
OpenMP:
Open Multiprocessing

Erik Schnetter
May 20-22, 2013, IHPC 2013, Iowa City

Tuesday, 21 May, 13

2,500 BC: Military
Invents Parallelism

Tuesday, 21 May, 13

Outline

1. Basic concepts, hardware architectures

2. OpenMP Programming

3. How to parallelise an existing code

4. Advanced OpenMP constructs

Tuesday, 21 May, 13

OpenMP: Basic Concepts,
Hardware Architecture

• Parallel programming is much harder than serial
programming; we use it (only) because it
improves performance, enabling certain
projects that are otherwise impossible

• Possible performance of a code is ultimately
defined by the computing architecture on
which it runs

• Need to have at least passing knowledge of
hardware architectures

Tuesday, 21 May, 13

Parallel Computer Memory Architectures

Shared Memory

Hybrid Distributed Shared Memory

Distributed Memory

Tuesday, 21 May, 13

Relation to Parallel Programming Models

• OpenMP: Multi-threaded calculations occur within shared-memory components
of systems, with different threads working on the same data.

• MPI: Based on a distributed-memory model, data associated with another
processor must be communicated over the network connection.

• GPUs: Graphics Processing Units (GPUs) incorporate many (hundreds) of
computing cores with single Control Unit, so this is a shared-memory model.

• Processors vs. Cores: Most common parallel computer, each processor can
execute different instructions on different data streams

-Often constructed of many SIMD subcomponents

Tuesday, 21 May, 13

MPI vs. OpenMP

• MPI: Difficult to use, but makes it possible (not
easy!) to write highly efficient code

• like writing machine code

• OpenMP: Easy to use

• 90/10 rule: Compared to MPI, OpenMP gives
90% of the performance with 10% of the effort

• OpenMP requires shared memory system

Tuesday, 21 May, 13

http://www.xkcd.com/1205/
Tuesday, 21 May, 13

http://www.xkcd.com/1205/
http://www.xkcd.com/1205/

Single Image View vs.
Communicating Processes

Shared memory
(small systems)

Distributed
memory

(large systems)

Single image
(one program)

(easy)
OpenMP e.g. HPF, CAF

Communicating
processes
(difficult)

e.g. pthreads MPI

system performance

pr
og

ra
m

m
in

g
di

ffi
cu

lty

Tuesday, 21 May, 13

Multi-Threading

• Threading involves a single process that can have multiple, concurrent
execution paths

• Works in a shared memory architecture

• Most common implementation is OpenMP (Open Multi-Processing)

serial code

.

.

.

!$OMP PARALLEL DO

do i = 1,N

A(i)=B(i)+C(i)

enddo

!$OMP END PARALLEL DO

.

.

.

serial code

• Relatively easy to make inner loops of a
serial code parallel and achieve substantial
speedups with modern multi-core processors

Tuesday, 21 May, 13

OpenMP Design
Principle

• Parallel code has same semantics as serial
code (and looks very similar)

• Parallelisation via directives, which are
comments inserted into the code

• parallel code remains also a serial code

• Main advantage: Can parallelise a serial code
incrementally, starting with most expensive
parts

Tuesday, 21 May, 13

More Information:

• http://www.openmp.org/

• Many tutorials available on the web, standard
definition freely available

• Built into nearly every C/C++/Fortran
compiler, including GNU

• available everywhere, easy to use,
there is no excuse for not using it
(except if your algorithm is not parallel)

Tuesday, 21 May, 13

http://www.openmp.org
http://www.openmp.org

Current CPU/Memory
Hardware Architecture
• Today’s CPU/memory hardware architecture is

surprisingly complex

• nearly impossible to precisely predict
performance, even for experts

• Most systems have several processors, multiple cores,
and several memory elements (!) on each node

• Relevant for performance:
Flop/s (computations) and GByte/s (memory
accesses)

Tuesday, 21 May, 13

Host: compute−14−394.local

Date: Wed 06 Jun 2012 11:12:29 AM CDT

Indexes: physical

Machine (24GB)

NUMANode P#1 (12GB)

Socket P#1

Socket P#0

NUMANode P#0 (12GB)

L3 (12MB)

L3 (12MB)

L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)

L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)

L1 (32KB)

L1 (32KB) L1 (32KB) L1 (32KB) L1 (32KB) L1 (32KB) L1 (32KB)

L1 (32KB)L1 (32KB) L1 (32KB) L1 (32KB) L1 (32KB)

Core P#9

Core P#1

Core P#0 Core P#1

Core P#8

Core P#2

Core P#9Core P#2

Core P#8 Core P#10

Core P#0 Core P#10

PU P#6

PU P#0

PU P#8 PU P#10

PU P#5

PU P#11

PU P#3PU P#1

PU P#9PU P#7

PU P#2 PU P#4

Helium,
Compute node

Tuesday, 21 May, 13

First Steps in OpenMP

• Fortran:
program hello
 implicit none
 integer :: i
 print ‘(“Hello, World!”)‘
 !$omp parallel do
 do i=1,10
 print ‘(“iteration: ”,i0)‘, i
 end do
end program hello

Tuesday, 21 May, 13

First Steps in OpenMP
• C/C++:

#include <stdio.h>
int main()
{
 printf(“Hello, world!\n”);
#pragma omp parallel for
 for (int i=0; i<10; ++i) {
 printf(“iteration %d\n”, i);
 }
 return 0;
}

Tuesday, 21 May, 13

No Plumbing
Necessary!

• Different from MPI code, it is generally not
necessary to look at the thread number
(“rank”), or at the total number of threads

• Easy to combine serial and parallel parts of
an algorithm

• if you need to execute certain operations
in-order, just don’t parallelise the loop

Tuesday, 21 May, 13

Fortran vs. C/C++

• In Fortran, OpenMP directives begin with
!$omp, and are usually paired with a
corresponding end directive

• In C or C++, OpenMP directives begin with
#pragma omp, and apply to the next
statement or { } block

Tuesday, 21 May, 13

Important OpenMP
Directives

• parallel/end parallel: define a parallel region

• do/end do: parallelise a do loop

• critical/end critical: serialise a region within a parallel
region

• Clauses for parallel regions:

• private: list variables that should not be shared
between threads

• reduction: list variables that should be reduced (their
values “combined”)

Tuesday, 21 May, 13

omp do
(omp for in C/C++)

• To parallelise a loop, the number of iterations
must be known before the loop begins

• The loop iterations must also be independent

• OpenMP will split iterations automatically
over all available threads

• The parallelised loop may be executed in an
arbitrary “order” (actually, it will execute in
parallel)

Tuesday, 21 May, 13

Example: Fibonacci Series

The Fibonacci series is defined by:
 with f(k + 2) = f(k + 1) + f(k) f(1) = f(2) = 1

The Fibonacci series is therefore (1, 1, 2, 3, 5, 8, 13, 21, . . .)

The Fibonacci series can be calculated using the loop
f(1)=1

f(2)=1

do i=3, N

 f(i)=f(i-1)+f(i-2)

enddo

This calculation cannot be made parallel.
- We cannot calculate until we have and

- This is an example of data dependence that results in a non-
parallelizable problem

How do we do this computation in parallel?

f(k + 2) f(k + 1) f(k)

Tuesday, 21 May, 13

Example: omp do

• alpha = 0.24
!$omp parallel do
do i=2,N-1
 anew(i) = alpha * (aold(i-1) + aold(i+1))
end do

Tuesday, 21 May, 13

Example: omp do
with nested loops

• alpha = 0.24
!$omp parallel do collapse(2)
do i=2,N-1
 do i=2,N-1
 anew(i,j) = alpha * &
 (aold(i-1,j) + aold(i+1,j) + aold(i,j-1) + aold(i,j+1))

 end do
end do

Tuesday, 21 May, 13

omp critical

• A critical region is a section of code (within
a parallel region) that must not be executed
simultaneously by multiple threads

• example: modifying a global variable,
writing something to the screen

• Critical regions are slow; use them only if
necessary, e.g. to handle exceptional cases

Tuesday, 21 May, 13

Example: omp critical

• errcount = 0
!$omp parallel do
do i=2,N-1
 if (anew(i) < 0) then
 !$omp critical
 print ‘(“error: anew<0 at “,i0), i
 errcount = errcount + 1
 !$omp end critical
 end if
end do

Tuesday, 21 May, 13

private

• By default, all variables are shared between all threads,
i.e. there is a single instance of the variable

• Variables can be declared private, which means that each
thread has its own, independent instance of the variable

• Rule of thumb:

• read-only variables can be shared

• temporary variables must be private

• variables that are written can only be accessed in
critical sections

Tuesday, 21 May, 13

Example: private

• alpha = 0.24
!$omp parallel do collapse(2) private(tmp)
do j=2,N-1
 do i=2,N-1
 tmp = aold(i-1,j) + aold(i+1,j) + aold(i,j-1) + aold(i,j+1)

 anew(i,j) = alpha * tmp
 end do
end do

Tuesday, 21 May, 13

reduction

• Reduction clauses allow reducing values
(i.e. combining values) from multiple
threads

• for example: sum, min, max, ...

• Much more efficient than critical regions –
try to rewrite critical regions as
reductions, if possible

Tuesday, 21 May, 13

Example: reduction

• poscount = 0
!$omp parallel do reduction(sum: poscount)
do i=2,N-1
 if (anew(i) > 0) then
 poscount = poscount + 1
 end if
end do
print ‘(“error count: “,i4)’, errcount

Tuesday, 21 May, 13

Applying OpenMP to an
Existing Program

• Adding MPI parallelism to a serial program
typically requires much surgery, and needs to be
done all at once

• however, MPI can speed up a program by a
factor of 100,000 or more

• Adding OpenMP parallelism is much easier, and
can be done incrementally

• OpenMP can speed up a program probably by a
factor of 10

Tuesday, 21 May, 13

How to Parallelise a Code
(How to Modify a Code)
1. Understand the structure of the program

2. Define a simple test case, record its output

3. Find out which parts take a long time
(this requires timing measurements)

4. Look for loops, examine data dependencies, add
OpenMP directives

5. Check correctness (see 2.)

6. Compare performance

Tuesday, 21 May, 13

Loops

• General observation: the code inside a loop is
executed (many time) more often than the
code outside of a loop

• Therefore, optimising and parallelising the
loops (aka loop kernels) is likely to lead to the
largest performance improvements

• Parallelising via OpenMP usually means adding
omp parallel do statements around do loops

Tuesday, 21 May, 13

Compiler
Optimisations

• When measuring performance, it is necessary to use
good compiler options to optimise the executable

• typical flags: -O2, -O3, Intel: -fast, GNU: -Ofast,
etc.

• It pays off to optimise for the particular hardware
architecture (Intel: -xHOST, GNU: -march=native)

• Do not measure performance for a non-optimised
executable; performance can differ significantly (by a
factor of several)

Tuesday, 21 May, 13

Profiling
• Profiling means recording for each function how

often it is called and how much time it takes
during execution

• All compilers support adding profiling code to
executables (“instrumenting”)

• note: instrumented code may run slower

• After running the instrumented executable, the
profiling results can be analysed, e.g. with gprof
(see Cheat Sheet)

Tuesday, 21 May, 13

Sample Profiling Output
Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls s/call s/call name
 72.48 0.79 0.79 10001 0.00 0.00 potential_mp_residual_
 26.61 1.08 0.29 10000 0.00 0.00 potential_mp_step_
 0.92 1.09 0.01 1 0.01 1.09 MAIN__
 0.00 1.09 0.00 1 0.00 0.00 potential_mp_initial_

• Here, most of the time is spent in
“residual” and “step”

• Parallelising the main program or the initial
data routine is pointless

Tuesday, 21 May, 13

Manual Timing
Measurements

• The Unix time command can be used to measure execution
time:

• time ./calcpi

• Alternatively, you can time specific code section via
omp_get_wtime():

• use omp_lib
double precision :: t0, t1
t0 = omp_get_wtime()
... parallel section ...
t1 = omp_get_wtime()
print ‘(“elapsed time: “,f20.15,” sec”)’, t1-t0

Tuesday, 21 May, 13

Compiling OpenMP
Code

• By default, compilers will ignore all
OpenMP directives, and will produce a
serial executable

• note: this serial executable will run
correctly, it will only run more slowly

• see the compiler documentation (or the
Cheat Sheet) for enabling OpenMP

Tuesday, 21 May, 13

Running OpenMP Code
• You should explicitly choose the number of OpenMP

threads when running a code

• the default choice may be inefficient (it is unlikely to
use a single thread)

• Unfortunately it’s slightly complicated, see the Cheat
Sheet for details

• use qlogin to run on a compute node; timing
measurements on the head node will be unpredictable

• by default, the operating system likes to shift threads
between cores, which is bad for performance

Tuesday, 21 May, 13

Advanced OpenMP
Programming

• The current standard is OpenMP 3.1

• However, some compilers only support
version 3.0 or 2.x

• Future versions will likely add support for
defining memory locality for variables (for
GPUs and other accelerators), and for
SIMD vectorisation (see also to CUDA/
OpenCL)

Tuesday, 21 May, 13

Other OpenMP
Directives

• OpenMP offers a range of other directives:

• atomic: a fast version of critical

• barrier: wait for other threads

• master: execute only on the master thread

• single: execute only once

• workshare: parallelise array operations

• sections: MPMD, functional decomposition

• task: low-level task management

Tuesday, 21 May, 13

Other OpenMP Clauses

• OpenMP offers a range of other clauses:

• schedule: choose strategy for splitting
loops

• nowait: disable some implicit barriers

• copyin, copyprivate, firstprivate, lastprivate:
manage private and shared variables

• if: conditionally disable a parallel region

• num_threads: choose number of threads

Tuesday, 21 May, 13

Other OpenMP
Functions

• OpenMP also offers run-time functions that can be
called:

• Fortran: use omp_lib

• C/C++: #include <omp.h>

• omp_get_thread_num(): current thread id

• omp_get_num_threads(): number of threads

• omp_get_max_threads(): max number of threads

• omp_set_num_threads(): set number of threads

• omp_get_num_procs(): number of cores

Tuesday, 21 May, 13

Hybrid Parallelisation

• It makes sense to combine MPI and OpenMP:

• MPI handles communication between nodes,
OpenMP distributes the workload within a node

• This can help reduce overhead introduced by MPI:

• MPI may require duplicating certain data
structures for each process

• there may be scaling problems for large
numbers of MPI processes

Tuesday, 21 May, 13

Alternatives
to OpenMP and MPI

• There is a large gap between OpenMP,
which is rather easy to use, and MPI, which
is quite difficult

• A range of other, much less widely used
programming standards exist, targeting
parallel programming, distributed
programming, accelerators, etc.

Tuesday, 21 May, 13

HPF
(High Performance Fortran)
• HPF uses concepts similar to OpenMP, but for distributed memory

systems, not just shared memory

• HPF adds directives that specify which variables (arrays) should be
distributed over processes

• Example:
double precision a(N)
!$hpf distribute a(block)

!$hpf independent
do i=1,N
 a(i) = 0
end do

• Unfortunately, HPF is mostly dead

Tuesday, 21 May, 13

CAF
(Co-Array Fortran)

• CAF is a proposed addition to part of the
Fortran standard

• CAF takes the same “communicating processes”
approach as MPI

• CAF allows distributing arrays over multiple
processes, and provides a simple way to access
remote array elements (much simpler than MPI)

• Example: a[myrank] = a[myrank+1]

Tuesday, 21 May, 13

UPC
(Unified Parallel C)

• Similar to CAF, but more flexible

• New constructs: shared arrays, pointers to shared
objects

• Example:
shared[nlocal] double a[N];
upc_forall (i=0; i<N; ++i; a[i]) {
 a[i] = 0.0;
}

• Available on most (modern) HPC systems

Tuesday, 21 May, 13

