Collision frequency

Calculate
$$\nu_{ii}/\nu_{ei}$$
 for $T_i = 4T_e$ and $m_i = 100m_e$

- a) 160
- b) 1/4
- c) 1/40
- d) 1/80

Moments

UNIV

OF IOWA

Which of the following is the fluid velocity $~{f U}_s$?

a)
$$\int d^3 \mathbf{v} (\mathbf{v} - \mathbf{U}_s) (\mathbf{v} - \mathbf{U}_s) f_s(\mathbf{x}, \mathbf{v}, t)$$

b)
$$\frac{\int d^3 \mathbf{v} \quad \mathbf{v} f_s(\mathbf{x}, \mathbf{v}, t)}{\int d^3 \mathbf{v} f_s(\mathbf{x}, \mathbf{v}, t)}$$

c)
$$\frac{\int d^3 \mathbf{v} \quad mv^2/2f_s(\mathbf{x}, \mathbf{v}, t)}{\int d^3 \mathbf{v} f_s(\mathbf{x}, \mathbf{v}, t)}$$

d)
$$\int d^3 \mathbf{v} \mathbf{v} f_s(\mathbf{x}, \mathbf{v}, t)$$

Compression of Plasma

of lowa

Consider a cylindrical volume of plasma threaded by a uniform axial magnetic field B_0 . What is the magnetic field if the plasma is compressed as follows:

a) $16B_0$

b) $4B_0$

c) *B*₀

d) $B_0/4$

Changes of Plasma Volume

of lowa

Consider a cylindrical volume of plasma threaded by a uniform axial magnetic field B_0 . What is the magnetic field if the plasma is changed as follows:

d) $B_0/9$

Changes of Plasma Volume

Consider a cylindrical volume of plasma threaded by a uniform axial magnetic field B_0 with a temperature T_0 . If the plasma is strongly collisional, what is the temperature after this plasma is changed as follows?

of Iowa

- a) $T_0/8$
- **b)** $T_0/2$
- **c)** T_0
- **d)** $4T_0$

Changes of Plasma Volume

Consider a cylindrical volume of plasma threaded by a uniform axial magnetic field B_0 . If the plasma is collisionless with initial temperatures, $T_{\perp} = T_{\parallel} = T_0$, what are the final temperatures?

of lowa

a) $T_{\perp} = 4T_0, \quad T_{\parallel} = T_0/16$

b) $T_{\perp} = 2T_0, \quad T_{\parallel} = T_0/4$

c) $T_{\perp} = T_0, \quad T_{\parallel} = T_0$

d) $T_{\perp} = T_0/4, \quad T_{\parallel} = 4T_0$

Polar Plot of MHD Wave Velocities

Which of the following can be deduced from this polar plot of the Fast, Alfven, and Slow wave velocities?

a) $c_s > v_A$

b) $c_s = v_A$

c) $c_s < v_A$

d) Cannot be determined

