PHYS:7730 Homework #4

Reading: Sridhar and Goldreich, ApJ **432**:612 (1994) Toward a Theory of Interstellar Turbulence. I. Weak Alfvenic Turbulence

Due at the beginning of class, Thursday, February 17, 2022.

1. Turbulence in a Coffee Mug

The Reynolds number at a given scale L is defined by

$$\operatorname{Re} \equiv \frac{LU}{\nu},$$

where L is the scale length, U is the velocity of the fluid flow at that scale, and ν is the kinematic viscosity of the fluid. The Reynolds number of a given turbulent flow is typically computed with $L = L_0$ and $U = U_0$, where L_0 is the driving scale length and U_0 is the driving velocity at that driving scale.

- (a) For a fixed driving scale velocity U_0 , how does the Reynolds number depend on the scale L. Express your answer in terms of L, L_0 , U_0 , and ν .
- (b) Compute the Reynolds number in a hot cup of coffee: Consider driving turbulence in a coffee mug with diameter $L_0 = 10$ cm, stirring with a velocity U_0 such that the spoon circles the coffee cup once in 2 s. The kinematic viscosity of water at 90°C is $\nu = 0.326 \times 10^{-6}$ m²/s. Compute the Reynolds number at the driving scale.
- (c) Is the flow in this hot coffee mug expected to be turbulent or laminar?
- (d) Compute the viscous scale in a hot cup of coffee: The viscous scale l_{ν} is determined by the scale at which the Reynolds number falls to Re = 1. For the same case of driving as in (b) above, compute the viscous scale, expressing your answer in mm.
- (e) Starting from when you begin to stir your coffee, estimate the time it takes for the turbulent cascade to reach the viscous scale. HINT: You may assume the flow energy at scale l is transferred to scale l/2 in the eddy turnaround time at scale l.

2. Weak MHD Turbulence in the Near-Earth Solar Wind

Consider a weak MHD turbulent cascade driven in the solar wind, with isotropic flucations driven with normalized parallel and perpendicular wavenumbers $k_{\parallel 0}\rho_i = k_{\perp 0}\rho_i = 10^{-5}$, where the ion Larmor radius is $\rho_i = 3 \times 10^6$ cm. The background magnetic field has amplitude $B_0 = 10^{-4}$ G, and the amplitude of the driven Alfvénic fluctuations is $\delta B_{\perp 0} = 10^{-5}$ G.

- (a) Assuming a weak MHD turbulent cascade (as defined by Sridhar and Goldreich, 1994), at what normalized perpendicular wavenumber $k_{\perp}\rho_i$ does the turbulent cascade transition from weak turbulence to strong turbulence?
- (b) What is the anisotropy k_{\parallel}/k_{\perp} at this transition to strong turbulence?
- (c) What is the ratio of the amplitude of the turbulent fluctuations at this transition scale to the background magnetic field?