PHYS:4731 Homework \#3

Due at the beginning of class, Thursday, September 15, 2022.

1. Show that the curvature drift

$$
\mathbf{V}_{c}=\frac{v_{\|}^{2}}{\omega_{c} B} \frac{\mathbf{R}_{c} \times \mathbf{B}}{R_{c}^{2}}
$$

can be written as

$$
\mathbf{V}_{c}=\frac{v_{\|}^{2}}{\omega_{c}} \hat{\mathbf{b}} \times(\hat{\mathbf{b}} \cdot \nabla) \hat{\mathbf{b}}
$$

You may take the magnetic field to be purely azimuthal $\mathbf{B}=B \hat{\boldsymbol{\phi}}$.
HINT: Convert from cylindrical to Cartesian coordinates, and you may find this expression useful,

$$
\frac{\partial \hat{\boldsymbol{\phi}}}{\partial \phi}=\frac{\partial}{\partial \phi}(-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}})=-\cos \phi \hat{\mathbf{x}}-\sin \phi \hat{\mathbf{y}}=-\hat{\mathbf{r}}
$$

2. A 20 keV deuteron in a large mirror fusion device has a pitch angle of 45° at the midplane of the machine, where the magnetic field $B=0.7 \mathrm{~T}$. Compute its Larmor radius.
3. The equation for a dipole mangetic field in spherical coordinates is given by

$$
\mathbf{B}=\frac{\mu_{0} M}{4 \pi} \frac{1}{r^{3}}(2 \cos \theta \hat{\mathbf{r}}+\sin \theta \hat{\boldsymbol{\theta}})
$$

where M is the magnetic moment.
(a) Show that the equation for a magnetic field line is $r=R \sin ^{2} \theta$, where R is the radius of the magnetic field line at the equator $(\theta=\pi / 2)$.
(b) Show that the curvature of the magnetic field line at the equator is $R_{C}=R / 3$.
(c) Compute the curvature drift of a particle with charge q and parallel velocity $v_{\|}$at a radial distance R at the equator.
(d) Compute the ∇B drift of a particle with charge q and perpendicular velocity v_{\perp} at a radial distance R at the equator.
(e) Compare the equations for the curvature drift and the ∇B drift at the equator.
4. A particle is trapped in a magnetic mirror field given by

$$
B_{z}=B_{0}\left[1+\left(\frac{z}{L}\right)^{2}\right]
$$

and has a total kinetic energy $w=m v^{2} / 2$ and pitch angle α at $z=0$. Find the oscillation frequency in terms of L, w, and α.

