-~

Top500.0rg

PERFORMANCE DEVELOPMENT

1€flops
100 Pflops
10Pflops.
1Pfops.

100 Thlops

el

e ®
59.7

.
Py

. ®

1Thops.

100Ghops @

10Glops

1Gllops

1993

1994 1995

1096 1997 1998
ARCHITECTURES
SIMD
Constellations
MPP
SMP
Single
Proc.

1999

2000

001 200

Clusters

2003

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 201 2012

D. J. Bodony (UIUC)

.
-
.
P
.
° ® % o ®
. . 176
o0 ® .
. oo
P
J .
P
.
o
=0
20t 2005 06 207 208 209 00 .m0 W o5 6 00 20
100
Alpha
a
1BM
“ i INTEL
MIPS
P
SPARC
20
Proprietar
Y AMD
1993 1994 1995 1996 1957 1998 1999 200 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
on to MPI

May 20, 2013 2/35

Types of Parallelism

SISD Single Instruction—Single Data

SIMD Single Instruction—Multiple Data
MISD Multiple Instruction-Single Data
MIMD Multiple Instruction—Multiple Data

D. J. Bodony (UIUC)

Introduction to MPI

single core PCs

GPUs

Esoteric

multi-core PCs;

most parallel computers

May 20, 2013 3/35

Types of Parallelism

SISD Single Instruction—Single Data single core PCs
SIMD Single Instruction—Multiple Data GPUs

MISD Multiple Instruction-Single Data Esoteric

MIMD Multiple Instruction—Multiple Data multi-core PCs;

most parallel computers

MIMD = Need to manage tasks and data

= MPI

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 3/35

What is MPI?

MP|— essage assing nterface

@ Developed in early 1990s

@ “...a portable, efficient, and flexible standard for message passing
that will be widely used for writing message passing programs”?

@ Describes a means to pass information between processes

“Blaise, https://computing.llnl.gov/tutorials/mpi

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 4 /35

https://computing.llnl.gov/tutorials/mpi
http://www.mpich.org
http://mvapich.cse.ohio-state.edu/overview/mvapich2
http://www.open-mpi.org

What is MPI?

MP|— essage assing nterface

@ Developed in early 1990s

@ “...a portable, efficient, and flexible standard for message passing
that will be widely used for writing message passing programs' @

@ Describes a means to pass information between processes

“Blaise, https://computing.llnl.gov/tutorials/mpi

MPI implementations

@ Open source

o MPICH (DOE's Argonne) http://www.mpich.org

e MVAPICH (OSU)
http://mvapich.cse.ohio-state.edu/overview/mvapich2

e OpenMPI (community) http://www.open-mpi.org

e Vendor-specific (IBM, SGI, ...)

v

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 4 /35

https://computing.llnl.gov/tutorials/mpi
http://www.mpich.org
http://mvapich.cse.ohio-state.edu/overview/mvapich2
http://www.open-mpi.org

Why Use MPI?

@ Available: on nearly every parallel computer (including single CPU,
multi-core systems)

Flexible: runs equally well on distributed memory, shared memory, and
hybrid machines

Portable: same code runs on different machines without modification®
Fast: vendors can implement (parts of it) in hardware

Scalable: demonstrated to work well on 1,000,000+ processes

Stable: future exascale machines are expected to have MPI
Multi-lingual: MPI available in Fortran 77/90+, C, C++, Python, ...

©0 000

'Usually, unless you and/or the implementation has a bug
D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 5/35

MPl — Explicit Parallelism

Within MPI you, the programmer, must explicitly include all parallelism,

including:

Task decomposition (how the data is to be distributed)
Task granularity (problem size per MPI process)
Message organization & handling (send, receive)

Development of parallel algorithms (e.g., sparse mat-vec multiply)

D. J. Bodony (UIUC)

Introduction to MPI

May 20, 2013

6/

35

MPl — Explicit Parallelism

Within MPI you, the programmer, must explicitly include all parallelism,
including:

@ Task decomposition (how the data is to be distributed)

@ Task granularity (problem size per MPI process)
@ Message organization & handling (send, receive)
°

Development of parallel algorithms (e.g., sparse mat-vec multiply)

Other programming models, like OpenMP, can handle the parallelism at
the compile stage (but usually at a loss of performance or scalability)

Using MPI & OpenMP together has some advantages on emerging
computers (e.g., ~1,000 nodes with ~100s cores each)

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013

6/35

MPI Program Structure in

Program NULL
Include ’mpif.h’
Implicit None
Integer :: rank, numprocs, ierr
Call MPI_Init(ierr)
Call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
Call MPI_Comm_size(MPI_COMM_WORLD, numprocs, ierr)
Write (*,’(2(A,I5),A)’) ’Processor ’, rank, ’ of ’, &
numprocs, ’ ready.’
< do stuff >
Call MPI_Finalize (ierr)
End Program

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 7/35

MPI Program Structure in

#include <stdio.h>

#include <stdlib.h>

#include "mpi.h"

int main (int argc, char *argv[])

{
int ierr, rank, numprocs;
ierr = MPI_Init();
ierr = MPI_Comm_rank (MPI_COMM_WORLD, &rank);
ierr = MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
printf ("Processor %d of %d ready.\n"; rank, numprocs);
< do stuff >
ierr = MPI_Finalize();
return EXIT_SUCCESS;

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 8 /35

Dissecting The Program Structure

Structure of an MPI program #include <stdio.h>

- 5 #include <stdlib.h>
(|n any Ianguage). #include "mpi.h"
int main (int argc, char *argv[])
Q Initialize code in serial e
int ierr, rank, numprocs;
oo [ierr = MPI_Init(Q);
Q Initialize MPI ierr = MPI_Comm_rank (MPI_COMM_WORLD, &rank);
. ierr = MPI_Comm_size (MPI_COMM_WORLD, &numprocs) ;
e Do good Work n para”el printf ("Processor %d of %d ready.\n"; rank, numprocs);
< do stuff >
H H ierr = MPI_Finalize();
o Flnallze MPI return EXIT_SUCCESS;

@ Finalize code in serial

The MPI commands above define the Environment Management routines.

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 9/35

MPI_COMM WORLD and Communicators

MPI Communicators

@ Establish a group of MPI processes
@ MPI_COMM_WORLD is the default and contains all processes
@ Can be created, copied, split, destroyed

@ Serve as an argument for most point-to-point and collective
operations

Communicator datatypes

e Fortran: Integer (e.g., Integer :: mycomm)

e C: MPI_Comm (e.g., MPI_Comm mycomm;)

o C++: (e.g., MPI::Intercomm mycomm;)

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 10 / 35

Communicator Examples :: MPI_COMM_WORLD

30 31 | 32 | 33 | 34 35
24 25 | 26 | 27 28 29
18 1 19 | 20 | 21 22 | 23
12 | 13 | 14 | 15 | 16 17
6 7 8 9 10 | 11
0 1 2 3 4 5

MPI_COMM_WORLD contains all 36 processors, ranks 0 through 35

D. J. Bodony (UIUC) ntroduction to May 20, 2013 11 /35

Communicator Examples :: Other Possibilities

30 | 31 | 32 |33 | 34 | 35
24 256 26 27 28 29
18 1 19 | 20 | 21 | 22 23
12 | 13 | 14 | 15 | 16 | 17
7 8 9 10 | 11
1 2 3 4 5

Each color could be a different communicator

D. J. Bodony (UIUC)

May 20, 2013

12 /35

Communicator Examples :: Other Possibilities

30 31 (32 |33 34 | 35
24 | 256 | 26 27 28 29
18 19 1 20 21 22 | 23
12 13 [14 15 | 16 | 17
6 7 8 9 10 M
0 1 2 3 4 5

Each color (including white) could be a different communicator

D. J. Bodony (UIUC)

May 20, 2013

13/ 35

Interlude #1—~Parallel ‘Hello, World!’

Write a MPI program that prints “Hello, World!" as below:
rank 0: ‘‘Hello, World!’’
rank 1: ‘‘Hello, World!’’

rank <numprocs-1>: ‘‘Hello, World!’’

Do the processes write in ascending order?

You have 30 minutes for this task.

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 14 / 35

Interprocess Communication in MPI

There are two primary types of communication

Point-to-point

30 | 31 |32 |33 | 34 |35 30 |31 3233 34 35
24 | 25 | 26 | 27 | 28 | 29 4 | 5 /26 21,/ 28 29
18 | 19 21 | 22 | 23 18 /1¢/| 26 91 23 L 23
12 | 137114 |15 | 16 | 17 2/ Ay 495116 L17
6 | 7|8 |9 |10 {%;@ 10 111
0|1]2 |3]4]s o2 (3[4 [5

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 15 / 35

Point-to-Point Send/Recv Communication in MPI

Process 13 ‘Send’ Process 27 ‘Recv’
if.(rank == 13) & ::L;(rank == 27) &
Call MPI_Send (sbuf, count, type, dest, & Call MPI_Recv (rbuf, count, type, source, &
tag, comm, ierr) tag, comm, status, ierr)
variable comment variable comment
sbuf sending variable rbuf receiving variable
count sbuf element size count rbuf element size
type sbuf variable type type rbuf variable type
dest process id in comm source process id in comm
tag message tag tag message tag
comm communicator comm communicator
status message status

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 16 / 35

Point-to-Point Sen ecv Communication in MPI

Call MPI_Send (sbuf, count, type, dest, tag, comm, ierr)

Example:
Integer :: N, dest, tag, ierr
Real (KIND=8), Pointer :: sbuf(:)

N = 100

tag = 1

dest = 27

allocate(sbuf (N))

Call MPI_Send (sbuf, N, MPI_REAL8, dest, tag, &
MPI_COMM_WORLD, ierr)

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 17 / 35

Point-to-Point Send/Recv Communication in MPI

Call MPI_Recv (rbuf, count, type, source, tag, comm, status,

Example:

Integer :: N, dest, tag, ierr
Real (KIND=8), Pointer :: rbuf(:)
Integer :: status(MPI_STATUS_SIZE)

N = 100

tag = 1
source = 13
allocate(rbuf (N))

Call MPI_Recv (rbuf, N, MPI_REAL8, source, tag, &
MPI_COMM_WORLD, status, ierr)

Note: status contains source id, tag, and count of the message received
(useful for debugging when sending multiple messages)

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 18 / 35

MPI| Predefined Datatypes?

Fortran C Comment
MPI_CHARACTER MPI_CHAR Character
MPI_INTEGER MPLINT Integer

MPI_REAL MPI_FLOAT Single precision
MPI_REALS — Real (KIND=8) in Fortran

MPI_DOUBLE_PRECISION MPI_DOUBLE

MPI_LOGICAL

MPI_C_BOOL

2There exist many more!
D. J. Bodony (UIUC)

Introduction to MPI

Double precision
Logical

May 20, 2013 19 / 35

Interlude #2a—Send/Recv Example

Write a MPI program that passes one integer from process 0 to process

numprocs-1 through each process (1, 2, ..., numprocs-2) and adds one
to it after each MPI_Recv.

You have 30 minutes for this task.

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 20 / 35

MPI_Send and MPI_Recv Are

When MPI_Send or MPI _Recv are called, that process waits and is blocked
from performing further communication and/or computation.

Advantage: buffers sbuf and rbuf are able to be reused once the call
finishes.

Disadvantage: code waits for matching Send/Recv pair to complete.

MPI provides non-blocking communication routines MPI_Isend and
MPI TIrecv.

Call MPI_Isend (sbuf, count, datatype, dest, tag, comm, &
request, ierr)

Call MPI_Irecv (rbuf, count, datatype, src, tag, comm, &
request, ierr)

Call MPI_Wait (request, status, ierr)

Must watch buffer use closely.

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 21 /35

Non-Blocking Point-to-Point Communication

Communication and computation can overlap—the key to getting good
scalability!

High-Level Example

Call MPI_Isend (sbuf, count, datatype, dest, tag(l), comm, &
request(l), ierr)

Call MPI_Irecv (rbuf, count, datatype, src, tag(2), comm, &
request(2), ierr)

< do work while the Send and Recv complete >

Call MPI_Waitall (2, request, status, ierr)

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 22 /35

Interlude #2b—-Blocking vs. Nonblocking Send/Recv

Compile and run Blaise Barney's mpi_bandwidth. [c,f] and
mpi_bandwidth nonblock. [c,f] to observe the differences between
blocking and non-blocking communications.

file url

mpi-bandwidth.c https://computing.llnl.gov/tutorials/mpi/samples/C/mpi_bandwidth.c
mpi_bandwidth_nonblock.c https://computing.1llnl.gov/tutorials/mpi/samples/C/mpi_bandwidth_nonblock.c
mpi_bandwidth.f https://computing.llnl.gov/tutorials/mpi/samples/Fortran/mpi_bandwidth.f

mpi_bandwidth_nonblock.f https://computing.llnl.gov/tutorials/mpi/samples/Fortran/mpi_bandwidth_nonblock.f

You have 15 minutes for this task.

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 23 /35

https://computing.llnl.gov/tutorials/mpi/samples/C/mpi_bandwidth.c
https://computing.llnl.gov/tutorials/mpi/samples/C/mpi_bandwidth_nonblock.c
https://computing.llnl.gov/tutorials/mpi/samples/Fortran/mpi_bandwidth.f
https://computing.llnl.gov/tutorials/mpi/samples/Fortran/mpi_bandwidth_nonblock.f

Collective Communications

In many circumstances, all processes on a communicator must exchange
data = collective communication.

gather reduction

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 24 / 35

MPI Bcast

‘W) N) N) B, Call MPI_BCAST (buffer, count, datatype, &

\\\\ /Z/// root, comm, ierr)

i) MPI_Bcast (&buffer, count, datatype,
broadcast root, comm) 5

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 25 /35

MPI _Scatter

Call MPI_SCATTER (sbuf, scount, stype, &
‘.) D). D} l) rbuf, rcount, rtype, &

\\\\\ ///// root, comm, ierr)

.IlJ MPI_Scatter (&sbuf, scount, stype,
scatter &rbuf, rcount, rtype,
root, comm);

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 26 / 35

MPI_Gather

: ' Call MPI_GATHER (sbuf, scount, stype, &
m,0,0,0) rbuf, rcount, rtype, &

\\ // root, comm, ierr)

9 MPI_Gather (&sbuf, scount, stype,
gather &rbuf, rcount, rtype,
root, comm) ;

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 27 / 35

MPI _Reduce

Call MPI_REDUCE (sbuf, rbuf, rcount, &
() U WA) rtype, op, root, &

\\\ // comm, ierr)

2 MPI_Reduce (&sbuf, &rbuf, rcount, &
reduction rtype, op, root, &
comm) ;
op description

MPI_MAX maximum
MPI_MIN minimum
MPI_SUM sum
MPI_PROD product

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 28 / 35

‘All" Variants of MPI Collective Routines

MPI_Allgather

Gathers together values from a group of processes and distributes to all

sendcnt = 1;

recvcnt = 1;

MPI_Allgather (sendbuf, sendcnt, MPL_INT,
recvbuf, recvent, MPL_INT,
MPI_COMM_WORLDY);

task 0 task 1 task 2 task 3
1 2 3 4 ~—— sendbuf (before)
1 1 1 1
2 2 2 2
-—— recvhuf (after)
3 3 3 3
4 4 4 4

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 29 / 35

‘All" Variants of MPI Collective Routines

MPI_Allreduce

Perform and associate reduction operation across all
tasks in the group and place the resultin all tasks

count = 1;
MPI_Allreduce(sendbuf, recvbuf, count, MPI_INT, MPI_SUM,
MPI_COMM_WORLD};

task 0 task 1 task 2 task 3
1 2 3 4 ~—— sendbuf (before)
10 10 10 10 | =—— recvhuf {after)

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 30/ 35

‘All" Variants of MPI Collective Routines

MPI_Alltoall

Sends data from all to all processes. Each process
performs a scatter operation.

sendcnt = 1;

recvent = 1;

MPI_Alltoall{sendbuf, sendcnt, MPI_INT,
recvbuf, recvent, MPI_INT,
MPI_COMM_WORLD);

task 0 task 1 task 2 task 3
1 5 9 13
’ s " “ Useful for matrix transpose and
. . " 5 |~ ewreeo) FETs. (NOTE: It's future on
1 o T exascale machines is not clear.)
4 8 12 16
1 2 3 4
5 6 7 8
1 1 1 [| ~—— recvhuf (after)
9 10 11 12
13 14 15 16

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 31/35

Interlude #3—Parallel Inner Product

Develop a parallel code to take the scalar product of two N x 1 vectors X
and ¥, i.e.,, XTy. Choose N > 5N, where N, is the number of MPI
processes. Have the scalar answer stored on all processors.

You have 30 minutes for this task.

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 32 /35

Interlude #4—~Parallel Matrix Transpose

Use MPI_Alltoall to take the transpose of a 10N, x 10N, matrix, where
N, is the number of MPI processes used.

You have 30 minutes for this task.

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 33 /35

Summary

What MPI commands did we learn?

o MPLInit

e MPI_Comm_rank, @ MPI_Scatter, MPI_Bcast
MPI_Comm_size o MPI_Gather, MPI_Reduce

o MPI_Finalize o MPI_Allreduce, MPI_Allscatter

o MPI_Send, MPI_Recv o MPI_Alltoall

o MPI_Isend, MPI_lrecv o MPI_Barrier

o MPI_Waitall

o

These commands will get you very far in your parallel program development.

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 34 /35

Additional Resources

e http://www.mcs.anl.gov/research/projects/mpi/tutorial/index.html
e https://computing.1llnl.gov/tutorials/parallel_comp/

e https://computing.1llnl.gov/tutorials/mpi/

o http://www.mpi-forum.org/

D. J. Bodony (UIU Introduction to MPI 2013 35/

http://www.mcs.anl.gov/research/projects/mpi/tutorial/index.html
https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/mpi/
http://www.mpi-forum.org/

