## PHYS:4731 Homework \#1

Due at the beginning of class, Thursday, September 1, 2022.

1. Show that

$$
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d f}{d r}\right)=\frac{1}{r} \frac{d^{2}}{d r^{2}}(r f)
$$

2. Prove that $\nabla r=\hat{\mathbf{r}}$ where $r=|\mathbf{r}|$.
3. The Large Plasma Device (LAPD) experiment at UCLA (see http://plasma.physics.ucla.edu/bapsf/pages/research.html if you want more information on this experiment) allows for basic plasma physics experiments in a long cylindrical chamber with a strong axial magnetic field. The plasma produced is 19 m long and 75 cm in diameter, with the following parameters: $n=10^{17} \mathrm{~m}^{-3}$, $T_{i}=T_{e}=2 \times 10^{4} \mathrm{~K}$, and $B=0.1 \mathrm{~T}$.
(a) Calculate the (electron) Debye length and electron and ion Larmor radius assuming a plasma of singly-ionized argon.
(b) Calculate the plasma beta $\beta$ for this experiment.
(c) Calculate the plasma parameter $N_{D}$ and the mean free path for electron-ion collisions $\lambda_{m}$. Would you describe this plasma as collisional, semi-collisional, or collisionless?
(d) Suppose we wanted to set up a plasma in LAPD with magnetized electrons and unmagnetized ions, but were allowed to change only a single parameter. Which parameter would you change and to what value? Support your answer with a calculation.
4. The plasma in the solar corona has parameters $n=10^{9} \mathrm{~cm}^{-3}, T_{i}=2 T_{e}=100 \mathrm{eV}$, and $B=3 \mathrm{kG}$. Note that plasma temperatures are often given in energy units of eV , where the Boltzmann constant has already been included.
(a) Calculate the (electron) Debye length, electron and ion Larmor radius, and the plasma beta $\beta$.
5. The magnetic fields of the planets are often well approximated by dipole fields-at least close to the planet. A dipole field can be represented by a magnetic scalar potential of the form

$$
\phi_{m}=\frac{M \cos \theta}{r^{2}}
$$

where $r=|\mathbf{r}|$ and the magnetic field is given by $\mathbf{B}=-\nabla \phi_{m}$.
Note that $\phi$ is the azimuthal angle and $\theta$ is the polar angle in spherical coordinates.
(a) Find the vector $\mathbf{B}$ in spherical coordinates and also the magnitude $B=|\mathbf{B}|$.
(b) Show that $\mathbf{J}=0$. Hint: Use Ampere's Law.

