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Types of Parallelism

SISD  Single Instruction—Single Data

SIMD  Single Instruction—Multiple Data
MISD  Multiple Instruction-Single Data
MIMD  Multiple Instruction—Multiple Data

D. J. Bodony (UIUC)

Introduction to MPI
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Types of Parallelism

SISD  Single Instruction—Single Data single core PCs
SIMD  Single Instruction—Multiple Data GPUs

MISD  Multiple Instruction-Single Data Esoteric

MIMD  Multiple Instruction—Multiple Data multi-core PCs;

most parallel computers

MIMD = Need to manage tasks and data

= MPI
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What is MPI?

MP|— essage assing nterface

@ Developed in early 1990s

@ “...a portable, efficient, and flexible standard for message passing
that will be widely used for writing message passing programs”?

@ Describes a means to pass information between processes

“Blaise, https://computing.llnl.gov/tutorials/mpi
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What is MPI?

MP|— essage assing nterface

@ Developed in early 1990s

@ “...a portable, efficient, and flexible standard for message passing
that will be widely used for writing message passing programs' @

@ Describes a means to pass information between processes

“Blaise, https://computing.llnl.gov/tutorials/mpi

MPI implementations

@ Open source

o MPICH (DOE's Argonne) http://www.mpich.org

e MVAPICH (OSU)
http://mvapich.cse.ohio-state.edu/overview/mvapich2

e OpenMPI (community) http://www.open-mpi.org

e Vendor-specific (IBM, SGI, ...)

v
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Why Use MPI?

@ Available: on nearly every parallel computer (including single CPU,
multi-core systems)

Flexible: runs equally well on distributed memory, shared memory, and
hybrid machines

Portable: same code runs on different machines without modification®
Fast: vendors can implement (parts of it) in hardware

Scalable: demonstrated to work well on 1,000,000+ processes

Stable: future exascale machines are expected to have MPI
Multi-lingual: MPI available in Fortran 77/90+, C, C++, Python, ...

©0 000

'Usually, unless you and/or the implementation has a bug
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MPl — Explicit Parallelism

Within MPI you, the programmer, must explicitly include all parallelism,

including:

Task decomposition (how the data is to be distributed)
Task granularity (problem size per MPI process)
Message organization & handling (send, receive)

Development of parallel algorithms (e.g., sparse mat-vec multiply)

D. J. Bodony (UIUC)
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MPl — Explicit Parallelism

Within MPI you, the programmer, must explicitly include all parallelism,
including:

@ Task decomposition (how the data is to be distributed)

@ Task granularity (problem size per MPI process)
@ Message organization & handling (send, receive)
°

Development of parallel algorithms (e.g., sparse mat-vec multiply)

Other programming models, like OpenMP, can handle the parallelism at
the compile stage (but usually at a loss of performance or scalability)

Using MPI & OpenMP together has some advantages on emerging
computers (e.g., ~1,000 nodes with ~100s cores each)

D. J. Bodony (UIUC) Introduction to MPI May 20, 2013
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MPI Program Structure in

Program NULL
Include ’mpif.h’
Implicit None
Integer :: rank, numprocs, ierr
Call MPI_Init(ierr)
Call MPI_Comm_rank( MPI_COMM_WORLD, rank, ierr )
Call MPI_Comm_size( MPI_COMM_WORLD, numprocs, ierr )
Write (*,’(2(A,I5),A)’) ’Processor ’, rank, ’ of ’, &
numprocs, ’ ready.’
< do stuff >
Call MPI_Finalize ( ierr )
End Program
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MPI Program Structure in

#include <stdio.h>

#include <stdlib.h>

#include "mpi.h"

int main (int argc, char *argv[])

{
int ierr, rank, numprocs;
ierr = MPI_Init();
ierr = MPI_Comm_rank ( MPI_COMM_WORLD, &rank );
ierr = MPI_Comm_size ( MPI_COMM_WORLD, &numprocs );
printf ("Processor %d of %d ready.\n"; rank, numprocs);
< do stuff >
ierr = MPI_Finalize();
return EXIT_SUCCESS;
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Dissecting The Program Structure

Structure of an MPI program #include <stdio.h>

- 5 #include <stdlib.h>
(|n any Ianguage). #include "mpi.h"
int main (int argc, char *argv[])
Q Initialize code in serial e
int ierr, rank, numprocs;
oo [ ierr = MPI_Init(Q);
Q Initialize MPI ierr = MPI_Comm_rank ( MPI_COMM_WORLD, &rank );
. ierr = MPI_Comm_size ( MPI_COMM_WORLD, &numprocs ) ;
e Do good Work n para”el printf ("Processor %d of %d ready.\n"; rank, numprocs);
< do stuff >
H H ierr = MPI_Finalize();
o Flnallze MPI return EXIT_SUCCESS;

@ Finalize code in serial

The MPI commands above define the Environment Management routines.
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MPI_COMM WORLD and Communicators

MPI Communicators

@ Establish a group of MPI processes
@ MPI_COMM_WORLD is the default and contains all processes
@ Can be created, copied, split, destroyed

@ Serve as an argument for most point-to-point and collective
operations

Communicator datatypes

e Fortran: Integer (e.g., Integer :: mycomm)

e C: MPI_Comm (e.g., MPI_Comm mycomm;)

o C++: (e.g., MPI::Intercomm mycomm;)
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Communicator Examples :: MPI_COMM_WORLD

30 31 | 32 | 33 | 34 35
24 25 | 26 | 27 28 29
18 1 19 | 20 | 21 22 | 23
12 | 13 | 14 | 15 | 16 17
6 7 8 9 10 | 11
0 1 2 3 4 5

MPI_COMM_WORLD contains all 36 processors, ranks 0 through 35
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Communicator Examples :: Other Possibilities

30 | 31 | 32 |33 | 34 | 35
24 256 26 27 28 29
18 1 19 | 20 | 21 | 22 23
12 | 13 | 14 | 15 | 16 | 17
7 8 9 10 | 11
1 2 3 4 5

Each color could be a different communicator

D. J. Bodony (UIUC)
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Communicator Examples :: Other Possibilities

30 31 (32 |33 34 | 35
24 | 256 | 26 27 28 29
18 19 1 20 21 22 | 23
12 13 [ 14 15 | 16 | 17
6 7 8 9 10 M
0 1 2 3 4 5

Each color (including white) could be a different communicator

D. J. Bodony (UIUC)
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Interlude #1—~Parallel ‘Hello, World!’

Write a MPI program that prints “Hello, World!" as below:
rank 0: ‘‘Hello, World!’’
rank 1: ‘‘Hello, World!’’

rank <numprocs-1>: ‘‘Hello, World!’’

Do the processes write in ascending order?

You have 30 minutes for this task.
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Interprocess Communication in MPI

There are two primary types of communication

Point-to-point

30 | 31 |32 |33 | 34 |35 30 |31 3233 34 35
24 | 25 | 26 | 27 | 28 | 29 4 | 5 /26 21,/ 28 29
18 | 19 21 | 22 | 23 18 /1¢/| 26 91 23 L 23
12 | 137114 |15 | 16 | 17 2/ Ay 495116 L17
6 | 7|8 |9 |10 {%;@ 10 111
0|1 ]2 |3 ]4]s o2 (3[4 [5
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Point-to-Point Send/Recv Communication in MPI

Process 13 ‘Send’ Process 27 ‘Recv’
if.(rank == 13) & ::L;(rank == 27) &
Call MPI_Send (sbuf, count, type, dest, & Call MPI_Recv (rbuf, count, type, source, &
tag, comm, ierr) tag, comm, status, ierr)
variable comment variable comment
sbuf sending variable rbuf receiving variable
count sbuf element size count rbuf element size
type sbuf variable type type rbuf variable type
dest process id in comm source process id in comm
tag message tag tag message tag
comm communicator comm communicator
status message status
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Point-to-Point Sen ecv Communication in MPI

Call MPI_Send (sbuf, count, type, dest, tag, comm, ierr)

Example:
Integer :: N, dest, tag, ierr
Real (KIND=8), Pointer :: sbuf(:)

N = 100

tag = 1

dest = 27

allocate(sbuf (N))

Call MPI_Send (sbuf, N, MPI_REAL8, dest, tag, &
MPI_COMM_WORLD, ierr)
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Point-to-Point Send/Recv Communication in MPI

Call MPI_Recv (rbuf, count, type, source, tag, comm, status,

Example:

Integer :: N, dest, tag, ierr
Real (KIND=8), Pointer :: rbuf(:)
Integer :: status(MPI_STATUS_SIZE)

N = 100

tag = 1
source = 13
allocate(rbuf (N))

Call MPI_Recv (rbuf, N, MPI_REAL8, source, tag, &
MPI_COMM_WORLD, status, ierr)

Note: status contains source id, tag, and count of the message received
(useful for debugging when sending multiple messages)
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MPI| Predefined Datatypes?

Fortran C Comment
MPI_CHARACTER MPI_CHAR Character
MPI_INTEGER MPLINT Integer

MPI_REAL MPI_FLOAT Single precision
MPI_REALS — Real (KIND=8) in Fortran

MPI_DOUBLE_PRECISION MPI_DOUBLE

MPI_LOGICAL

MPI_C_BOOL

2There exist many more!
D. J. Bodony (UIUC)
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Double precision
Logical
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Interlude #2a—Send/Recv Example

Write a MPI program that passes one integer from process 0 to process

numprocs-1 through each process (1, 2, ..., numprocs-2) and adds one
to it after each MPI_Recv.

You have 30 minutes for this task.
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MPI_Send and MPI_Recv Are

When MPI_Send or MPI _Recv are called, that process waits and is blocked
from performing further communication and/or computation.

Advantage: buffers sbuf and rbuf are able to be reused once the call
finishes.

Disadvantage: code waits for matching Send/Recv pair to complete.

MPI provides non-blocking communication routines MPI_Isend and
MPI TIrecv.

Call MPI_Isend (sbuf, count, datatype, dest, tag, comm, &
request, ierr)

Call MPI_Irecv (rbuf, count, datatype, src, tag, comm, &
request, ierr)

Call MPI_Wait (request, status, ierr)

Must watch buffer use closely.
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Non-Blocking Point-to-Point Communication

Communication and computation can overlap—the key to getting good
scalability!

High-Level Example

Call MPI_Isend (sbuf, count, datatype, dest, tag(l), comm, &
request(l), ierr)

Call MPI_Irecv (rbuf, count, datatype, src, tag(2), comm, &
request(2), ierr)

< do work while the Send and Recv complete >

Call MPI_Waitall (2, request, status, ierr)
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Interlude #2b—-Blocking vs. Nonblocking Send/Recv

Compile and run Blaise Barney's mpi_bandwidth. [c,f] and
mpi_bandwidth nonblock. [c,f] to observe the differences between
blocking and non-blocking communications.

file url

mpi-bandwidth.c https://computing.llnl.gov/tutorials/mpi/samples/C/mpi_bandwidth.c
mpi_bandwidth_nonblock.c https://computing.1llnl.gov/tutorials/mpi/samples/C/mpi_bandwidth_nonblock.c
mpi_bandwidth.f https://computing.llnl.gov/tutorials/mpi/samples/Fortran/mpi_bandwidth.f

mpi_bandwidth_nonblock.f https://computing.llnl.gov/tutorials/mpi/samples/Fortran/mpi_bandwidth_nonblock.f

You have 15 minutes for this task.
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Collective Communications

In many circumstances, all processes on a communicator must exchange
data = collective communication.

gather reduction
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MPI Bcast

‘W) N ) N ) B, Call MPI_BCAST (buffer, count, datatype, &

\\\\ /Z/// root, comm, ierr)

i ) MPI_Bcast (&buffer, count, datatype,
broadcast root, comm) 5
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MPI _Scatter

Call MPI_SCATTER (sbuf, scount, stype, &
‘.) D). D} l) rbuf, rcount, rtype, &

\\\\\ ///// root, comm, ierr)

.IlJ MPI_Scatter (&sbuf, scount, stype,
scatter &rbuf, rcount, rtype,
root, comm);
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MPI_Gather

: ' Call MPI_GATHER (sbuf, scount, stype, &
m,0,0,0) rbuf, rcount, rtype, &

\\ // root, comm, ierr)

9 MPI_Gather (&sbuf, scount, stype,
gather &rbuf, rcount, rtype,
root, comm) ;
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MPI _Reduce

Call MPI_REDUCE (sbuf, rbuf, rcount, &
() U WA ) rtype, op, root, &

\\\ // comm, ierr)

2 MPI_Reduce (&sbuf, &rbuf, rcount, &
reduction rtype, op, root, &
comm) ;
op description

MPI_MAX maximum
MPI_MIN minimum
MPI_SUM sum
MPI_PROD product
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‘All" Variants of MPI Collective Routines

MPI_Allgather

Gathers together values from a group of processes and distributes to all

sendcnt = 1;

recvcnt = 1;

MPI_Allgather (sendbuf, sendcnt, MPL_INT,
recvbuf, recvent, MPL_INT,
MPI_COMM_WORLDY);

task 0 task 1 task 2 task 3
1 2 3 4 ~—— sendbuf (before)
1 1 1 1
2 2 2 2
-—— recvhuf (after)
3 3 3 3
4 4 4 4
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‘All" Variants of MPI Collective Routines

MPI_Allreduce

Perform and associate reduction operation across all
tasks in the group and place the resultin all tasks

count = 1;
MPI_Allreduce(sendbuf, recvbuf, count, MPI_INT, MPI_SUM,
MPI_COMM_WORLD};

task 0 task 1 task 2 task 3
1 2 3 4 ~—— sendbuf (before)
10 10 10 10 | =—— recvhuf {after)
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‘All" Variants of MPI Collective Routines

MPI_Alltoall

Sends data from all to all processes. Each process
performs a scatter operation.

sendcnt = 1;

recvent = 1;

MPI_Alltoall{sendbuf, sendcnt, MPI_INT,
recvbuf, recvent, MPI_INT,
MPI_COMM_WORLD);

task 0 task 1 task 2 task 3
1 5 9 13
’ s " “ Useful for matrix transpose and
. . " 5 |~ ewreeo)  FETs. (NOTE: It's future on
1 o T exascale machines is not clear.)
4 8 12 16
1 2 3 4
5 6 7 8
1 1 1 [ | ~—— recvhuf (after)
9 10 11 12
13 14 15 16
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Interlude #3—Parallel Inner Product

Develop a parallel code to take the scalar product of two N x 1 vectors X
and ¥, i.e.,, XTy. Choose N > 5N, where N, is the number of MPI
processes. Have the scalar answer stored on all processors.

You have 30 minutes for this task.
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Interlude #4—~Parallel Matrix Transpose

Use MPI_Alltoall to take the transpose of a 10N, x 10N, matrix, where
N, is the number of MPI processes used.

You have 30 minutes for this task.
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Summary

What MPI commands did we learn?

o MPLInit

e MPI_Comm_rank, @ MPI_Scatter, MPI_Bcast
MPI_Comm_size o MPI_Gather, MPI_Reduce

o MPI_Finalize o MPI_Allreduce, MPI_Allscatter

o MPI_Send, MPI_Recv o MPI_Alltoall

o MPI_Isend, MPI_lrecv o MPI_Barrier

o MPI_Waitall

o

These commands will get you very far in your parallel program development.
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Additional Resources

e http://www.mcs.anl.gov/research/projects/mpi/tutorial/index.html
e https://computing.1llnl.gov/tutorials/parallel_comp/

e https://computing.1llnl.gov/tutorials/mpi/

o http://www.mpi-forum.org/

D. J. Bodony (UIU Introduction to MPI 2013 35/



http://www.mcs.anl.gov/research/projects/mpi/tutorial/index.html
https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/mpi/
http://www.mpi-forum.org/

