc3=n,assoc4

=n 7-16
-LNO:blocking 7-16
-LNO:blocking_size 7-16
-LNO:cs1=n,cs2=n,cs3=n,cs4=n 7-15
-LNO:fission 7-15
-LNO:fusion 7-15
-LNO:fusion_peeling_limit 7-15
-LNO:ignore_pragmas 3-22
-LNO:interchange 7-16
-LNO:opt 7-2
-LNO:ou_prod_max 7-16
-LNO:outer_unroll_max,ou_max 7-16
-LNO:outer_unroll,ou=n 7-16
-LNO:parallel_overhead 8-2
-LNO:prefetch 7-2, 7-16
-LNO:prefetch_ahead 7-16
-LNO:simd 7-17
-LNO:simd_verbose 7-17, 7-44
-LNO:vintr 7-17
-LNO:vintr_verbose 7-44
-lstdc++ 4-7
-m32 2-4, 5-4
-m3dnow 2-4
-m64 2-4
-march 2-4
-mcmodel 2-9, 10-3
-mcpu 2-4
-mp 8-2, 8-3, 8-11, 10-5
-msse2 2-4
-msse3 2-4
-mtune 2-4
-no-intrinsic C-2
-noccp 4-3
-O 2-8, 6-1
-o 2-2, 2-8
-O0 3-2
-O1 3-2, 4-4
-O2 3-2, 4-2, 6-1
-O2 -ipa 6-1
-O3 2-8, 3-2, 7-2, 7-12
-O3 -ipa 6-1
-Ofast 6-3, 7-12, 7-14, 7-20
-OPT 3-24
-OPT:alias 3-44, 6-2
-OPT:alias=any 7-20



PathScale Compiler Suite User

 Index-7

PathScale Compiler Suite User Guide
Version 3.2

-OPT:alias=cray_pointer 7-20
-OPT:alias=disjoint 7-20
-OPT:alias=no_parm 3-44
-OPT:alias=no_restrict 7-20
-OPT:alias=restrict 6-2, 7-20
-OPT:alias=typed 6-2, 7-20
-OPT:alias=unnamed 7-20
-OPT:div_split 6-2, 7-21
-OPT:early_mp 8-28
-OPT:fast_complex 7-23
-OPT:fast_exp 7-22
-OPT:fast_math 7-21
-OPT:fast_nint 7-23
-OPT:fast_trunc 7-22
-OPT:fold_reassociate 7-22
-OPT:goto 7-2
-OPT:IEEE_arithmetic 7-22
-OPT:IEEE_arithmetic=N 7-20
-OPT:Ofast 6-3
-OPT:Olimit 6-2, 7-8
-OPT:recip 7-21
-OPT:reorg_common 10-3
-OPT:roundoff 6-2, 7-21, 7-22
-OPT:wrap_around_unsafe_opt 10-5
-p 9-1
-pg 2-8
-r8 3-21
-S 7-43
-show-defaults 2-5
-static 2-9, 5-4, 8-11
-trapuv 10-1
-version 2-2
-Wl 5-1
-WOPT 3-24
-WOPT:fold 3-44
-WOPT:fold=off 3-44
-Wuninitialized 10-1
-y on 3-41
-zerouv 10-1
enabling and disabling features 7-2
group 7-2
IPA:specfile 7-8
LANG:rw_const 3-43
msse4a 2-4
Ofast 10-4

OPT:alias=parm 7-20
OPT:roundoff 6-3
syntax 7-2

Outer loop unrolling 7-16

P
Parallel directives 8-1
Parallelism, controlling 7-13
pathbug tool, debugging with 10-1
pathCC 2-1, 4-2
pathcc 2-1, 4-2
pathcov 2-11, 2-12
pathdb 2-1, 2-11, 3-42, 10-1
pathf95 2-1, 3-1
pathhow-compiled 2-6
pathopt2 7-27, 8-27
pathopt2.xml 7-27, 7-28
pathprof 2-11, 2-12
pathprof command 9-2
Peeling 7-15
pentium4 2-4
POSIX threads library 8-21
Pragma 4-6

options 4-6
pragma

pack 4-6
Prefetch 7-16
Prefetch directives

C*$* PREFETCH 3-22
C*$* PREFETCH_MANUAL 3-23
C*$* PREFETCH_RE 3-23
C*$* PREFETCH_REF_DISABLE 3-23

Preprocessing
options 3-24
pre-defined macros 3-26, 4-4

Preprocessor
C 2-6, 4-3
Fortran 2-6, 3-24

PRNG (Pseudo-random number generator) 
3-29

Process affinity 2-12, 7-25
Processor target 2-4
pthread 8-18, 8-20
pthreads 8-21



PathScale Compiler Suite User Guide
Version 3.2

Index-8  

R
RAND 5-4
REAL 3-39
RES 8-23
Roundoff error 7-22
RSS 8-23

S
sched_setaffinity 7-26
schedutils 2-12, 7-26
Separate compilation 7-3
SIMD 8-28
sin() 7-17
SIZE 8-18, 8-23
Static data 2-9
Static scheduling 8-20
Statically allocated data 10-3
STREAM benchmark example 7-43
STREAM benchmark tool 7-26
STREAM, with OpenMP 8-28
Striding factor 8-16
Sub-options, multiple 7-2
Summary table, pathopt2 7-28
Symmetric multiprocessing (SMP) 7-25

T
taskset 7-26
Thread assignments 8-13
Threads, mapping to CPUs 8-14
Tiling 7-16
time tool 2-11
TRADITIONAL intrinsics family C-2
Translation Lookaside Buffer (TLB) 7-14

U
ulimit command 3-2

V
VIRT 8-18, 8-23
vsin() 7-17

W
Whole program optimization (IPA) 7-3

X
x86 ABI 3-1, 4-1
X86_64 ABI 3-1
x86_64 ABI 3-39, 4-1
x86_64 platform configuration 7-24
xeon 2-4


