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OpenMP: Basic Concepts, 
Hardware Architecture

• Parallel programming is much harder than serial 
programming; we use it (only) because it 
improves performance, enabling certain 
projects that are otherwise impossible

• Possible performance of a code is ultimately 
defined by the computing architecture on 
which it runs

• Need to have at least passing knowledge of 
hardware architectures
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Parallel Computer Memory Architectures

Shared Memory

Hybrid Distributed Shared Memory

Distributed Memory

Tuesday, 21 May, 13



Relation to Parallel Programming Models

• OpenMP:  Multi-threaded calculations occur within shared-memory components 
of systems, with different threads working on the same data.

• MPI:  Based on a distributed-memory model, data associated with another 
processor must be communicated over the network connection.

• GPUs: Graphics Processing Units (GPUs) incorporate many (hundreds) of 
computing cores with single Control Unit, so this is a shared-memory model.

• Processors vs. Cores: Most common parallel computer, each processor can 
execute different instructions on different data streams

-Often constructed of many SIMD subcomponents
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MPI vs. OpenMP

• MPI: Difficult to use, but makes it possible (not 
easy!) to write highly efficient code

• like writing machine code

• OpenMP: Easy to use

• 90/10 rule: Compared to MPI, OpenMP gives 
90% of the performance with 10% of the effort

• OpenMP requires shared memory system
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Single Image View vs. 
Communicating Processes

Shared memory 
(small systems)

Distributed 
memory

(large systems)

Single image
(one program)

(easy)
OpenMP e.g. HPF, CAF

Communicating 
processes
(difficult)

e.g. pthreads MPI

system performance
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Multi-Threading

• Threading involves a single process that can have multiple, concurrent 
execution paths

• Works in a shared memory architecture

• Most common implementation is OpenMP (Open Multi-Processing)

serial code

.

.

.

!$OMP PARALLEL DO

do i = 1,N

A(i)=B(i)+C(i)

enddo

!$OMP END PARALLEL DO

.

.

.

serial code

• Relatively easy to make inner loops of a 
serial code parallel and achieve substantial 
speedups with modern multi-core processors
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OpenMP Design 
Principle

• Parallel code has same semantics as serial 
code (and looks very similar)

• Parallelisation via directives, which are 
comments inserted into the code

• parallel code remains also a serial code

• Main advantage: Can parallelise a serial code 
incrementally, starting with most expensive 
parts
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More Information:

• http://www.openmp.org/

• Many tutorials available on the web, standard 
definition freely available

• Built into nearly every C/C++/Fortran 
compiler, including GNU

• available everywhere, easy to use,
there is no excuse for not using it
(except if your algorithm is not parallel)
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Current CPU/Memory 
Hardware Architecture
• Today’s CPU/memory hardware architecture is 

surprisingly complex

• nearly impossible to precisely predict 
performance, even for experts

• Most systems have several processors, multiple cores, 
and several memory elements (!) on each node

• Relevant for performance:
Flop/s (computations) and GByte/s (memory 
accesses)
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First Steps in OpenMP

• Fortran:
program hello
   implicit none
   integer :: i
   print ‘(“Hello, World!”)‘
   !$omp parallel do
   do i=1,10
      print ‘(“iteration: ”,i0)‘, i
   end do
end program hello
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First Steps in OpenMP
• C/C++:

#include <stdio.h>
int main()
{
   printf(“Hello, world!\n”);
#pragma omp parallel for
   for (int i=0; i<10; ++i) {
      printf(“iteration %d\n”, i);
   }
   return 0;
}
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No Plumbing 
Necessary!

• Different from MPI code, it is generally not 
necessary to look at the thread number 
(“rank”), or at the total number of threads

• Easy to combine serial and parallel parts of 
an algorithm

• if you need to execute certain operations 
in-order, just don’t parallelise the loop
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Fortran vs. C/C++

• In Fortran, OpenMP directives begin with
!$omp, and are usually paired with a 
corresponding end directive

• In C or C++, OpenMP directives begin with 
#pragma omp, and apply to the next 
statement or { } block

Tuesday, 21 May, 13



Important OpenMP 
Directives

• parallel/end parallel: define a parallel region

• do/end do: parallelise a do loop

• critical/end critical: serialise a region within a parallel 
region

• Clauses for parallel regions:

• private: list variables that should not be shared 
between threads

• reduction: list variables that should be reduced (their 
values “combined”)
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omp do
(omp for in C/C++)

• To parallelise a loop, the number of iterations 
must be known before the loop begins

• The loop iterations must also be independent

• OpenMP will split iterations automatically 
over all available threads

• The parallelised loop may be executed in an 
arbitrary “order” (actually, it will execute in 
parallel)

Tuesday, 21 May, 13



Example: Fibonacci Series

The Fibonacci series is defined by:
                                                 with f(k + 2) = f(k + 1) + f(k) f(1) = f(2) = 1

The Fibonacci series is therefore (1, 1, 2, 3, 5, 8, 13, 21, . . .)

The Fibonacci series can be calculated using the loop
f(1)=1

f(2)=1

do i=3, N

     f(i)=f(i-1)+f(i-2)

enddo

This calculation cannot be made parallel.
- We cannot calculate               until we have              and 

- This is an example of data dependence that results in a non-
parallelizable problem

How do we do this computation in parallel?

f(k + 2) f(k + 1) f(k)
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Example: omp do

• alpha = 0.24
!$omp parallel do
do i=2,N-1
   anew(i) = alpha * (aold(i-1) + aold(i+1))
end do
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Example: omp do
with nested loops

• alpha = 0.24
!$omp parallel do collapse(2)
do i=2,N-1
   do i=2,N-1
      anew(i,j) = alpha * &
         (aold(i-1,j) + aold(i+1,j) + aold(i,j-1) + aold(i,j+1))

   end do
end do
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omp critical

• A critical region is a section of code (within 
a parallel region) that must not be executed 
simultaneously by multiple threads

• example: modifying a global variable, 
writing something to the screen

• Critical regions are slow; use them only if 
necessary, e.g. to handle exceptional cases
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Example: omp critical

• errcount = 0
!$omp parallel do
do i=2,N-1
   if (anew(i) < 0) then
      !$omp critical
      print ‘(“error: anew<0 at “,i0), i
      errcount = errcount + 1
      !$omp end critical
   end if
end do
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private

• By default, all variables are shared between all threads, 
i.e. there is a single instance of the variable

• Variables can be declared private, which means that each 
thread has its own, independent instance of the variable

• Rule of thumb:

• read-only variables can be shared

• temporary variables must be private

• variables that are written can only be accessed in 
critical sections
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Example: private

• alpha = 0.24
!$omp parallel do collapse(2) private(tmp)
do j=2,N-1
   do i=2,N-1
      tmp = aold(i-1,j) + aold(i+1,j) + aold(i,j-1) + aold(i,j+1)

      anew(i,j) = alpha * tmp
   end do
end do
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reduction

• Reduction clauses allow reducing values 
(i.e. combining values) from multiple 
threads

• for example: sum, min, max, ...

• Much more efficient than critical regions – 
try to rewrite critical regions as 
reductions, if possible
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Example: reduction

• poscount = 0
!$omp parallel do reduction(sum: poscount)
do i=2,N-1
   if (anew(i) > 0) then
      poscount = poscount + 1
   end if
end do
print ‘(“error count: “,i4)’, errcount
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Applying OpenMP to an 
Existing Program

• Adding MPI parallelism to a serial program 
typically requires much surgery, and needs to be 
done all at once

• however, MPI can speed up a program by a 
factor of 100,000 or more

• Adding OpenMP parallelism is much easier, and 
can be done incrementally

• OpenMP can speed up a program probably by a 
factor of 10
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How to Parallelise a Code
(How to Modify a Code)
1. Understand the structure of the program

2. Define a simple test case, record its output

3. Find out which parts take a long time
(this requires timing measurements)

4. Look for loops, examine data dependencies, add 
OpenMP directives

5. Check correctness (see 2.)

6. Compare performance
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Loops

• General observation: the code inside a loop is 
executed (many time) more often than the 
code outside of a loop

• Therefore, optimising and parallelising the 
loops (aka loop kernels) is likely to lead to the 
largest performance improvements

• Parallelising via OpenMP usually means adding 
omp parallel do statements around do loops
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Compiler 
Optimisations

• When measuring performance, it is necessary to use 
good compiler options to optimise the executable

• typical flags: -O2, -O3, Intel: -fast, GNU: -Ofast, 
etc.

• It pays off to optimise for the particular hardware 
architecture (Intel: -xHOST, GNU: -march=native)

• Do not measure performance for a non-optimised 
executable; performance can differ significantly (by a 
factor of several)

Tuesday, 21 May, 13



Profiling
• Profiling means recording for each function how 

often it is called and how much time it takes 
during execution

• All compilers support adding profiling code to 
executables (“instrumenting”)

• note: instrumented code may run slower

• After running the instrumented executable, the 
profiling results can be analysed, e.g. with gprof 
(see Cheat Sheet)
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Sample Profiling Output
Flat profile:

Each sample counts as 0.01 seconds.
  %   cumulative   self              self     total           
 time   seconds   seconds    calls   s/call   s/call  name    
 72.48      0.79     0.79    10001     0.00     0.00  potential_mp_residual_
 26.61      1.08     0.29    10000     0.00     0.00  potential_mp_step_
  0.92      1.09     0.01        1     0.01     1.09  MAIN__
  0.00      1.09     0.00        1     0.00     0.00  potential_mp_initial_

• Here, most of the time is spent in 
“residual” and “step”

• Parallelising the main program or the initial 
data routine is pointless
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Manual Timing 
Measurements

• The Unix time command can be used to measure execution 
time:

• time ./calcpi

• Alternatively, you can time specific code section via 
omp_get_wtime():

• use omp_lib
double precision :: t0, t1
t0 = omp_get_wtime()
... parallel section ...
t1 = omp_get_wtime()
print ‘(“elapsed time: “,f20.15,” sec”)’, t1-t0
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Compiling OpenMP 
Code

• By default, compilers will ignore all 
OpenMP directives, and will produce a 
serial executable

• note: this serial executable will run 
correctly, it will only run more slowly

• see the compiler documentation (or the 
Cheat Sheet) for enabling OpenMP
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Running OpenMP Code
• You should explicitly choose the number of OpenMP 

threads when running a code

• the default choice may be inefficient (it is unlikely to 
use a single thread)

• Unfortunately it’s slightly complicated, see the Cheat 
Sheet for details

• use qlogin to run on a compute node; timing 
measurements on the head node will be unpredictable

• by default, the operating system likes to shift threads 
between cores, which is bad for performance

Tuesday, 21 May, 13



Advanced OpenMP 
Programming

• The current standard is OpenMP 3.1

• However, some compilers only support 
version 3.0 or 2.x

• Future versions will likely add support for 
defining memory locality for variables (for 
GPUs and other accelerators), and for 
SIMD vectorisation (see also to CUDA/
OpenCL)
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Other OpenMP 
Directives

• OpenMP offers a range of other directives:

• atomic: a fast version of critical

• barrier: wait for other threads

• master: execute only on the master thread

• single: execute only once

• workshare: parallelise array operations

• sections: MPMD, functional decomposition

• task: low-level task management
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Other OpenMP Clauses

• OpenMP offers a range of other clauses:

• schedule: choose strategy for splitting 
loops

• nowait: disable some implicit barriers

• copyin, copyprivate, firstprivate, lastprivate: 
manage private and shared variables

• if: conditionally disable a parallel region

• num_threads: choose number of threads
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Other OpenMP 
Functions

• OpenMP also offers run-time functions that can be 
called:

• Fortran: use omp_lib

• C/C++: #include <omp.h>

• omp_get_thread_num(): current thread id

• omp_get_num_threads(): number of threads

• omp_get_max_threads(): max number of threads

• omp_set_num_threads(): set number of threads

• omp_get_num_procs(): number of cores
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Hybrid Parallelisation

• It makes sense to combine MPI and OpenMP:

• MPI handles communication between nodes, 
OpenMP distributes the workload within a node

• This can help reduce overhead introduced by MPI:

• MPI may require duplicating certain data 
structures for each process

• there may be scaling problems for large 
numbers of MPI processes
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Alternatives
to OpenMP and MPI

• There is a large gap between OpenMP, 
which is rather easy to use, and MPI, which 
is quite difficult

• A range of other, much less widely used 
programming standards exist, targeting 
parallel programming, distributed 
programming, accelerators, etc.
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HPF
(High Performance Fortran)
• HPF uses concepts similar to OpenMP, but for distributed memory 

systems, not just shared memory

• HPF adds directives that specify which variables (arrays) should be 
distributed over processes

• Example:
double precision a(N)
!$hpf distribute a(block)

!$hpf independent
do i=1,N
   a(i) = 0
end do

• Unfortunately, HPF is mostly dead
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CAF
(Co-Array Fortran)

• CAF is a proposed addition to part of the 
Fortran standard

• CAF takes the same “communicating processes” 
approach as MPI

• CAF allows distributing arrays over multiple 
processes, and provides a simple way to access 
remote array elements (much simpler than MPI)

• Example: a[myrank] = a[myrank+1]
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UPC
(Unified Parallel C)

• Similar to CAF, but more flexible

• New constructs: shared arrays, pointers to shared 
objects

• Example:
shared[nlocal] double a[N];
upc_forall (i=0; i<N; ++i; a[i]) {
   a[i] = 0.0;
}

• Available on most (modern) HPC systems
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