
Introduction
to MPI

Daniel J. Bodony
Department of Aerospace Engineering
University of Illinois at Urbana-Champaign

May 20, 2013

Top500.org

PERFORMANCE DEVELOPMENT PROJECTED

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

ARCHITECTURES CHIP TECHNOLOGY

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

Alpha

IBM

MIPS

SPARC

Proprietary

HP
INTEL

AMD

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

1 G�op/s

10 G�op/s

100 G�op/s

1 T �op/s

10 T �op/s

100 T �op/s

1 P�op/s

10 P�op/s

100 P�op/s

1 E�op/s

1.17
T �op/s

59.7
G�op/s

0.4
G�op/s

162
P�op/s

17.6
P�op/s

76.5
T �op/s

SIMD

Constellations

MPP

SMP

Single
Proc.

Clusters

SUM

N=1

N=500

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 2 / 35

Types of Parallelism

SISD Single Instruction–Single Data single core PCs
SIMD Single Instruction–Multiple Data GPUs
MISD Multiple Instruction–Single Data Esoteric
MIMD Multiple Instruction–Multiple Data multi-core PCs;

most parallel computers

MIMD =⇒ Need to manage tasks and data

=⇒ MPI

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 3 / 35

Types of Parallelism

SISD Single Instruction–Single Data single core PCs
SIMD Single Instruction–Multiple Data GPUs
MISD Multiple Instruction–Single Data Esoteric
MIMD Multiple Instruction–Multiple Data multi-core PCs;

most parallel computers

MIMD =⇒ Need to manage tasks and data

=⇒ MPI

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 3 / 35

What is MPI?

MPI—Message Passing Interface

Developed in early 1990s

“. . . a portable, efficient, and flexible standard for message passing
that will be widely used for writing message passing programs”a

Describes a means to pass information between processes

aBlaise, https://computing.llnl.gov/tutorials/mpi

MPI implementations

Open source

MPICH (DOE’s Argonne) http://www.mpich.org

MVAPICH (OSU)
http://mvapich.cse.ohio-state.edu/overview/mvapich2

OpenMPI (community) http://www.open-mpi.org

Vendor-specific (IBM, SGI, . . .)

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 4 / 35

https://computing.llnl.gov/tutorials/mpi
http://www.mpich.org
http://mvapich.cse.ohio-state.edu/overview/mvapich2
http://www.open-mpi.org

What is MPI?

MPI—Message Passing Interface

Developed in early 1990s

“. . . a portable, efficient, and flexible standard for message passing
that will be widely used for writing message passing programs”a

Describes a means to pass information between processes

aBlaise, https://computing.llnl.gov/tutorials/mpi

MPI implementations

Open source

MPICH (DOE’s Argonne) http://www.mpich.org

MVAPICH (OSU)
http://mvapich.cse.ohio-state.edu/overview/mvapich2

OpenMPI (community) http://www.open-mpi.org

Vendor-specific (IBM, SGI, . . .)

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 4 / 35

https://computing.llnl.gov/tutorials/mpi
http://www.mpich.org
http://mvapich.cse.ohio-state.edu/overview/mvapich2
http://www.open-mpi.org

Why Use MPI?

1 Available: on nearly every parallel computer (including single CPU,
multi-core systems)

2 Flexible: runs equally well on distributed memory, shared memory, and
hybrid machines

3 Portable: same code runs on different machines without modification1

4 Fast: vendors can implement (parts of it) in hardware

5 Scalable: demonstrated to work well on 1,000,000+ processes

6 Stable: future exascale machines are expected to have MPI

7 Multi-lingual: MPI available in Fortran 77/90+, C, C++, Python, . . .

1Usually, unless you and/or the implementation has a bug
D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 5 / 35

MPI =⇒ Explicit Parallelism

Within MPI you, the programmer, must explicitly include all parallelism,
including:

Task decomposition (how the data is to be distributed)

Task granularity (problem size per MPI process)

Message organization & handling (send, receive)

Development of parallel algorithms (e.g., sparse mat-vec multiply)

Other programming models, like OpenMP, can handle the parallelism at
the compile stage (but usually at a loss of performance or scalability)

Using MPI & OpenMP together has some advantages on emerging
computers (e.g., ∼1,000 nodes with ∼100s cores each)

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 6 / 35

MPI =⇒ Explicit Parallelism

Within MPI you, the programmer, must explicitly include all parallelism,
including:

Task decomposition (how the data is to be distributed)

Task granularity (problem size per MPI process)

Message organization & handling (send, receive)

Development of parallel algorithms (e.g., sparse mat-vec multiply)

Other programming models, like OpenMP, can handle the parallelism at
the compile stage (but usually at a loss of performance or scalability)

Using MPI & OpenMP together has some advantages on emerging
computers (e.g., ∼1,000 nodes with ∼100s cores each)

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 6 / 35

MPI Program Structure in Fortran

Program NULL

Include ’mpif.h’

Implicit None

Integer :: rank, numprocs, ierr

Call MPI_Init(ierr)

Call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)

Call MPI_Comm_size(MPI_COMM_WORLD, numprocs, ierr)

Write (*,’(2(A,I5),A)’) ’Processor ’, rank, ’ of ’, &

numprocs, ’ ready.’

< do stuff >

Call MPI_Finalize (ierr)

End Program

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 7 / 35

MPI Program Structure in C

#include <stdio.h>

#include <stdlib.h>

#include "mpi.h"

int main (int argc, char *argv[])

{
int ierr, rank, numprocs;

ierr = MPI_Init();

ierr = MPI_Comm_rank (MPI_COMM_WORLD, &rank);

ierr = MPI_Comm_size (MPI_COMM_WORLD, &numprocs);

printf("Processor %d of %d ready.\n"; rank, numprocs);

< do stuff >

ierr = MPI_Finalize();

return EXIT_SUCCESS;

}

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 8 / 35

Dissecting The Program Structure

Structure of an MPI program
(in any language):

1 Initialize code in serial

2 Initialize MPI

3 Do good work in parallel

4 Finalize MPI

5 Finalize code in serial

#include <stdio.h>

#include <stdlib.h>

#include "mpi.h"

int main (int argc, char *argv[])

{
int ierr, rank, numprocs;

ierr = MPI_Init();

ierr = MPI_Comm_rank (MPI_COMM_WORLD, &rank);

ierr = MPI_Comm_size (MPI_COMM_WORLD, &numprocs);

printf("Processor %d of %d ready.\n"; rank, numprocs);

< do stuff >

ierr = MPI_Finalize();

return EXIT_SUCCESS;

}

The MPI commands above define the Environment Management routines.

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 9 / 35

MPI COMM WORLD and Communicators

MPI Communicators

Establish a group of MPI processes

MPI COMM WORLD is the default and contains all processes

Can be created, copied, split, destroyed

Serve as an argument for most point-to-point and collective
operations

Communicator datatypes

Fortran: Integer (e.g., Integer :: mycomm)

C: MPI Comm (e.g., MPI_Comm mycomm;)

C++: (e.g., MPI::Intercomm mycomm;)

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 10 / 35

Communicator Examples :: MPI COMM WORLD

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

MPI COMM WORLD contains all 36 processors, ranks 0 through 35

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 11 / 35

Communicator Examples :: Other Possibilities

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

Each color could be a different communicator

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 12 / 35

Communicator Examples :: Other Possibilities

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

Each color (including white) could be a different communicator

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 13 / 35

Interlude #1—Parallel ‘Hello, World!’

Write a MPI program that prints “Hello, World!” as below:
rank 0: ‘‘Hello, World!’’

rank 1: ‘‘Hello, World!’’

. . .
rank <numprocs-1>: ‘‘Hello, World!’’

Do the processes write in ascending order?

You have 30 minutes for this task.

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 14 / 35

Interprocess Communication in MPI

There are two primary types of communication

Point-to-point

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

Collective

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 15 / 35

Point-to-Point Send/Recv Communication in MPI

Process 13 ‘Send’
...

if (rank == 13) &

Call MPI_Send (sbuf, count, type, dest, &

tag, comm, ierr)

...

variable comment
sbuf sending variable
count sbuf element size
type sbuf variable type
dest process id in comm
tag message tag
comm communicator

Process 27 ‘Recv’
...

if (rank == 27) &

Call MPI_Recv (rbuf, count, type, source, &

tag, comm, status, ierr)

...

variable comment
rbuf receiving variable
count rbuf element size
type rbuf variable type
source process id in comm
tag message tag
comm communicator
status message status

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 16 / 35

Point-to-Point Send/Recv Communication in MPI

Call MPI_Send (sbuf, count, type, dest, tag, comm, ierr)

Example:

Integer :: N, dest, tag, ierr

Real(KIND=8), Pointer :: sbuf(:)

...

N = 100

tag = 1

dest = 27

allocate(sbuf(N))

Call MPI_Send (sbuf, N, MPI_REAL8, dest, tag, &

MPI_COMM_WORLD, ierr)

...

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 17 / 35

Point-to-Point Send/Recv Communication in MPI

Call MPI_Recv (rbuf, count, type, source, tag, comm, status, ierr)

Example:

Integer :: N, dest, tag, ierr

Real(KIND=8), Pointer :: rbuf(:)

Integer :: status(MPI_STATUS_SIZE)

...

N = 100

tag = 1

source = 13

allocate(rbuf(N))

Call MPI_Recv (rbuf, N, MPI_REAL8, source, tag, &

MPI_COMM_WORLD, status, ierr)

...

Note: status contains source id, tag, and count of the message received
(useful for debugging when sending multiple messages)

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 18 / 35

MPI Predefined Datatypes2

Fortran C Comment
MPI CHARACTER MPI CHAR Character
MPI INTEGER MPI INT Integer
MPI REAL MPI FLOAT Single precision
MPI REAL8 — Real(KIND=8) in Fortran
MPI DOUBLE PRECISION MPI DOUBLE Double precision
MPI LOGICAL MPI C BOOL Logical
. . .

2There exist many more!
D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 19 / 35

Interlude #2a—Send/Recv Example

Write a MPI program that passes one integer from process 0 to process
numprocs-1 through each process (1, 2, . . . , numprocs-2) and adds one
to it after each MPI Recv.

You have 30 minutes for this task.

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 20 / 35

MPI Send and MPI Recv Are Blocking

When MPI Send or MPI Recv are called, that process waits and is blocked
from performing further communication and/or computation.

Advantage: buffers sbuf and rbuf are able to be reused once the call
finishes.

Disadvantage: code waits for matching Send/Recv pair to complete.

MPI provides non-blocking communication routines MPI Isend and
MPI Irecv.

Call MPI_Isend (sbuf, count, datatype, dest, tag, comm, &

request, ierr)

Call MPI_Irecv (rbuf, count, datatype, src, tag, comm, &

request, ierr)

Call MPI_Wait (request, status, ierr)

Must watch buffer use closely.
D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 21 / 35

Non-Blocking Point-to-Point Communication

Communication and computation can overlap—the key to getting good
scalability!

High-Level Example
...

Call MPI_Isend (sbuf, count, datatype, dest, tag(1), comm, &

request(1), ierr)

Call MPI_Irecv (rbuf, count, datatype, src, tag(2), comm, &

request(2), ierr)

< do work while the Send and Recv complete >

Call MPI_Waitall (2, request, status, ierr)

...

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 22 / 35

Interlude #2b—Blocking vs. Nonblocking Send/Recv

Compile and run Blaise Barney’s mpi bandwidth.[c,f] and
mpi bandwidth nonblock.[c,f] to observe the differences between
blocking and non-blocking communications.

file url
mpi bandwidth.c https://computing.llnl.gov/tutorials/mpi/samples/C/mpi_bandwidth.c

mpi bandwidth nonblock.c https://computing.llnl.gov/tutorials/mpi/samples/C/mpi_bandwidth_nonblock.c

mpi bandwidth.f https://computing.llnl.gov/tutorials/mpi/samples/Fortran/mpi_bandwidth.f

mpi bandwidth nonblock.f https://computing.llnl.gov/tutorials/mpi/samples/Fortran/mpi_bandwidth_nonblock.f

You have 15 minutes for this task.

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 23 / 35

https://computing.llnl.gov/tutorials/mpi/samples/C/mpi_bandwidth.c
https://computing.llnl.gov/tutorials/mpi/samples/C/mpi_bandwidth_nonblock.c
https://computing.llnl.gov/tutorials/mpi/samples/Fortran/mpi_bandwidth.f
https://computing.llnl.gov/tutorials/mpi/samples/Fortran/mpi_bandwidth_nonblock.f

Collective Communications

In many circumstances, all processes on a communicator must exchange
data =⇒ collective communication.

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 24 / 35

MPI Bcast

Call MPI_BCAST (buffer, count, datatype, &

root, comm, ierr)

MPI_Bcast (&buffer, count, datatype,

root, comm);

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 25 / 35

MPI Scatter

Call MPI_SCATTER (sbuf, scount, stype, &

rbuf, rcount, rtype, &

root, comm, ierr)

MPI_Scatter (&sbuf, scount, stype,

&rbuf, rcount, rtype,

root, comm);

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 26 / 35

MPI Gather

Call MPI_GATHER (sbuf, scount, stype, &

rbuf, rcount, rtype, &

root, comm, ierr)

MPI_Gather (&sbuf, scount, stype,

&rbuf, rcount, rtype,

root, comm);

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 27 / 35

MPI Reduce

Call MPI_REDUCE (sbuf, rbuf, rcount, &

rtype, op, root, &

comm, ierr)

MPI_Reduce (&sbuf, &rbuf, rcount, &

rtype, op, root, &

comm);

op description
MPI MAX maximum
MPI MIN minimum
MPI SUM sum
MPI PROD product
...

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 28 / 35

‘All’ Variants of MPI Collective Routines

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 29 / 35

‘All’ Variants of MPI Collective Routines

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 30 / 35

‘All’ Variants of MPI Collective Routines

Useful for matrix transpose and
FFTs. (NOTE: It’s future on
exascale machines is not clear.)

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 31 / 35

Interlude #3—Parallel Inner Product

Develop a parallel code to take the scalar product of two N × 1 vectors ~x
and ~y , i.e., ~xT~y . Choose N > 5Np, where Np is the number of MPI
processes. Have the scalar answer stored on all processors.

You have 30 minutes for this task.

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 32 / 35

Interlude #4—Parallel Matrix Transpose

Use MPI Alltoall to take the transpose of a 10Np × 10Np matrix, where
Np is the number of MPI processes used.

You have 30 minutes for this task.

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 33 / 35

Summary

What MPI commands did we learn?

MPI Init

MPI Comm rank,
MPI Comm size

MPI Finalize

MPI Send, MPI Recv

MPI Isend, MPI Irecv

MPI Waitall

MPI Scatter, MPI Bcast

MPI Gather, MPI Reduce

MPI Allreduce, MPI Allscatter

MPI Alltoall

MPI Barrier

These commands will get you very far in your parallel program development.

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 34 / 35

Additional Resources

1 http://www.mcs.anl.gov/research/projects/mpi/tutorial/index.html

2 https://computing.llnl.gov/tutorials/parallel_comp/

3 https://computing.llnl.gov/tutorials/mpi/

4 http://www.mpi-forum.org/

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013 35 / 35

http://www.mcs.anl.gov/research/projects/mpi/tutorial/index.html
https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/mpi/
http://www.mpi-forum.org/

