PHYS:7730 Homework #5

Reading: (i) Goldreich and Sridhar, ApJ 438:763 (2006) Toward a Theory of Interstellar Turbulence. I. Strong Alfvénic Turbulence (ii) Boldyrev, PRL 96:115002 (2006) Spectrum of Magnetohydrodynamic Turbulence

Due at the beginning of class, Thursday, February 24, 2022.

1. Properties of Incompressible MHD Equations (cgs units)

The incompressible MHD equations in the symmetrized Elsässer form are given by

$$\frac{\partial \mathbf{z}^{\pm}}{\partial t} \mp \mathbf{v}_A \cdot \nabla \mathbf{z}^{\pm} = -\mathbf{z}^{\mp} \cdot \nabla \mathbf{z}^{\pm} - \nabla P / \rho_0,$$
$$\nabla \cdot \mathbf{z}^{\pm} = 0$$

where $\mathbf{z}^{\pm}(x, y, z, t) = \mathbf{v} \pm \delta \mathbf{B}/\sqrt{4\pi\rho_0}$ are the Elsässer fields given by the sum and difference of the velocity fluctuation \mathbf{v} and the magnetic field fluctuation $\delta \mathbf{B}$ expressed in velocity units.

(a) For a volume integration over all space where you may assume $\mathbf{z}^{\pm} \to 0$ and $p \to 0$ as $\mathbf{r} \to \infty$, show that the energy of one of the Elsasser fields

$$E^+ = \int d^3 \mathbf{r} \rho_0 \frac{|\mathbf{z}^+|^2}{2}$$

is a conserved quantity.

(b) Express the conservation of total energy

$$E = \int d^3 \mathbf{r} \frac{\rho_0}{2} (|\mathbf{v}|^2 + |\mathbf{b}|^2)$$

and conservation of cross helicity

$$\mathcal{H}_C = \int d^3 \mathbf{r} \frac{1}{2} (\mathbf{v} \cdot \mathbf{b})$$

in terms of the Elsässer fields \mathbf{z}^{\pm} .

Note that $\mathbf{b} = \delta \mathbf{B} / \sqrt{4\pi\rho_0}$ is the magnetic field perturbation converted to velocity units.

2. Strong MHD Turbulence in the Inertial Range of Near-Earth Solar Wind Turbulence

Turbulence in the solar wind can be modeled by strong, isotropic driving with driving amplitude $\delta B_{\perp 0} \simeq B_0$ at an isotropic driving scale $L_0 = L_{\perp 0} = L_{\parallel 0} = 2 \times 10^6$ km. The mean magnetic field has a magnitude $B_0 = 10^{-4}$ G, the ion temperature is typically $T_i \simeq 4.5 \times 10^4$ K, and the ion number density is $n_i = 20$ cm⁻³. These parameters yield a thermal ion Larmor radius of $\rho_i \simeq 3 \times 10^1$ km. The inertial range of strong MHD turbulence is the range $k_0 \rho_i < k_{\perp} \rho_i < 1$, where the *isotropic driving wavenumber* is given by $k_0 = 2\pi/L_0$ (keep the 2π here).

- (a) What is the predicted anisotropy k_{\parallel}/k_{\perp} when the cascade reaches the ion scale at $k_{\perp}\rho_i = 1$ assuming the GS95 model?
- (b) What is the predicted anisotropy k_{\parallel}/k_{\perp} when the cascade reaches the ion scale at $k_{\perp}\rho_i = 1$ assuming the B06 model?
- (c) What is the predicted anisotropy in the perpendicular plane k_i/k_{\perp} when the cascade reaches the ion scale at $k_{\perp}\rho_i = 1$ assuming the B06 model?

- (d) Compute the amplitude of the perpendicular magnetic field fluctuations relative to the mean magnetic field $\delta B_{\perp}/B_0$ at the ion scale at $k_{\perp}\rho_i = 1$ assuming the GS95 model.
- (e) Compute the amplitude of the perpendicular magnetic field fluctuations relative to the mean magnetic field $\delta B_{\perp}/B_0$ at the ion scale at $k_{\perp}\rho_i = 1$ assuming the B06 model.
- (f) The one-dimensional energy spectrum $E(k_{\perp})$ as a function of k_{\perp} , in proper energy density units (meaning we include the factor of $\rho_0/2$), can be integrated over a range of perpendicular wavenumbers $k_{\perp 1} \leq k_{\perp} \leq k_{\perp 2}$ to yield the energy density ΔE in that range, given by

$$\Delta E = \int_{k_{\perp 1}}^{k_{\perp 2}} dk_{\perp} E(k_{\perp})$$

where

$$E(k_{\perp}) = \frac{\rho_0}{2} \frac{[v_{\perp}(k_{\perp})]^2}{k_{\perp}}.$$

Given the details of the strong turbulent cascade in the solar wind above, compute the energy density contained in the GS95 turbulent cascade model over the perpendicular wavenumber ranges (i) $10^{-4} < k_{\perp} \rho_i < 10^{-3}$,

(ii)
$$10^{-1} < k_{\perp} \rho_i < 1$$

Please provide your answer in cgs units of $ergs/cm^3$. You may assume that the turbulent fluctuations are Alfvénic.