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Basic Equations and Models

Abstract. This chapter presents the basic theoretical background of collisionless shock physics.
It states the basic process of shock formation as the growth of a small disturbance in the plasma by
the action of the intrinsic nonlinearity of flow, independent of the cause of the initial disturbance. The
latter can be an external driver like a piston or a blast, it can also be an internal instability. Shocks
form when nonlinearity causes steeping (or steepening) of the disturbance in space and some pro-
cess exists which prevents breaking of the steep wave. Such processes are of dissipative or dispersive
nature and are discussed in ascending importance. An intermediate step is the evolution of solitary
waves based on the Sagdeev pseudo-potential. After this fundamental discussion, the plasma kinetic
equations are given and the Rankine-Hugoniot jump conditions at shocks are derived with the shock
solutions explicitly given. Critical Mach numbers are defined beyond which dissipation is unable to
prevent wave breaking. The relevant wave instabilities causing initial disturbances, dispersion and
dissipation are discussed at length. Transport ratios are given, and anomalous transport is reviewed.
Finally, shock particle reflection is identified as the basic process of shock stabilisation prevent-
ing breaking. The last section provides a cursory and incomplete briefing on numerical simulation
techniques.

3.1 Wave Steeping

Shocks have a certain width ∆ and a certain jump in density N, temperature T , pressure P
and magnetic field B across this width from a given upstream value to a downstream value.
This jump is by no means infinitesimal. At the contrary it is usually several times the
upstream value in magnitude. Thus, looked at as a wave, a shock is a highly nonlinear
wave structure of wavelength ∆ with amplitude that cannot be neglected compared with
the upstream value. Therefore, the basic equations describing a shock cannot be linearised,
as is usually done in considering wave phenomena. These equation must be solved in their
full nonlinearities. This, however, is barely possible and can be done analytically only in
very rare cases, which usually are not of interest. On the other hand, shocks evolve inside
the plasma from small disturbances. It is thus reasonable to ask for the nonlinear evolution
of such a small harmonic disturbance in order to learn, how a disturbance can evolve into
a very large amplitude shock ramp.

3.1.1 Simple Waves: Steeping and Breaking

The simplest way to do this, is to consider the evolution of so-called simple waves [see,
e.g., Witham, 1966]. Simple waves are one-dimensional sinusoidal disturbances of the
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plasma velocity of the form V (x) = Asinkx moving on the plasma background at speed c.
The total derivative of this disturbance is given by

dV
dt

≡ ∂V
∂ t

+V
∂V
∂x

= 0 (3.1)

and in the absence of any forces and friction is assumed to vanish. This has the mean-
ing that, sitting on the crest of the disturbance and moving with it, one does not see any
variation. Hence this is the equation which describes the evolution of the disturbance as
long as no friction or other force comes into play which in the initial state is a reasonable
assumption.

Let us now investigate, how such a disturbance will evolve when it propagates through
the plasma. Clearly, during propagation the main effect on the shape of the disturbance
arises from the second nonlinear term, which can be written as V k coskx. Inserting for V
this becomes 1

2 sin2kx. Hence, the nonlinear term in the above Eq. (3.1) generates har-
monic sidebands of half wavelength and half the amplitude of the original wave. These
waves, by the same mechanism, also generate sidebands on their own, now at quarter orig-
inal wavelength and amplitude, and so on with increasingly shorter wavelengths. The total
amplitude is the superposition of all these sideband harmonics

Vk(x) = ∑
l

A
2l sin2lkx, (l = 0,1,2, . . .) (3.2)

All these waves and sidebands propagate at the same velocity c. This can be easily seen
when, for propagating waves, replacing kx → k(x − ct) in the above expression. They
locally superpose and add to the wave amplitude. Because ever shorter wavelengths con-
tribute, the wave steepens until the gradients become so steep that other processes take
over. If this does not happen, the wave will turn over and break.

This is illustrated in Figure 3.1 in the co-moving frame of a sinusoidal wave. The lower
left part of the figure shows the nonlinear mechanism. Since the velocity is largest at the
maxima it speeds up the motion of the maxima with respect to the remaining parts of the
wave profile. Moreover, the actions on the positive and negative maxima are oppositely
directed, and the wave starts forming a ramp corresponding to a shock front. This happens
at time tb. For times t > tb the wave will turn over and collapse. This can be prevented only
by additional processes which set on when the wavelength of the ramp becomes so short
that in Eq. (3.1) terms of higher-order gradients in the velocity must be taken into account.

Equation (3.1) can in fact be understood as the lowest order equation describing the
evolution of a wave packet of wave number k. In general, in the wave frame of reference
its right-hand side is a function F(V ) that can be expanded with respect to V . The first
higher-order term in this expansion turns out to be of second order in the spatial derivative
∇ = x̂∂x, where x̂ is the unit vector in the direction of x. The next higher-order term is third
order in ∇, and so on. Up to third order the resulting equation then reads

∂V
∂ t

+V
∂V
∂x

=
∂
∂x

D
∂V
∂x

−β ∂ 3V
∂x3 + · · · (3.3)
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Figure 3.1: Top: Schematic of the steeping and wave breaking phenomenon, illustrated for three successive
times t1, t2, t3. At t2 the wave has steepened to maximum, and in t3 it collapses in the absence of any retarding
effects. Bottom: steeping and final breaking of an initial sinusoidal (simple) wave. Bottom left: Initial wave form
in wave frame showing the nonlinear action of the wave on its own shape. Bottom right: Calculation of wave
form steeping in a shallow fluid of depth h [after Zahibo et al, 2007]. The wave profile is shown at the initial time
t0, intermediate time t1, and breaking time tb when the wave starts turning over. Steeping of the profile is well
expressed.

The first term on the right is a diffusive term with diffusion coefficient D(x). The third
term with arbitrary coefficient β is the lowest-order contribution of wave dispersion to
the evolution of the wave shape and amplitude. This can be most easily seen when taking
the linearised equation, assuming V to be a small disturbance only of the wave speed c,
neglecting the nonlinearity in the second term on the left by approximating it with c∇V ,
and subsequently Fourier analysing for a harmonic perturbation V = Aexp i(kx−ωt) with
wave number k and frequency ω . This procedure yields (for constant D) the following
dispersion relation

ω − kc+ k3β = −ik2D (3.4)

On the left of this equation there is the relation between the frequency ω and wave num-
ber k, while on the right appears an imaginary term that depends on the diffusion coeffi-
cient D and the square of the wave number k. Imaginary terms in frequency imply damp-
ing. Hence, as we noted above, the second-order spatial derivative term in Eq. (3.3) corre-
sponds to diffusive dissipation of flow energy, while (for real β ) the third term in Eq. (3.3)
causes the wave to disperse, i.e. waves of different wave-numbers, respectively different
wavelengths, propagate at different phase velocities.
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3.1.2 Burgers’ Dissipative Shock Solution

Returning to the nonlinear equation (3.3), we can thus conclude from the above analysis
that a wave, if not breaking, will steepen so long until either the diffusive or the dispersive
terms on the right start competing with the nonlinearity, in which case the wave may
assume a stationary shape that is balanced either by diffusion or by dispersion. Diffusion
implies balance by real dissipation with energy transformed into heat, while dispersion
implies that the ‘dangerous’ short wavelength waves, which cause the steeping, either run
the wave out or do not catch up with the wave when the slope of the wave profile exceeds
a certain steepness. In the dispersive case the wave will either exhibit short wavelength
fluctuations in front of the steepened profile or behind it, depending on whether the shorter
wavelength sidebands are retarded or accelerated. However, we can also conclude that
dispersion alone should be unable to generate a shock since, in the simple form discussed
here, it does not produce irreversible dissipation and hence no heating and increase in
entropy. For a shock profile to be created, some kind of diffusive process will be necessary.

Stationary Burgers Equation

Equation (3.3) allows to distinguish two extreme cases. The first case is that of purely
diffusive compensation of the nonlinear steeping. In this case the dispersive term can be
neglected, and one obtains the Burgers equation

∂V
∂ t

+V
∂V
∂x

= D
∂ 2V
∂x2 (3.5)

which is a non-linear diffusion (or heat conduction) equation. In contrast to the ordinary
linear heat conduction equation, the Burgers equation possesses stationary solutions due
to the above mentioned compensation of diffusive spread by nonlinear steeping. These
stationary solutions can be found when transforming to a coordinate system moving with
the wave by introducing the new coordinate y = x− ct. Then Burgers’ equation becomes

D
∂ 2V
∂y2 = (V − c)

∂V
∂y

(3.6)

We are interested only in solution which are regular at infinity with vanishing derivatives.
Introducing the variable V ′ =V −c the first integral is easily obtained. Integrating a second
time the solution found is then

V
c

= 1− tanh
(

x− ct
2D/c

)
(3.7)

The form of this solution is a typical shock ramp which is displayed in Figure 3.2. The
ramp is sitting on the wave velocity c. Its width is ∆ = 2D/c. The shock solutions pro-
duced by Burgers’ equation are thus propagating non-oscillatory shocks; they are simple
stationary constant amplitude ramps of the sort of tsunamis. We should, however, keep in
mind that they are produced solely by nonlinear steeping and its compensation through
diffusion. When the latter is large, the shock will be steep; in the opposite case it will be a
flat ramp only, and its relative height is a function of its width.
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Figure 3.2: The stationary solution of the Burgers equation is a smooth shock ramp of width ∆ = 2D/c, depend-
ing on shock velocity c and diffusion coefficient D.

Time-Dependence

Since Burgers’ equation is an ordinary diffusion equation it can be solved by the usual
methods of treating heat conduction evolving from some initial state. Such an investigation
is necessary in order to justify that the stationary state of the shock-ramp Burgers solution
can indeed be reached by evolution out of the initial state V0. To this end one transforms
the time-dependent Burgers equation (3.5) through introduction of a new variable φ via
V = −2D(∂ lnφ/∂y) into the common form of a diffusion equation ∂φ/∂ t = D∂ 2φ/∂y2,
which has the commonly known solution

φ(y, t) =
1

(4πDt)
1
2

∫ ∞

−∞
dη exp

[
− (y−η)2

4Dt
− 1

2D

∫ η

0
V0(τ)dτ

]
(3.8)

The initial disturbance satisfies the condition of convergence
∫ y

0 dy′V0(y′) ≤const · y for
y → ∞, which yields the requirement that

∫ ∞
−∞ dy′V0(y′) = Θ < ∞ as well as the time-

asymptotic solution

V (y, t → ∞) ≃−2D
d
dy

ln G
[

y

(4Dt)
1
2

]
(3.9)

The dummy function G(x) is a transformed version of the function φ that is given by
π 1

2 G(x) = e−Θ/4D ∫ x
−∞ dηe−η2

+ eΘ/4D ∫ ∞
x dηe−η2 . Figure 3.3 shows this asymptotic pro-

file of Burgers shock-ramp solution. The characteristic shape of this solution contains a
smooth wavelike increase up to a flat plateau, followed by the shock ramp and a smooth
transition to the undisturbed state. The ramp is moving to the right in the direction of the
original wave propagation. This is seen from the time dependence of the crest of the ramp.
Clearly, most shock transitions in space do not exhibit this smooth rise inside the down-
stream region of the shock, indicating that the Burgers solution has pure model character
which does not really confirm with the plasma reality.
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Figure 3.3: The time-asymptotic Burgers’ shock solution Eq. (3.9) which evolves from the initial disturbance
V0 through steeping and dissipative ramp formation after a given diffusive time at a location which is determined
by the time t and diffusion coefficient D. The characteristic shape of this solution contains a smooth wavelike
increase up to a flat plateau followed by the shock ramp and a smooth transition to the undisturbed state. The ramp
is moving to the right in the direction of original wave propagation. This is seen from the time dependence of the
crest of the ramp. Clearly, most shock transitions in space do not exhibit this smooth rise inside the downstream
region of the shock, indicating that the Burgers solution has pure model character which does not really confirm
with the plasma reality.

3.1.3 Korteweg-de Vries Dispersion Effects

Balancing the nonlinearity with the help of dissipation is one possibility. The remaining
possibility which in the absence of dissipation becomes the dominant, is balancing nonlin-
earity with dispersion. In this case we can neglect the diffusion term in Eq. (3.3) to obtain
the so-called Korteweg-de Vries equation1

∂V
∂ t

+V
∂V
∂x

+β ∂ 3V
∂x3 = 0 (3.10)

Similar to Burgers’ equation, the Korteweg-de Vries equation also allows for stationary
localised solutions. Such solutions are restricted to a finite spatial interval because disper-
sion does not cause irreversible effects. As before we assume that the stationary solution
moves at speed c, and we introduce the co-moving coordinate y = x− ct, this time mea-
sured from the centre of the localised disturbance. The Korteweg-de Vries equation then
transforms into the third order ordinary differential equation

(V − c)
∂V
∂y

+β ∂ 3V
∂y3 = 0 (3.11)

1It might be of interest to note that to find a method that solves this general time-dependent equation ana-
lytically took more than a century, and for this purpose it was necessary to develop the whole apparatus of
non-relativistic quantum mechanics. This was done in a seminal paper by Gardner et al [1967].
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Solution of this stationary equation requires the prescription of boundary conditions at
y → ± ∞ for which, because in the non-dissipative case no ramp can be formed, we choose
V = ∂V/∂y = 0. It can be shown by substitution that the solution is the function

VKdV (x− ct) = 3csech2
[√

c
β

(x− ct)
2

]
(3.12)

This function is a so-called soliton solution; it describes a stationary bell-shaped solitary
wave pulse propagating at velocity c along x without any change of form. The width of
this pulse is ∆ = 2

√
β/c and depends on the velocity c and the dispersion parameter β in

such a way that the faster the pulse moves, the narrower the pulse becomes. In addition
there is a distinct relation between the amplitude A of the pulse and its width

∆ = 2(3β/A)
1
2 (3.13)

from where it follows that large amplitude Korteweg-de Vries solitons are fast and nar-
row. Like in the case of the Burgers equation, the Korteweg-de Vries equation is a model
equation which results from the dispersive properties of nonlinear waves. However, it is
interesting that it can be derived for real problems arising in plasma wave propagation, and
several variants of it have in the past been applied to the plasma. Hence, in describing the
nonlinear evolution of plasmas it is a more realistic model than Burgers’ equation which is
simply a consequence of the strongly dispersive and practically dissipation-free properties
of plasmas.

The stationary Korteweg-de Vries equation can have a whole chain of such solitons
with the solitons having completely different amplitudes and widths. These solitons have
the interesting property that they can pass through each other during mutual encounters
without having any effect on their widths and amplitudes; only the phases and spatial posi-
tions of the waves from which the solitons form will change during the collision. The
question of how these chains of solitons are produced is a question that can be answered
only when solving the time-dependent Korteweg-de Vries problem imposing a certain ini-
tial condition similar to that imposed above on the time-dependent Burgers equation. In
the case of the time-dependent Korteweg-de Vries equation the solution cannot be found
in such a simple way, however. Solving it rather constitutes a major mathematical problem
which requires solving an equivalent Schrödinger equation [Gardner et al, 1967]. It turns
out that the soliton amplitudes in the chain which solves the Korteweg-de Vries equation
are related in some manner by an infinite set of invariants of the Korteweg-de Vries equa-
tion. In addition, the time-dependent Korteweg-de Vries equation also supports wave trails
which accompany the solitons forming an oscillatory (turbulent) background of spatially
dependent amplitudes on which the solitons propagate.

Clearly, these soliton chains are no shocks; they are wave pulses which after some
steeping time evolve into stationarity and are completely reversible practically not leaving
any effect on the plasma if one neglects the microscopic processes which take place in
the plasma. But this is precisely the door where the speculation comes in about such soli-
tons in collisionless plasma being the initial state of the formation of collisionless shocks.
Because, if one can manage a soliton in the chain to move so fast that its width becomes
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Figure 3.4: Top: Shape of Korteweg-de Vries solitons for different widths and amplitudes (labelled A1, A2, A3).
Solitons of large amplitude are narrower than those with smaller amplitude. Below: In the interaction between
two Korteweg-de Vries solitons of different speeds only the position changes while the collision has no effect on
amplitude or shape.

comparable to the intrinsic plasma scales, then the wave field of the soliton should dis-
tort the microscopic particle motion causing some kind of dissipation which necessarily
will turn the soliton into a shock wave by generating entropy and producing a difference
between the states upstream and downstream of the soliton. The soliton in this case bor-
rows from Burgers shock solutions, and mathematically the Korteweg-de Vries equation
regains the lost dissipative Burgers second-order term becoming a Korteweg-de Vries-
Burgers equation. This was, actually, the point Sagdeev [1966] made intrinsically in his
famous theory of shock formation in collisionless plasma.

3.1.4 Sagdeev’s Pseudo-potential

The Korteweg-de Vries equation is the ideal candidate for introducing one particular
notion that has become immensely important in soliton and shock research, the so-called
Sagdeev potential. The Sagdeev potential is a pseudo-potential introduced in order to solve
a certain class of nonlinear partial differential equations and to distinguish between soli-
tary wave and shock solutions of these equations. This method takes advantage of the
similarity of the first integral of the particular class of equations to the equation of motion
of a hypothetical particle in classical mechanics. Knowledge of the Sagdeev potential then
reduces the problem of solution to the mere discussion of the behaviour of a particle in the
pseudo-potential well.

The stationary Korteweg-de Vries equation (3.11) can be directly integrated once.
Applying the boundary conditions at infinity, the integration constant in the first integration
becomes zero yielding the nonlinear second-order differential equation
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Figure 3.5: A sketch of the Korteweg-de Vries Sagdeev pseudo-potential. Solutions exist only in the region
of S(V ) ≤0. The maximum soliton amplitude is just V = 3c. The minimum potential is at V = 2c. The dotted
line shows the path of a pseudo-particle for shock formation in presence of dissipation when it “steps down” the
potential well to approach the “minimum energy” state.

β ∂ 2V
∂y2 = V

(
c− 1

2
V
)

(3.14)

The similarity of this equation to Newton’s equation of motion of a pseudo-particle of
mass β in the force field given on the right-hand side is quite obvious. Here V is the
pseudo-spatial coordinate, and y is the pseudo-time. This equation can be solved by mul-
tiplying it with the pseudo-velocity ∂V/∂y, after which the right-hand side can be rep-
resented as the derivative of the Sagdeev pseudo-potential, S(V ), which in this case is a
function of the (real) velocity V . It becomes explicit in the pseudo-energy conservation law

β
2

(
∂V
∂y

)2
=

V 2

2

(
c− 1

3
V
)
≡−S(V ) (3.15)

after having integrated a second time and again applied the vanishing boundary conditions
at infinity. Because the left-hand side of this expression is a positive quantity, solutions
exist only under the condition that the Sagdeev pseudo-potential is attractive, i.e. is nega-
tive

S(V ) =
V 2

2

(
V
3
− c

)
< 0 (3.16)

and, as we already know, solutions can exist only in the region of velocity space where
V < 3c. Figure 3.5 shows a sketch of the Korteweg-de Vries Sagdeev potential. It vanishes
at V = 0 and V = 3c and has its minimum of S = −3c3/2 at V = 2c. In terms of energy
states a pseudo-particle (soliton) can assume any of the energy levels inside the negative
portion of the Sagdeev potential. The soliton with maximum amplitude V = 3c is at the
“highest” level S = 0. But there can be many solitons at this level with amplitudes between
0 and 3c. The “most stable” soliton at the “ground state” has minimum Sagdeev potential
and amplitude V = 2c, and there is only one soliton with such an amplitude. In the absence
of dissipation all these solitons are stable.
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The actual solutions (3.12) of the Korteweg-de Vries equation can then be found from
∂V/∂y =

√
−2S(V )/β by simple quadrature, solving the integral

y− y0 =
∫ V

0

dV

[−2S(V )/β ]
1
2

(3.17)

We do not further discuss the stationary solution of the Korteweg-de Vries equation; it is
but one example which can be solved by the Sagdeev potential method. In the literature
it has been demonstrated that a very large number of other nonlinear problems in plasma
related to solitary waves can be treated in the same way, sometimes under much more
complicated conditions and leading to different types of solitary solutions.

All these solutions are, however, dissipation free and do not directly lead to shock wave
solutions. As Sagdeev [1966] pointed out, they will turn into shock solutions whenever
anomalous processes at short wavelengths cause the appearance of some kind of anoma-
lous dissipation under the ideal conditions of non-collisionality.

This claim is a most important insight that can, however, be based only on the kinetic
theory of the microscopic interaction between waves and particles and waves and waves
in plasma far from thermal equilibrium, the so-called collective processes which dominate
the behaviour of high temperature plasmas in which shock waves are at home. The dot-
arrowed line in Figure 3.5 shows the presumable “path” of such a dissipative soliton in
the Sagdeev potential “energy” space. The soliton pseudo-particle will in this case step
down the potential, possibly in an oscillatory way. In the case when the system is open
and energy is continuously supplied it might reach a stationary shock state with shock
amplitude Vs or settle at the ultimate minimum of the Sagdeev potential. The dynamics of
this depends on the microphysics.

3.2 Basic Equations

Before discussing these processes and their relevance for shock wave formation, we need
to briefly introduce the equations which lie at the fundament of all these processes and
to discuss their macroscopic consequences. We will, in the present chapter, distinguish
between two approaches to the description of shocks, the theoretical and the numerical
approaches, respectively. The former deals with the average properties of collective plasma
behaviour and the investigation of wave growth from an infinitesimal perturbation up to
a large amplitude shock, the latter refers to the dynamics of macro-particles (as has been
described in Chapter 2) and is independent of the average equations as it simply solves
Newton’s equations of motion of the many macro-particles that constitute the plasma in
their self-consistent fields, where the fields are obtained from Maxwell’s equations of elec-
trodynamics. any final shock theory must combine both approaches because the fundamen-
tal basic equations cannot be solved analytically, while the numerical approach provides
data which cannot be understood without a follow-up theoretical investigation tailored to
serve the effects found in the numerical simulation experiments.
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3.2.1 Kinetic Plasma Equations

Collisionless shock waves represent the final result of collective interactions in which very
many particles and in addition the full electromagnetic fields are involved. It is thus quite
reasonable that they cannot be described by test particle theory which considers the motion
of non-interacting particles separate from other particles and fields. Test particle theory
can however be applied if one is not interested in the formation of shocks but instead in its
effect on small numbers of particles. This is used in the shock theory of charged particle
acceleration which will be the subject of Chapter 7.

Maxwell-Vlasov Equations

The basic equations on which shock physics is founded are the kinetic equations of a
plasma [cf., e.g., Montgomery & Tidman, 1964; Tidman & Krall, 1971, and others] or, at
the best, some of its simplifications, in addition to the full set of the equations of electro-
dynamics.

Since collisions can be neglected, and thus the Boltzmann collision term in the kinetic
equations is suppressed, these equations reduce to the (non-relativistic) Vlasov-Maxwell
set of equations

∂F±

∂ t
+ v ·∇F± +

e±
m±

(E+ v ×B) ·∇v F± = 0 (3.18)

where F± (v ,x, t) are the electron and ion phase space distributions, distinguished by the
respective + and − signs, which depend on the six-dimensional phase space composed of
velocity, v , and real space, x, coordinates. m+ ≡ mi and m− ≡ me are the ion and electron
masses, respectively; e+ = e is the ion charge, e− = −e electron charge, e the elementary
charge, and E(x, t), B(x, t) are the electromagnetic fields which are independent on veloc-
ity while being functions of space and time. Finally, ∇v ≡ ∂/∂ v is the velocity gradient
operator acting on the phase space distributions. These two Vlasov equations (3.18) are
coupled mutually and to the electromagnetic fields through Maxwell’s equations

∇×B = µ0ε0(∂E/∂ t)+ µ0 ∑
±

e±
∫

dv3F± v , ∇ ·B = 0

∇×E = −(∂B/∂ t), ∇ ·E = ε−1
0 ∑

±
e±

∫
dv3F±

⎫
⎬

⎭ (3.19)

The second term on the right in the first of these equations is the electric current density;
the term on the right in the last of these equations is the electric space charge density
(divided by the dielectric constant of vacuum, ε0). These equations already account for
the coupling of the field to the particles through the definition of the electric current and
particle densities as zero and first moments of the one-particle phase space distributions.

Shocks evolve from infinitesimal wave disturbances; one hence considers two different
states of the plasma with the physics of both of them contained in the above equations.
These two states are first the final average slowly evolving state of the fully developed
shock, and second the strongly time-dependent evolution of the infinitesimal disturbance
from the thermal level where it starts up to the formation of the shock. In the first state the
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shock possesses a distinct shock profile while in the second state one deals with initially
infinitesimal fluctuations. When the fluctuation amplitude approaches the shock strength
the two different ways of looking at the shock should ideally lead to the same result.
According to this distinction one divides all field and plasma quantities, A, into their slowly
varying averages, ⟨A⟩, and fast fluctuations, δA, superimposed on the averages according
to the prescription

A = ⟨A⟩+δA, ⟨δA⟩ = 0

The second part of this prescription breaks down when the fluctuations become very large
or non-symmetric, but it makes life easier to deal with zero averages of small fluctuations
as long as the fluctuation amplitude remains to be small. Frequently it is the only way of
extracting a solution from the above nonlinear and complex set of equations (3.18)–(3.19).

In what follows we will apply different simplifications to all these basic equations
referring to the last conditions of simplification. Only the last section of the present chapter
will, finally, deal with the numerical simulation technique which, in fact, will become the
most important tool in the investigation of shocks in the remaining three chapters of this
first part of the book.

Equations for Averages and Fluctuations

Let us for simplicity temporarily indicate the averages ⟨· · ·⟩ of the distribution functions
and fields by the subscript 0 on the unbraced quantities, and the fluctuations by small letters
f , e, b. Then, on applying the above prescription of averaging to the Vlasov equation, we
obtain the kinetic equation for the average distribution functions F±

0 (v ,x, t) in the form

∂F±
0

∂ t
+ v ·∇F±

0 +
e±
m±

(E0 + v ×B0) ·∇v F±
0 = − e±

m±

〈
(e+ v ×b) ·∇v f ± 〉 (3.20)

Here the average quantities are assumed to vary on much longer spatial and temporal scales
than the fluctuation scales such that the condition of averaging ⟨ f ,e,b⟩ = 0 remains valid.
This average Vlasov equation contains a non-vanishing pseudo-collision term on its right
which accounts for the effect of the correlations between the fluctuations and particles on
the average distribution. In contrast to the Vlasov equation, the Maxwell equations (3.19)
retain their form with the sole difference that the full distribution functions F± appearing
in the expression for the electric current density in Ampère’s law and in the space charge
term in Poisson’s equation are to be replaced by their average counterparts F±

0 , yielding

∇×B0 = µ0ε0(∂E0/∂ t)+ µ0 ∑
±

e±
∫

dv3F±
0 v , ∇ ·B0 = 0

∇×E0 = −(∂B0/∂ t), ∇ ·E0 = ε−1
0 ∑

±
e±

∫
dv3F±

0

⎫
⎬

⎭ (3.21)

In order to obtain equations for the fluctuations one subtracts the set of averaged equations
from the full set of equations and orders the terms for the fluctuation quantities f = F −F0,
e = E−E0, b = B−B0. This procedure leaves the Maxwell equations unchanged when all
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quantities appearing in them are replaced by the fluctuating quantities, and the fluctuating
Vlasov equation becomes

∂ f ±

∂ t
+ v ·∇ f ± +

e±
m±

(E0 + v ×B0) ·∇v f ± = − e±
m±

(e+ v ×b) ·∇v F±
0

− e±
m±

(e+ v ×b) ·∇v f ± +
e±
m±

〈
(e+ v ×b) ·∇v f ± 〉 (3.22)

Up to this stage the fluctuations are allowed to have arbitrarily large amplitudes; it is only
their scales which must be much shorter than the scales of the average field quantities.
This means for instance that the width of the shock transition regions should be much
larger than the wavelengths of the fluctuations.

The last equation is in fact the equation that describes the evolution of fluctuations.
however the coupling to the average quantities is still so strong in this equation that it
can be solved only together with the average equation. In particular the average “colli-
sion term” appearing on its right provides the greatest complications. It will therefore be
simplified considerably in treating real problems.

On the other hand, the “collision term” in the average equation is the term that is
responsible for anomalous dissipation and is thus the most interesting term in any theory
that deals with the evolution of shock waves. For a spectrum of properly chosen fluctua-
tions this term prevents large amplitude waves from indefinite steeping and breaking and
provides the required dissipation of kinetic energy, entropy generation, and shock stabili-
sation. In its general version given above it should contain the whole physics of the shock
including the complete collective processes which occur before real particle collisions
come into play.

However, the complexity of these equations is still too large for solving them. So one
needs further simplifications in order to infer about the behaviour of shocks. The simplest
and at the same time very effective simplification is to ask for the macroscopic conserva-
tion laws and the conditions of change of the plasma quantities across the shock transition
layer which are in accord with the above fundamental kinetic equations. These are the
magnetogasdynamic equations and the Rankine-Hugoniot jump relations.

3.2.2 Conservation Laws

Following the philosophy of simplification we will first, before asking for the internal pro-
cesses taking place in the shock transition, the generation of dissipation, particle reflec-
tion, entropy production etc., look into the global – i.e. large-scale – structure of a shock.
In order to do this we need consider only the global plasma and field quantities, density
⟨N⟩ = N0, flow velocity ⟨V⟩ = V0 respectively momentum density ⟨NV⟩ = N0V0, pres-
sure ⟨P⟩ = P0, magnetic field ⟨B⟩ = B0, electric field ⟨E⟩ = E0, current density ⟨j⟩ = j0,
entropy S and so on.

These quantities are all averages or result from average moments over the global dis-
tribution function ⟨F⟩ = F0. Since we will be dealing in the following only with average
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moments we suppress both the angular brackets and index 0. The prescription of taking
moment of order i is

Mi =
∫

dv3v iF (3.23)

where v i = v . . . v is understood as the i-fold dyadic product. The first three moments are
N =

∫
dv3F , NV =

∫
dv3v F , P = m

∫
dv3(v −V)(v −V)F . Clearly, the diagonal of the

pressure tensor P gives the average energy density and also defines the local temperatures
T∥, T⊥parallel and perpendicular to the average magnetic field. Operating in the usual way
with these definitions on the average Vlasov equation (3.20) produces the well-known full
– i.e. infinite – set of magnetogasdynamic equations for the infinite chain of moments of
F± for each particle species ± = e, i. The first two of them are

∂N±

∂ t
+∇ · (NV)± = 0 (3.24)

∂ (NV)±

∂ t
+∇ · (NVV)± +

1
m±

∇ ·P± =
e± N±

m±

(
E+V± ×B

)
+

∫
dv3v C ± (3.25)

where by C the pseudo-collision term on the right of Eq. (3.20) is meant. Because this
term conserves particle number (or mass) the zero moment of it vanishes identically and
does not contribute to the first (zero-order) of the above moment equations. Wave particle
interaction neither changes particle number nor mass density. These are strictly conserved
as is shown by the above particle umber conservation equation.

In the first order moment equation it produces a wave friction term that has the explicit
form

− 1
m±

{
1
µ0

∂
∂ t

⟨e×b⟩+∇ ·
[(

ε0

2
〈
e2〉+

1
2µ0

〈
b2〉

)
I−

(
ε0⟨ee⟩+ 1

µ0
⟨bb⟩

)]}
(3.26)

All these terms are in fact of nature ponderomotive force-density terms contributed by the
average wave pressure gradients; the first term results from the wave Poynting moment, the
second is the gradient of a pure isotropic wave pressure, the third is related to wave pres-
sure anisotropy. The inverse proportionality of this entire expression to the mass shows that
the main contribution is due to the electron momentum density equation. The effect on the
ions can be neglected as they are (in the non-relativistic case considered here) insensitive
to ponderomotive effects. We note in passing, that it is this term which while affecting the
motion of the electron gas will be responsible for the appearance of anomalous collisions,
anomalous resistivity and viscosity, which we will discuss at a later occasion.

The two above equations do not form a complete system of equations. The first con-
tains number density flux, the main constituent of the second equation which, as a new
entity, contains the pressure. For P one, in principle, can derive an energy conservation
(heat conduction) equation which would contain the new quantity of heat flux, the next
higher moment. On the other hand, one can replace the pressure equation that follows
from the energy conservation law, by equations of state, P(N,γ,T∥,T⊥), which express the
pressure tensor components through density, temperature, adiabatic coefficient γ etc. This
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is the usual procedure applied when investigating shock solutions. One should, however,
be aware of the fact that equations of state in non-equilibrium are merely approxima-
tions which hold under certain conditions of either isothermality – which does not apply
to shocks as they are not in thermal equilibrium – or adiabaticity. The latter condition is
quite reasonable in dealing with the fast processes taking part in the shock environment
when the flow passes across the shock front in a time so short that thermalisation becomes
impossible.

The idea is to apply the momentum equations to an extended shock that represents a
ramp in real space. In the spirit of our discussion in Chapter 2, the first step to do this
is assuming that the shock is a thin planar discontinuity that moves at a certain shock
velocity U in the shock normal direction n across the plasma. If we confine all the micro-
processes to the interior of the shock plane, i.e. if we go far enough away from the shock
plane upstream and downstream, then we can apply the above dissipation-free average
conservation laws to the shock and ask only for the differences in the plasma and field
parameters between downstream and upstream of the shock, trying to express the down-
stream values in terms of the undisturbed upstream flow and field values. In doing this, we
completely neglect the “pseudo-collision” terms on the right of these equations, since all
physics that is going on will be confined to the transition region as wide as it can be. For a
plane rigid stationary shock surface this assumption is good enough. However, when doing
so, with the above separate conservation laws for electrons and ions, we immediately run
into severe problems even in the simplest completely interaction-free case. The reason is
that electrons and ions because of their different mass behave completely differently while
at the same time cannot be treated separately as they are coupled through charge conserva-
tion and electrical neutrality and through their unequal contributions to the electric current
density and therefore to the fields, a difficulty that has been discussed by Woods [1971].

3.3 Rankine-Hugoniot Relations

In order to overcome this difficulty one is forced to further simplification of the conser-
vation equations by adding up the electron and ion equations [cf., e.g., Baumjohann &
Treumann, 1996, as for one of the many accounts available in the literature]. To this pur-
pose one must define new centre-of-mass variables

m = ∑
±

m± = mi

(
1+

me

mi

)
, N =

∑± m± N±

∑± m±
, V =

∑± m± (NV)±

∑± m± N± (3.27)

This leads to the magnetogasdynamic or MHD equations for a single-fluid plasma. Since
the equation of continuity remains unchanged from Eq. (3.24) it suffices to write down the
momentum conservation equation

∂ (mNV)

∂ t
+∇ · (mNVV) = −∇ ·P+ρE+ j×B (3.28)

where P = Pe + Pi is the total pressure tensor, and ρ is the electric charge density ρ =
e(Ni −Ne) which in quasi-neutral plasmas outside the shock is assumed to be zero such
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that the second term on the right containing the average electric field vanishes outside the
shock ramp. The last term in this equation is the Lorentz force written in terms of the
average current from Ampère’s law

µ0j = ∇×B (3.29)

The displacement current can be safely neglected because these equations hold only for
very slow variations with frequency smaller than the ion cyclotron frequency ω ≪ ωci =
eB/mi, scales much larger than the ion gyro-radius L ≫ rci = Vi⊥/ωci, and wave speeds
much less than the speed of light. Note that this equation is completely collisionless. If
we would have retained the pseudo-collision term on the right in the electron equation this
would simply have added an electron ponderomotive force term on the right.

In fact, together with Maxwell’s equations these equations are not yet complete in
a double sense. They have to be completed with appropriate equations of state for the
pressure components, as has been mentioned above, and they have to be completed by
a relation between the current and the average electric field that appears in Maxwell’s
equations, i.e. with an appropriate Ohm’s law. This is found by subtracting the electron
and ion momentum conservation equations and turns out to be quite complicated [cf.,
e.g., Krall & Trivelpiece, 1973]. In slightly simplified form the collisionless Ohm’s law
reads

E+V×B =
1

eN
j×B− 1

eN
∇ ·Pe +

me

e2N
∂ j
∂ t

(3.30)

Note that on the right only electron terms are contained in this expression. Also, an elec-
tron ponderomotive term – responsible for anomalous transport effects – would appear on
the right if we would retain the pseudo-collision term.

However, even in this form even though the system is non-collisional Ohm’s law is
still too complex for treating the conservation laws at a shock transition. The reason is that
the right-hand side introduces second order spatial derivatives into Faraday’s law through
the pressure gradient and current expressions. One therefore argues that for sufficiently flat
shock transitions the terms on the right can be neglected. This argument implies that one
must go far enough away from the shock into a region where any shock excited turbulence
has decayed away in order to apply global conservation laws to the shock. This can be
done when only the left-hand side in Ohm’s law is retained and the ideal MHD frozen-in
condition holds:

E = −V×B (3.31)

Assuming that the shock is plane and narrow as shown in Figure 3.6 such that any vari-
ations along the shock can be ignored and the sole variation is along the shock nor-
mal, Eqs. (3.28)–(3.31), the continuity equation and Maxwell’s equations become all one-
dimensional and can be integrated along n across the shock transition (with regular bound-
ary conditions at x = ± ∞). Applying the definition of the shock normal (2.3) in Chapter 2
and the prescription for the ∇-operator in Eq. (2.4) transforms these equations into a non-
linear algebraic system of equations for the jumps [. . .] of the field quantities
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Figure 3.6: A sketch of the planar thin (width ∆) shock geometry with n shock normal, upstream and down-
stream regions, bulk flow velocities and magnetic field vectors.

n · [NV] = 0

n · [mNVV]+n
[

P+
B2

2µ0

]
− 1

µ0
n · [BB] = 0

[n×V×B] = 0 (3.32)
n× [B] = 0

[
mNn ·V

{
V 2

2
+w+

1
mN

(
P+

B2

µ0

)}
− 1

µ0
(V ·B)n ·B

]
= 0

Here, for simplicity, the pressure has been assumed isotropic. The last equation is the
rewritten energy conservation equation, where w = cvP/kBN is the ideal gas enthalpy den-
sity, cv the specific heat, and kB Boltzmann’s constant. This system of equations is the
implicit form of the Rankine-Hugoniot conservation equations in ideal magnetogasdy-
namics (ideal MHD). In this version it contains all ideal MHD discontinuities of which
shock waves are a subclass, the class of solutions with a finite flow across the discontinu-
ity, compressions (in density), and increases in temperature T , pressure P, and entropy S
across the discontinuity in the transition from upstream to downstream.

3.3.1 Explicit MHD Shock Solutions

We are not interested in the full set of solutions of the above system of jump conditions
(3.32). We rather look for genuine shock conditions. This requires finite mass flux F =
NVn across the shock in the normal direction. The first of the Rankine-Hugoniot relations
(3.32) tells that the jump [F ] = 0. Hence F = const, and we must sort for solutions with
F ̸= 0, or N1Vn1 = N2Vn2, in order to be dealing with a shock.
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Introducing the specific volume V = (mN)−1, the whole system of jump conditions
can be factorised [Baumjohann & Treumann, 1996] and can be written in the form

F

(
F 2 − B2

n
µ0⟨V ⟩

){
F 4 +F 2

(
[P]

[V ]
− ⟨B⟩2

µ0⟨V ⟩

)
− B2

n
µ0⟨V ⟩

[P]

[V ]

}
= 0 (3.33)

In the one-fluid approximation magnetogasdynamic shock waves with F ̸= 0 are con-
tained in the expression in curly braces which still depends on the jumps in pressure [P]
and specific volume [V ] and thus on the energy conservation equation respectively the
equation of state. We will not discuss this equation further as in the following more insight
can be gained from explicit consideration of a few particular cases.

Under the special condition that the flow in the upstream Region 1 is along x (anti-
parallel to n) and the upstream magnetic field B1 = (B1x,0,B1z) is in the (xz)-plane, and
assuming F ̸= 0, the jump conditions Eqs. (3.32) simplify. Since V1, B1x, B1z, P1 are
known quantities, it is convenient to introduce normalised variables for the corresponding
downstream values

N2

N1
→ N2,

V2

V1
→ V2,

T1,2

mV 2
1 /2

→ T1,2,
B1,2√

µ0mN1V 2
1

→ B1,2

where the temperature is taken in energy units. Instead of it we may also use the corre-
sponding thermal speeds v1,2 which by the above normalisation are normalised to V1. This
then yields the following normalised Rankine-Hugoniot relations, in which Bn = const as
a consequence of the vanishing divergence of the magnetic field,

N2Vn2 = 1
Vn2Bz2 −Vz2Bn = Bz1

Bz2Bn −Vz2 = Bz1Bn (3.34)

2N2
(
v2

2 +V 2
n2
)
+B2

z2 = 2
(
1+ v2

1
)
+B2

z1

V 2
n2 +V 2

z2 +2Bz2Bz1 +5v2
2 = 1+2B2

z1 +5v2
1

The energy conservation equation yields the last in these expressions. There the enthalpy
is taken into account giving the factor 5 in front of the thermal velocities. These five equa-
tions can be combined into a third-order equation for one of the downstream unknown
quantities, for instance Vn2, expressed in terms of the upstream values

a3V 3
n2 +a2V 2

n2 +a1Vn2 +a0 = 0 (3.35)

where a0 = −B2
n[B2

z1 + B2
n(1 + 5v2

1)], a1 = 2B2
n(1 + 2B2

1 + 5v2
1)− 1

2 B2
z1, −a2 = 1 + 5v2

1 +

8B2
n + 5

2 B2
z1, a3 = 4. Below we discuss a few simple illustrative solutions of this equa-

tion.
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3.3.2 Perpendicular Shocks

For strictly perpendicular shocks we have Bn = 0, Bz1 = B1, a0 = 0, a1 = − 1
2 B2

1, −a2 =

1+5v2
1 + 5

2 B2
z1, a3 = 4. Equation (3.35) turns into a quadratic equation yielding the solution

Vn2 =
1
8

{
1+

(
1+

5
2

β1

)
B2

1 +

[(
1+

(
1+

5
2

β1

)
B2

1

)2
+2B2

1

] 1
2
}

=
1

N2
=

1
B2

(3.36)

Since the condition for a shock to exist is that the normal velocity Vn2 < 1 in Region 2, we
immediately conclude that in a perpendicular shock the density and tangential magnetic
field components in Region 2 increase by the same fraction as the normal velocity drops,
and this fraction is determined by the plasma-β ratio β1 = 2µ0N1T1/B2

1 in Region 1, where
T1 = Te1 +Ti1 is the total temperature. The condition on Vn2 implies that the Mach number
takes the form (now in physical units)

1 < M =
1

1+5β1/6
V1

VA1
=

1
1+5β1/6

MA (3.37)

Here MA is the Alfvén-Mach number which is the flow to Alfvén velocity ratio. In cold
plasmas or plasmas containing strong magnetic fields β ≪ 1, and the Mach number is
simply the Alfvén-Mach number. Conversely, in hot plasmas the Mach number becomes
about the ordinary gasdynamic Mach number.

For the increase in normalised temperature one finds accordingly

T2

T1
= 1+

4
5T1

[
N2

2 −1
2N2

2
+

1−N2

M 2
A

]
> 1 (3.38)

This is always larger than one. Perpendicular shocks cause plasma heating during shock
transition time and thus cause also increase in entropy

∆S ∝ ln
[

1
N2

(
T2

T1

) 1
γ−1

]
(3.39)

which holds under the ideal gas assumption.

The Critical Mach Number for Perpendicular Shocks

To show how the critical Mach number of a shock arises from the Rankine-Hugoniot rela-
tions we consider the strictly perpendicular case with vanishing upstream pressure P1 = 0.
The explicit jump conditions become very simple in this case:

N1V1 = N2V2

V1B1 = V2B2

N1V 2
1 +

B2
1

2µ0m
= N2V 2

2 +
P2

m
+

B2
2

2µ0m
(3.40)

1
2

V 2
1 +

B2
1

µ0mN1
=

1
2

V 2
2 +

γ
γ −1

P2

mN2
+

B2
2

µ0mN2
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Figure 3.7: Dependence of the downstream normalised flow V2/V1 and sound cs2 velocities on the upstream
Alfvénic Mach number for an ideal MHD perpendicular shock with zero upstream pressure P2 = 0. The crossing
of the two curves defines the critical Mach number which is MA = 2.76.

where B is the only existing tangential component of the magnetic field here, and γ = 5
3

is the adiabatic index (valid for fast = adiabatic transitions across the shock). This is
the simplest imaginable case of an MHD shock, and it is easy to solve these equations.
Figure 3.7 shows the resulting relation between the normalised downstream flow V2/V1 and
downstream sound speed cs2/V1 =

√
5P2/3mN2/V1 as function of the upstream Alfvénic

Mach number MA = B1/V1
√

µ0mN1.
The two curves in the figure cross each other at the critical Mach number which in

the present case is Mcrit = 2.76 and where the downstream sound speed exceeds the flow
speed. Below the critical Mach number the downstream flow is still supersonic (though
clearly sub-magnetosonic!). Only above the critical Mach number the downstream flow
velocity falls below the downstream sound speed. There is thus a qualitative change in the
shock character above it that is not contained in the Rankine-Hugoniot conditions.

3.3.3 Parallel Shocks

This case is not well treated in magnetogasdynamics conditions as we have explained
earlier. Since the magnetic field is normal to the shock it is theoretically unaffected by
the presence of the shock which therefore should become purely gasdynamic. In the a-
bove perpendicular shock jump conditions one can for this case simply delete the mag-
netic terms. However, this does not cover the real physics involved into parallel shocks
which must be treated on the basis of kinetic theory and with the simulation tool at
hand.
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3.3.4 High Mach Numbers

This limit applies when the ram pressure of the flow is very high and exceeds the ther-
mal pressure. Then all terms including v1,2 can be neglected. Moreover, one usually also
neglects the magnetic field in this case, and the shocks become then purely flow deter-
mined with Vn2 = N−1

2 ∼ B−1
2 ≃ 1

4 , suggesting that both, the magnetic field and density
should not increase by more than a factor of 4.

In fact, the observations in interplanetary space indeed confirm that all shocks that
have been observed there are weaker than this. However, again, this reasoning does not
really apply in plasmas because at very high Mach numbers other effects come into play
which are connected to the kinetic nature of a plasma, electrodynamic effects, and the
differences in the electron and ion motions. Ultimately relativistic effects must be taken
into account. These become susceptible first for electrons, increasing their mass but at
the same time distinguishing them even stronger from the inert ions, because the electron
dynamics changes completely in the relativistic domain.

In addition, high Mach number shocks are supercritical and even though it seems
that one could treat them in the simple way as has been done here, the kinetic effects
involved into their physics inhibit such a simplistic interpretation of high-Mach number
shocks. High-Mach number shocks readily become turbulent, exciting various kinds of
waves which grow to large amplitudes and completely modify the environment of the
shock which cannot be treated any more as quiet. In such a turbulent environment shocks
assume intermittent character losing stationarity or even identity as a single ramp which
the flow has to surpass when going from Region 1 to Region 2. Occasionally the dis-
tinction between two regions only may become obsolete. There might be more than one
transition regions, subshocks form, the ramp will evolve its own structures. And these
structures come and go, are temporarily created and damp away to make space for the
evolution of other new structures. Probably, high Mach number shocks exist only tem-
porarily at one and the same spatial location. They are highly dynamical, changing their
nature, structure, shape, steepness and intensity along the surface of the shock such that
they strongly deviate from one-dimensionality and even from two-dimensionality. They
are time-dependent, reforming themselves continuously in different regions of space and
thus cannot be described by a simple plane shock geometry of the kind we have assumed.
Later in this book at the appropriate place we will consider moderately high Mach number
shocks when dealing with the extended class of supercritical shocks.

Oblique Shocks

Real shocks do not belong neither to the very particular classes of parallel nor perpen-
dicular shocks. Real shocks are oblique in the sense that the upstream magnetic
fields B1 are inclined with respect to the shock normal n. As mentioned earlier, one distin-
guishes between quasi-parallel and quasi-perpendicular shocks depending on the shock
normal angle ΘBn being closer to 0◦ or 90◦. Since we will treat the properties of these
shocks separately in some following chapters, we are not going to discuss them at this
place.
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Shocks around finite size obstacles will never be really plane. The best approxima-
tions to plane shocks are interplanetary shocks. Bow shocks in front of magnetised plan-
ets, comets or other bodies are always curved. They assume all kinds of shock properties
along their surfaces reaching from perpendicular to oblique and parallel. Curving their
surface implies that the shock normal changes its angle with respect to the direction of the
upstream flow V1.

Since shocks evolve for Mach numbers Mms =V1/cms > 1 they occupy a finite volume
of space only. For shock formation the Mach number based on V1n normal to the shock is
relevant. Defining the flow normal angle cosΘVn = |V1 · n|, formation of a bow shock in
front of a finite sized object like a magnetosphere is restricted to flow normal angles

ΘVn < cos−1(M−1
ms

)
(3.41)

For instance, at a nominal Mach number Mms ∼ 8 shocks exist for angles ΘV n < 82.8◦.
Thus the opening angle of a shock decreases with Mach number. The shock surface around
blunt obstacles like the magnetospheres of a Earth and Jupiter has hyperbolic shape away
from the shock nose, thereby keeping the angle θV n about constant. In fact, observations
in space near Earth and Jupiter have shown the shock to exist very far outside the ecliptic
plane.

3.4 Waves and Instabilities

It has been mentioned several times that shocks evolve from waves mainly through nonlin-
ear wave steeping and the onset of dissipation and dispersion. Moreover, it is the various
modes of waves that are responsible for the generation of anomalous dissipation, shock
ramp broadening, generation of turbulence in the shock environment and shock ramp itself,
as well as for particle acceleration, shock particle reflection and the successive effects. The
idea is that in a plasma that consists of electrodynamically active particles the excitation
of the various plasma wave modes in the electromagnetic field as collective effects is the
easiest way of energy distribution and transport. There is very little momentum needed in
order to accelerate a wave, even though many particles are involved in the excitation and
propagation of the wave, much less momentum than accelerating a substantial number of
particles to medium energy. Therefore any more profound understanding of shock pro-
cesses cannot avoid bothering with waves, instabilities, wave excitation and wave particle
interaction.

3.4.1 Dispersion Relation

Waves are a very general phenomenon of most media. However, they do not fall from sky.
Instead, they evolve from small thermal fluctuations in the medium. Such fluctuations are
unavoidable. In order for a wave to propagate in the medium a number of conditions need
to be satisfied, however. The first is that the medium allows for a particular range of fre-
quencies ω and wave-vectors k to exist in the medium; i.e. it allows for eigen-oscillations
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or eigenmodes. These ranges are specified by the dispersion relation D(ω ,k, . . .) = 0
which formulates the condition that the dynamical equations of the medium possess small-
amplitude solutions. This dispersion relation is usually derived in the linear infinitesimally
small amplitude approximation. However, nonlinear dispersion relations can sometimes
also be formulated in which case D(ω ,k, |a|) depends on the fluctuation amplitude |a| as
well.

Plasmas are electromagnetically active media with the electromagnetic field governed
by Maxwell’s equations. Since there the plasma properties enter only through the material
equations (i.e. current density j, space charge ρ), the dispersion relation is most easily
obtained from them. Moreover both, the current and space charge in a plasma, depend on
the number densities in the plasma; i.e. the space charge variation can be included into
the current variation. It is then simple matter to derive the general electromagnetic wave
equation for the fluctuating fields, e, on a much slower evolving background, ⟨B,E⟩,

∇2e−∇(∇ · e)− ε0µ0
∂ 2e
∂ t2 = µ0

∂ j
∂ t

(3.42)

The magnetic fluctuation field b is completely determined from Maxwell’s equations, and
the current appearing on the right is expressed conveniently through the space-time depen-
dence of the fluctuation-conductivity tensor σσσ(x, t) as

j(x, t) =
∫

dx′
∫ t

−∞
dt ′σσσ

(
x−x′, t − t ′

)
· e (3.43)

an expression that implicitly accounts for causality due to the integration over the entire
past of the current up to the observation time t. Since the fluctuation current is a functional
of the complete set of particle distribution functions (through the zero, N, and first, NV,
moments) the complete evolution of the fluctuations up to a large amplitude shock is con-
tained in these expressions. However, for practical purposes one linearises this equation by
assuming that the fluctuation-conductivity tensor is, to first order, independent of the fields
e,b. The above equation (3.42) becomes linear under this assumption and can be Fourier
analysed, with wave vector k and frequency ω , yielding (with c2 = 1/µ0ε0 the square of
the speed of light)

[(
k2 − ω2

c2

)
I−kk− iωµ0σσσ(ω ,k)

]
· e(ω ,k) = 0 (3.44)

The quantities in this expression satisfy the following symmetry relations e(−ω ,−k) =
e∗(ω ,k), σσσ(−ω ,−k) = σσσ∗(ω ,k). Setting the expression in brackets to zero yields the
equation for the linear eigenmodes ω = ω(k). For convenience we define the dielectric
tensor

εεε(ω ,k) ≡ I+
i

ωε0
σσσ(ω ,k) (3.45)
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which satisfies the same conditions as the fluctuation conductivity. Then we can finally
write the general dispersion relation in the compact form as the determinant of the brack-
eted expression

D(ω ,k) ≡ Det
[(

k2 − ω2

c2

)
I−kk+ εεε(ω ,k)

]
= 0 (3.46)

The particular linear physics of the plasma is contained in the dielectric tensor through
the conductivity. (We note in passing that for any classical medium the above conditions
together with the dispersion relation are the equivalent of the well-known Kramers-Kronig
relations of causal fluctuations in quantum mechanics [see, e.g., Landau & Lifshitz, 1980].)
In addition to the solution of the dispersion equation (3.46) the first problem consists in
the determination of the linear fluctuation conductivity tensor which enters the dielectric
tensor (3.45). For this one needs to go to the appropriate plasma model. However, we
repeat that without this linear step one cannot obtain any susceptible information about the
nature of a shock wave. This we have explained in breadth in Chapter 2 and the preceding
sections.

The linear dispersion relation Eq. (3.46) has plane wave mode solutions of the form
∝ exp i(k ·x−ωt), which are eigenmodes of the particular plasma model which is de-
scribed by the kinetic equations (or appropriate simplifications of the kinetic equations)
of the plasma. The dynamics of the plasma enters through the wave conductivity tensor
which can be determined from the Fourier transformed expression for the current density

j(k,ω) = ∑± e±

∫
dv3v f ± (v ,k,ω) = σσσ(k,ω) · e(k,ω) (3.47)

as the first moment of the fluctuating part f ± of the distribution function F± . Solving for
the integral and expressing f ± through the electric wave field e yields the wanted form
of the wave conductivity tensor σσσ . The problem is thus reduced to the determination of
f ± from Eq. (3.22) where we drop the average terms on the right-hand side retaining only
terms linear in the fluctuations:

∂ f ±

∂ t
+ v ·∇ f ± +

e±
m±

(E0 + v ×B0) ·∇v f ± = − e±
m±

(e+ v ×b) ·∇v F±
0 (3.48)

Operating with a Fourier transform on this equation then yields the following expression
[

1− ie±
m± (k · v −ω)

(E0 + v ×B0) ·∇v

]
f ± =

ie±
m±

i(e+ v ×b) ·∇v F±
0

k · v −ω (3.49)

which determines f ± in terms of the average and fluctuating field quantities, which is just
what we want. One can now make assumptions about the average fields and distribution
function in order to explicitly calculate f ± . Usually these assumptions are E0 = 0, B0 =
B0ẑ with B0 = const. Then the operator ∇v = −ẑ∂/∂φ on the left simplifies to a mere
derivative with respect to the gyration angle φ of the particles. Further assumptions on F±

are that the average distributions are gyro-tropic, in which case the integration with respect
to φ becomes trivial.
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With such assumptions it is not difficult so still tedious to solve for f ± and finally
get the conductivity tensor. The respective expressions have been given in various places
and will not be repeated here. Good references among others are Montgomery & Tidman
[1964], Gary [1993], Baumjohann & Treumann [1996]. One can even include weak inho-
mogeneity [cf., e.g. Krall & Trivelpiece, 1973] in the average distribution function and
fields (which is the eikonal approximation holding under the assumption that the gradient
scale is much longer than the wavelength, or |∇/k| ≪ 1). This is needed when consider-
ing an inhomogeneous initial state like a given soliton or shock structure and investigating
its prospective stability. In this case the plasma background is not homogeneous anymore
because a soliton or shock has already evolved in it and has locally modified the plasma.
Any wave modes which will be excited on this modified background will then not be
influenced only by sideband formation, steeping, nonlinearity and dispersion but also by
the change of the plasma properties from location to location. This implies that the waves
themselves change character and properties across a shock.

Damping/Growth Rate

The solutions of the dispersion relation are in most cases complex, and for real wave
vector k can be written as ω(k) = ωr(k)+ iγ(ωr,k), where the index r indicates the real
part, and γ is the imaginary part of the frequency which itself is a function of the real
frequency and wave number, because each mode of given frequency can behave differently
in time, and the wave under normal conditions will be dispersive, i.e. it will not be a linear
function of wave number. In most cases the amplitude of a given wave will change slowly
in time, which means that the imaginary part of the frequency is small compared to the real
frequency. If this is granted, then γ can be determined by a simple procedure directly from
the dispersion relation D(ω ,k) = Dr(ω ,k)+ iDi(ω ,k), which can be written as the sum
of its real Dr and imaginary Di parts because a small imaginary part γ in the frequency
changes the dispersion relation only weakly, and it can be expanded with respect to this
imaginary part. Up to first order in γ/ω one then obtains

Dr(ωr,k) = 0, γ(ωr,k) = − Di(ωr,k)

∂Dr(ωr,k)/∂ω |γ=0
(3.50)

The first of these expressions determines the real frequency as function of wave number
ωr(k) which can be calculated directly from the real part of the dispersion relation. The
second equation is a prescription to determine the imaginary part of the frequency, i.e. the
damping or growth rate of the wave.

Remarks

Two remarks on the dispersion relation are in place. First, the weak damping/growth
rate solutions ω = ω(k) of the above general dispersion relation – themselves called
dispersion relations – are also of use in the weakly nonlinear case. They can be under-
stood as the lowest-order expansion term of a more general nonlinear dispersion relation
ω = ω(k, |e,b|2) which depends weakly on the wave amplitude or wave energy |e,b|2.
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Figure 3.8: Left: Two different types of dispersions in the (real) (ωr,k)-plane. Short waves with concave dis-
persion have slower group velocity than long waves and form a trail on the long wave. Short waves with convex
dispersion move faster than long waves. Right: The effect of this difference in sideband wave velocity on a
laminar subcritical shock wave. Convex dispersions produce run-away waves which appear as spatially damped
upstream oscillations (in the B-field, for instance). The trailing waves resulting from concave dispersion occur as
downstream spatially damped oscillations. Maximum wave amplitudes are observed near the shock ramp in both
cases.

When taking into account higher order expansion terms in the wave amplitude it produces
other non-linear equations which govern the amplitude evolution of the wave under con-
sideration. Such an equation is the non-linear Schrödinger equation we will get familiar
with when discussing transport processes.

Second, from the dispersion relation ωr = ωr(k) one can infer in which way steep-
ing of a wave is compensated by the dispersion of the wave. Figure 3.8 on its left shows
two typical cases of (real) dispersion curves of low frequency waves in the (ωr,k)-plane
from which shock waves could evolve [after Sagdeev, 1966]. Both curves have in com-
mon that they exhibit linear dispersion at long wavelengths, i.e. at small wave-numbers k,
with slope giving the phase velocities of the waves. In this region all nonlinearly generated
sidebands have same phase and group velocities causing broadening of the wave spec-
trum and steeping. However, at higher wave-numbers the dispersion curves start diverging
from linear slope, one of the waves turning convex, the other concave. These turnovers
imply a change in phase and group velocities. The convex dispersion implies that shorter
wavelengths generated in the convex part of the dispersion curve move faster than the long
waves. They will thus catch up with the long wavelength wave and run away ahead of
the wave forming upstream precursors of the wave as shown for the shock in the lower
part on the right. On the other hand, for the concave dispersion shorter wavelength waves
fall behind the long waves. They represent a wave trail following the large amplitude long
wave as is shown for the shock in the upper part on the right. Hence a simple glance at the
dispersion curves already dismantles the possible properties of the expected nonlinearity
and the structure of the shock.

A word of caution is in place here, however. This reasoning does not hold for all
shocks but for subcritical laminar shocks only. Supercritical higher Mach number shocks
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will behave in a more complicated way being much less dependent on dissipation and
dispersion.

3.4.2 The MHD Modes – Low-β Shocks

The waves from which a shock forms are the lowest-frequency plasma modes that are
excited under the particular conditions of the shocked plasma. In low-β (cold) plasma these
are the three fundamental MHD modes. Since all collisionless shocks in the heliosphere
are magnetised the magnetic field has to be included, and the global shocks are not purely
electrostatic even though subshocks developing in them can well behave approximately
electrostatic.

We are already familiar with the three low-β magnetogasdynamic modes, the fast and
slow magnetosonic and the intermediate Alfvén waves. These are the lowest frequency
eigenmodes of a homogeneous not necessarily isotropic plasma, i.e. when a small dis-
turbance is present in the plasma it will propagate in one or all of these modes. Their
dispersion relation follows from

Dmhd(ω ,k) =

⎛

⎜⎝
ω2 −V 2

A k2
∥ − c2

msk2
⊥ 0 −c2

s k∥k⊥
0 ω2 −V 2

A k2
∥ 0

−c2
s k∥k⊥ 0 ω2 − c2

s k2
∥

⎞

⎟⎠ = 0 (3.51)

which depends on the parallel and perpendicular components of k only in a very sim-
ple way. Moreover, it is a purely real dispersion relation lacking any imaginary part and
therefore also any damping which is of course typical for a low frequency dissipation-free
plasma. It is a different question of how these modes can be excited, and we will come to
this at a later stage.

The phase velocity cms of these modes has been dealt with already in Eq. (2.1). Since
these waves are linear waves with no dispersion, their dispersion relation is simply ω =
kcms(θ) with θ the angle between the wave vector k and magnetic field B. Figure 3.9 shows
the real space angular dependence of these three phase velocities for two special cases.
Clearly in the direction perpendicular to the magnetic field only the fast mode propagates
and, hence, strictly perpendicular MHD shocks are fast shocks as has been noted. In the
direction parallel to B all three waves can propagate.

Magnetosonic Solitons in Cold Plasma

We will now show that the method of the Sagdeev pseudo-potential can be used to under-
stand the formation of a fast mode solitary wave (or soliton) propagating strictly perpen-
dicular to the magnetic field B. This has first been shown by Davis et al [1958]. What
results from this procedure will not yet be a shock, because, as we have noted before,
shock formation requires the presence of some kind of dissipation, while the equations
on which the present theory is based are strictly dissipation-free (remember that we have
dropped the correlation terms on the right-hand side of the kinetic equation before deriv-
ing the moment equations and that we have not yet discussed any way of how dissipation
occurs when these terms are taken into account).
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Figure 3.9: Wave vector diagram of two cases of MHD waves in the plane of the magnetic field.

In order to find the stationary solutions we are looking for, one must retain the non-
linearity in the stationary one-dimensional quasi-neutral magnetogasdynamic equations.
This nonlinearity appears in the convective term Vn∇nVn in the equation of motion. From
constancy of normal flux [F ] = 0 one has NVn = N1V1 and Ey = N1B1 where the index 1
means undisturbed values far upstream. Since only electrons contribute to the current by
their drift in the crossed electric and magnetic fields E = −V×B, B = Bẑ in the shock
frame, we must retain a small component En = −BVy across the shock, effectively pro-
duced by the difference in electron and ion motion and causing the shock current to flow
in y-direction in the shock transition. It occurs in the stationary equation of motion on
the scale of the shock transition, i.e. on the scale of the ion gyro-radius, and as current
jy = −eNVyŷ in Ampère’s law

mNVn
dVn

dx
= −eNBVy,

dB
dx

= −µ0eNVy (3.52)

Combining these equations yields the normal fluid velocity as function of the magnetic
field and the initial bulk flow velocity V1 at infinity

Vn = V1

(
1− B2 −B2

1
2µ0mN1V 2

1

)
= V1

(
1− 1

2
V 2

A −V 2
A1

V 2
1

)
(3.53)

showing that the bulk velocity decreases from V1 when the magnetic field B increases.
The second term in the first parentheses is the difference in the ratio of magnetic pres-
sures B2/2µ0 at the location under observance and B2

1/2µ0 at infinity upstream to the
kinetic pressure mNV 2

1 at infinity. This is written in terms of Alfvén velocities in the sec-
ond parentheses on the right.
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With the help of this expression, Ey and Ampère’s law we obtain

µ0eN1Vy =

[
B2 −B2

1
2µ0mN1V1

−1
]

dB
dx

(3.54)

which can be used to eliminate the velocity components and obtain an equation for the
variation in the magnetic field given in the form of the energy conservation equation of a
pseudo-particle of mass 1 and velocity B in the Sagdeev pseudo-potential S(B):

1
2

(
dB
dx

)2
= −S(B), S(B) = − (B−B1)2[(B+B1)2/4µ0mN1V 2

1 −1]

2λ2
e [1− (B2 −B2

1)/2µ0mN1V 2
1 ]2

(3.55)

where λe = c/ωpe is the electron inertial length (electron skin depth). The electron inertial
length is the only length scale that appears in the above equation when we perform a
dimensional analysis. It therefore turns out that the characteristic width, ∆ ∼ λe, of the
magnetosonic solitons is of the order of the electron skin depth. This can also be seen
when for small amplitude disturbances the last expression is expanded with respect to B.
Defining b = (B−B1)/B1, bm = (Bm −B1)/B1, ξ = x/∆ yields to first order

db
dξ ≃ ± b(bm −b)

1
2 → b ≃ 4bm

(1+ exp−|ξ |)2 , ∆ =
λe√
bm

(3.56)

giving the above scaling of the soliton width. In addition the inverse scaling of ∆ with the
maximum soliton amplitude bm is reproduced.

As discussed before, S < 0 is required for solutions to exist. It is clear that in the
absence of dissipation no shock can emerge from these stationary waves. They are solitary
waves, stationary wave structures of finite spatial extensions and amplitude.

Returning to the original variables, the maximum soliton amplitude is obtained from
S(Bm) = 0 as Bm = B1(2V1/VA1 −1) which together with Eq. (3.53) yields that Bm < 3B1,
and consequently the Alfvénic Mach number for the solitons to exist is MA < 2. The closer
the Mach number approaches the maximum Mach number 2 the narrower the solitons
become. This means that they steepen and, for Mach numbers M > 2, will overturn and
break, because the dispersion does no longer balance the nonlinearity. Solitons cannot exist
anymore at Mach numbers such high.

When a way can be found to generate dissipation in the region occupied by the soli-
ton, then a magnetosonic soliton can evolve into a shock wave. Sagdeev’s idea [Sagdeev,
1966] was that this can happen when the soliton becomes large amplitude and narrow
enough such that in the steep rise of its crest sufficient dissipation could be generated by
anomalous collisions and anomalous friction. These anomalous collisions would generate
sufficient entropy that the states on the two sides of the soliton would differ from each
other and the flow across the soliton would irreversibly change. In this case the soliton
would turn into a dissipative subcritical laminar shock. Such shocks will be discussed in
Chapter 4. Formally we may, of course, model the dissipative effect by simply defining
some “collision frequency ν” and introducing a “collision term” on the right of Eq. (3.55).
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In order to do this we go one step back to the equation from which (3.55) has been obtained
and add the collision term there:

d2B
dx2 = −∂S(B)

∂B
−ν dB

dx
(3.57)

This equation is modelled exactly after the equation of a damped oscillator, where dB/dx
is the velocity. We should note here that this modelling has not been justified yet and
in fact is not justified by any of our arguments yet. It not only requires the proof of the
existence of an anomalous collision frequency ν , it also requires the proof that from the
kinetic equations containing the correlation terms an equation of the above structure can
be derived.

Ignoring these objections and exploiting the analogy with the damped oscillator we
may conclude from the equation (3.57) for the damped oscillator that the inclusion of
anomalous “collisions” will dissipate the kinetic energy of motion of the pseudo-particle
during its oscillation in the Sagdeev pseudo-potential S(B) until the particle will finally
come to rest at the bottom of the potential well. This is the case we have discussed earlier
in connection with the Korteweg-de Vries-Burgers equation. It is drawn schematically in
Figure 3.5 when a shock wave forms from the soliton. The value of B at minimum in the
Sagdeev pseudo-potential where the pseudo-particle ultimately settles is the magnetic field
level

B2 =
1
2

B1
[
(8β1 +1)

1
2 −1

]
(3.58)

far downstream of the shock that has formed in this dissipation process from the magne-
tosonic soliton. This value is determined by the upstream plasma-β value.

Taking this for granted, we can conclude that the damped oscillations the pseudo-
particle performs on its damped downward path in the Sagdeev pseudo-potential are the
spatially damped oscillations of the field B(x) downstream of the shock. Moreover, the
shock possesses an overshoot in B at shock position B2 < Bov < Bm which is smaller than
Bm but larger than B2. The existence of damped downstream oscillations is in agreement
with the concave shape of the dispersion relation of magnetosonic waves which, for large
k, become dispersive and approach the lower-hybrid branch. This can be seen directly
from the dispersion relation for perpendicular (θ = 90◦) propagating magnetosonic waves
which reads

ωms = VAk⊥
(
1+ k2λ2

e
)− 1

2 (3.59)

For k2λ2
e ≪ 1 the wave has constant phase velocity and is non-dispersive, becoming grad-

ually dispersive with increasing k when the effective phase velocity decreases. Hence,
∂ω/∂k < 0 and the dispersion is concave, for very large kλe ≫ 1 approaching the lower
hybrid frequency ωlh =

√ωceωci = ωce
√

me/mi where it flattens out, as shown in Fig-
ure 3.10. At oblique angles 90◦ − δ ≫

√
me/mi ≈ 1/43 the dispersion is inverted, and

∂ω/∂k > 0. Here the shorter waves run the soliton out and appear on the upstream side as
spatially damped oscillations. Now their scale is the ion inertial length λi = c/ωpi. How-
ever, shocks with convex dispersion where the shorter waves outrun the soliton will not
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Figure 3.10: Left: Dispersion relation of perpendicular magnetosonic waves with concave dispersion at large
k, where the wave effectively becomes a lower-hybrid wave with frequency close to the lower-hybrid frequency
ωlh. Right: Dispersion relation in cold plasma at nearly parallel propagation. The ion branch starts from the
left-handed Alfvén modes and goes in resonance at the ion-cyclotron frequency ωci with concave dispersion.
The electron branch starts from the right-handed Alfvén mode, has convex dispersion, passes through the lower
hybrid mode into the whistler mode ωlh ≪ ω ≪ ωce, assumes concave dispersion, and finally goes in resonance
at the electron-cyclotron frequency ωce, where it becomes the electron-cyclotron wave.

exhibit a sharp shock profile. Rather they will be oscillating shocks with smoothed out
ramp.

The theory presented above applies to a low-frequency plasma of velocity V1 ≫ ve,vi
larger than the thermal velocities of the plasma components. When the relation between
V1 and the thermal velocities changes, one must take into account thermal effects. These
change the nature of the solitons and shock substantially. These changes will be discussed
in greater depth in Chapter 4.

3.4.3 Whistlers and Alfvén Shocks

Many waves are capable of dispersively evolving into solitons or other similar stationary
wave pulses if only their dispersion relation allows it. Among those waves we here consider
only two particular cases, whistlers in cold plasma and Alfvén waves in low but finite β
conditions.

Whistler Solitons in Cold Plasma

We now return to the cold plasma dispersion relation including both kinds of particles,
electrons and ions. For parallel propagation k = k∥ẑ, where B||ẑ, and the angle θ = 0, the
dispersion relations of linear plasma waves are

k2c2

ω2 = 1−
ω2

pe

ω(ω ∓ ωce)
−

ω2
pi

ω(ω ± ωci)
(3.60)

The frequencies in the nominators are the electron and ion plasma frequencies, ωpe,pi,
respectively. In the denominators appear the electron and ion cyclotron frequencies, ωce,ci



76 3. EQUATIONS AND MODELS

respectively. These relations describe right-hand and left-hand polarised waves according
to the upper and lower signs. Basically two branches coming from the resonances in the
denominators are described by this relation. Figure 3.10 on the right shows a plot of the
two dispersion curves. For the evolution of shocks the most interesting part is the shaded
whistler-mode dispersion relation.

The whistler dispersion relation is the (upper sign) electron part of the above dispersion
relation. Neglecting the non-resonant ion contribution it reads

k2c2

ω2 = 1+
ω2

pe

ω(ωce −ω)
(3.61)

with the second term being large because of the resonance in the denominator. Thus one
can also neglect the 1 on the right finding that solutions exist only for ω < ωce as is also
seen in the above drawing. Then the dispersion relation becomes

k2λ2
e ≃ ω/(ωce −ω) → ω ≃ ωce

(
1+

1
k2λ2

e

)−1
(3.62)

which exhibits its concave character confirming that short wavelengths whistlers will fall
behind the main shock pulse. Nonlinear analysis of these waves goes back to Montgomery
[1959], Sagdeev [1966], and Kakutani [1966] and is based on the fluid equations we used
before. Let the plasma again be moving in x-direction antiparallel to the shock normal n
and write the magnetic field in polar coordinates as B = B⊥(0,cosθ ,sinθ); then one again
obtains the canonical Sagdeev form of the first integral of the equation of motion of a
pseudo-particle at pseudo-position B⊥ and pseudo-velocity dB⊥/dx as

1
2

(
dB⊥
dx

)2
= −S(B⊥) (3.63)

The Sagdeev pseudo-potential is a complicated expression which simplifies considerably
for a uniform upstream state. We introduce the normalised variables b⊥= B⊥/B⊥m, ξ =
x/λe and β⊥= B2

⊥/µ0mN1V 2
1 writing

1
2

(
db⊥
dξ

)2
= −S(b⊥) = − 1

8β⊥m

b⊥(b2
⊥−1)

(1−1/2β⊥)2 (3.64)

Solitons exist for B⊥≤B⊥m which is the maximum whistler soliton amplitude, and for
β⊥> 1

2 . For the maximum amplitude we have

B⊥m <
√

2µ0mN1V 2
1 ∼

√
mi/meB1 ≈ 43B1 (3.65)

and the whistler soliton velocity V1 ≫VA1 yielding a soliton Mach number range of
√

mi/4me < MA <
√

mi/2me → 22 < MA < 30 (3.66)

which identifies the whistler solitons as being high-Mach number solitons, indeed. In case
they evolve into shocks, these shocks are high-Mach number as well. This might cause
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other effects which have not been considered so far. Hence the present formal theory must
be taken with caution in application to real problems of much lower Mach numbers. One
of the neglected conditions is quasi-neutrality, which demands that ε0E/eN∆x ≪ 1. This
leads to the further restriction on B⊥ and the pulse width ∆

B⊥/B1 ≪
(
2πc2/V 2

A1
) 1

4 ∼ 1.5c/VA1, ∆ ∼ ∆x ∼ λi(B1/B⊥) (3.67)

where λi = c/ωpi is the ion skin depth (ion inertial length). It follows that these whistler
pulses should have quite large characteristic widths and, moreover, characteristic frequen-
cies ω ∼ 1

2 ωlh(B⊥/B1), far below the lower hybrid frequency. These properties identify
the whistlers as right-handed (rotating clockwise along x) high-frequency Alfvén wave
pulses. These low frequency whistler/high frequency whistler-Alfvén waves can indeed
been excited by a cold shock-reflected ion beam as will be shown below in the section on
ion beam instabilities.

In view of our remarks we do not give rigourous derivations of these approximate
formulae. It will turn out later when discussing numerical simulations that whistlers do
indeed occur at shocks and have been observed early on as well in laboratory experiments
on collisionless shocks [e.g., Decker & Robson, 1972] that, however, other fluctuations
driven by ion reflection are of greater importance in structuring supercritical Mach num-
ber shocks. Still it is highly probable that whistlers are excited in shock waves as the
conditions will be in favour of them when sufficient free energy is available in the shock
front because of several reasons, one of them electron heating in the perpendicular direc-
tion [early observations suggested their presence near shocks in space, see, Rodriguez &
Gurnett, 1975]. In this case whistlers become very important for producing dissipation
via a short-wavelength instability, called decay instability, which had been predicted by
Galeev & Karpman [1963] and for which evidence has been found in the above laboratory
observations by Decker & Robson [1972].

Alfvén Solitons at Finite-β

Alfvén waves are non-dispersive. However, when the plasma temperature increases, dis-
persion in the direction perpendicular to the magnetic field sets on. From the general dis-
persion relation in the very low-frequency limit one then obtains [e.g., Baumjohann &
Treumann, 1996] for the frequency of the Alfvén wave

ω2(k∥,k⊥) = k2
∥V

2
A

1+ k2
⊥r2

ci
1+ k2

⊥λpe2
(3.68)

where the ion gyro-radius is slightly modified with temperature according to r2
ci → r2

ci(
3
4 +

Te/Ti), and V 2
A = B2/µ0mN is the square of the Alfvén speed. This dispersion relation

describes two kinds of Alfvén waves depending on k⊥∼ r−1
ci or k⊥∼ λ−1

e . These modes
become important when the plasma-β < 1. The phase velocities of the two modes together
with the ordinary Alfvén wave are shown in Figure 3.11. The modes differ in their disper-
sive properties from ordinary Alfvén waves as they propagate oblique to the magnetic field,
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Figure 3.11: Phase velocity diagram of the three Alfvén wave modes in the (B,k)-plane of the magnetic field
and wave vector for the two cases when the alfvén velocity is larger left or smaller right than the electron thermal
speed vth,e. The ordinary Alfvén wave describes a circle in this plane. The two other phase velocities describe
deformed curves.

i.e. the wave energy propagates under an angle to the magnetic field for k⊥ is independent
of k∥.

At finite temperatures 1 > β > me/mi the wave is called kinetic Alfvén wave. Its per-
pendicular wavelength becomes the order of the ion gyro-radius, and the phase speed paral-
lel to the magnetic field increases. At low temperatures β < me/mi the wave is called shear
or better inertial Alfvén wave with perpendicular wavelength comparable to the electron
skin depth, and the effective parallel phase velocity decreases. In terms of prospective
Alfvénic shocks this means that a kinetic Alfvén shock in direction parallel to the external
field will support oscillations upstream of the shock ramp, while an inertial Alfvén shock
will support downstream oscillations and thus possess a sharp shock ramp.

The dispersive properties of both kinetic Alfvén modes enable the existence of station-
ary wave pulses. These have been discovered first by Hasegawa & Mima [1976] for the
kinetic mode. For the low Alfvén frequencies quasi-neutrality is a good assumption. More-
over, the electrons have time enough to behave Boltzmann-like. Hence with the parallel
electric potential φ∥ we have

Ne = N0 exp(eφ∥/Te) (3.69)

In the perpendicular direction we use the electric potential φ⊥. Maxwell’s equations, the
nonlinear ion momentum conservation, and Poisson’s equation then reduce to

∂B⊥
∂ t

= ∇⊥∇∥(φ⊥−φ∥)

∇2
⊥∇2

∥(φ⊥−φ∥) = µ0∇∥
∂ j∥
∂ t

(3.70)

∂Ni

∂ t
=

1
B0ωci

∇⊥

(
Ni∇⊥

∂φ⊥
∂ t

)



3.4. Waves and Instabilities 79

The field-aligned current j∥ is carried by the hot electron component, such that its diver-
gence is given by ∇∥ j∥ = e(∂Ne/∂ t). Introducing dimensionless variables ξ = xωci/cia,
ζ = zωpi/c, τ = ωcit, N′ = N/N0 and measuring the potentials in units of e/Te, then trans-
forming to a comoving coordinate system η = κ⊥ξ +κ∥ζ − τ , the whole system of equa-
tions is reduced to the nonlinear equation

κ 2
⊥κ 2

∥N′ d2 lnN′

dη2 =
(
1−N′)(N′ −κ 2

∥
)

(3.71)

which is in the form suited for the Sagdeev pseudo-potential method, yielding (dN′|dη)2 =
−S(N′,κ∥,κ⊥) with

S
(
N′,κ∥,κ⊥

)
= − 2N′

κ 2
∥κ 2

⊥

[(
1−N′)(N′ +κ 2

∥
)
+
(
1+κ 2

∥
)
N ′ ln N′] < 0 (3.72)

for soliton solutions to exist. These solutions give the density as function of the linear
coordinate η . Interestingly, there are solutions which are dilutions and solutions which
are compressions. The condition for existence of soliton solutions is independent of the
perpendicular wavenumber. Hence it is the parallel electric field that is responsible for the
formation of solitons and balance of the nonlinear steeping. Solitons form only in parallel
direction with the magnetic field being inclined to the soliton which in the perpendicular
direction is flat. When such a soliton attains dissipation and turns into a shock, it will
become a quasi-parallel shock preceded by damped upstream waves that have outrun the
shock ramp. That the shock will be quasi-parallel can be easily seen from the fact that
k⊥≫ k∥, the shock front will be perpendicular to the external field, and therefore b⊥≪ b∥
as required for a quasi-parallel shock.

Inspection of Eq. (3.72) shows that the Sagdeev potential vanishes at N′ = 0, N′ = 1,
and N′

m. Compressive (rarefaction) solitons occur at N′ > 1 (N′ < 1). Only compressive
solitons are of interest in shock formation. The maximum amplitude N′

m of compressive
solitons follows from setting the bracket to zero. It is approximately given by the solu-
tion of N′ + κ 2

∥ ≈ (1 + κ 2
∥ ) lnN′ which, for κ 2

∥ = 1 is N′
m ≈ 3. The minimum of S(N′) for

compressive solitons is found by taking the derivative of the bracket and putting it to zero.
Setting N′ = 1 + n′ and expanding the logarithm one finds the minimum of the Sagdeev
pseudo-potential trough at

N′
KAS = 1+n′ ≈

1+3κ 2
∥

1+κ 2
∥

< 3 (3.73)

This is the prospective maximum amplitude of a kinetic Alfvén shock (KAS) evolving in
the presence of dissipation from a compressive kinetic Alfvén soliton. The compression
at a KAS ramp is thus limited to a factor <3. Finally, the value of the Sagdeev pseudo-
potential at its absolute minimum gives the steepest gradient of the density in the shock
ramp, (dN′/dη)max = |S(N′

KAS)| at the turning point of the density in the ramp. This ratio
provides an estimate of the width of the KAS-shock pulse

∆KAS ∼ N′
KAS/

∣∣S
(
N′

KAS

)∣∣ >
∣∣3−κ 2

∥
∣∣−1 (3.74)
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in normalised units (where in the final estimate at the right we have used the maximum
shock amplitude). It depends on the given values of κ∥ while being independent of κ⊥, in
agreement with the fact that only values parallel to the field will affect the shock structure.

We will not investigate the case of inertial Alfvén wave solitons. In the heliosphere
these shocks occur only in the auroral zones of strongly magnetised planets and, possibly,
also deep in the solar corona in the region of very strong magnetic field and comparably
small temperature only. The related solitons have been discussed elsewhere [Treumann et
al, 1990; Berthomier et al, 1999]. Shocks forming there should always be rarefactions,
containing very little plasma and having highly oscillating wakes on their downstream
side, containing short wavelength inertial Alfvén waves which have been left behind the
faster shock ramp. In fact, such very diluted plasmas have indeed been inferred in the
auroral zones of planets like Earth and Jupiter. They contain large electric potential drops;
however the interpretation of these as shock potentials is quite unusual and not generally
accepted.

Remarks on the Generation of Dissipation

Sagdeev [1966] gave an idea of how dissipation can be generated in a shock ramp, real-
ising that shocks must contain a – large scale – electric potential drop (or its equivalent
as, for instance, an equivalent electric field corresponding to the shock ramp density gra-
dient) at which low energy ions will be reflected. (Note that electrons will instead become
accelerated by this potential across the shock.) No matter how few those ions are, they
will return into the upstream medium, where they (as Sagdeev [1966] had already noted)
become accelerated tangentially along the (perpendicular) shock surface by the upstream
convection electric field until gaining enough kinetic energy to overcome the shock poten-
tial barrier, passing the shock, and escaping downstream. These ions form a current in front
of the shock that carries free energy and will ultimately become unstable with respect to
the two-stream instability, scattering upstream electrons and in this way cause dissipation.
The physical mechanism of this process will be discussed later in this chapter in the section
on anomalous transport. First we need to be informed about the instabilities and waves that
are relevant with respect to shock formation. To these mechanisms we will continuously
return when discussing the different types of shocks and the corresponding numerical sim-
ulations. Without them neither the existence nor the structure of shocks in collisionless
plasmas can be understood. The models presented so far cannot give more than hints in
which direction one has to pursue. Shock physics is too complicated for analytical theory.

3.4.4 Instabilities

An instability arises when an active medium like a warm plasma reacts to the presence
of an amount of available free energy that exceeds the thermal energy. Since any form of
available free energy keeps the plasma away from thermodynamic equilibrium, restoration
of equilibrium becomes necessary. This is most easily done by exciting fluctuations out
of the thermal fluctuation background and let them grow to amplitudes large enough for
either causing dissipation or transporting the energy away to a location where it can be
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dissipated by other processes. If no fluctuation is injected from externally, the instability
selects one or more particular eigenmodes out of the thermal fluctuations which as a con-
sequence causes a wave to start growing and propagating across the plasma. The selection
of the unstable frequency and wavelength ranges is usually ruled by resonance of the fluc-
tuation with the number of particles which carry the free energy, with the fastest growing
fluctuation winning the race for consuming the free energy. However, other ways of excit-
ing waves are also possible when several waves are sharing the amount of free energy.
In all cases the waves that survive are those with the fastest growth and least damping.
[Theoretical overviews of instabilities and dissipation related to shocks have been given
by Galeev, 1976; Sagdeev, 1979; Wu et al, 1984; Papadopoulos, 1985; Winske, 1985b.]

Since most instabilities follow this recipe of growing out of the thermal background
they start as infinitesimal disturbances which can be described by linear dispersion theory.
Hence instability theory in plasma can be based on the dispersion relation Eq. (3.46) and
for weakly growing waves on the expression for the growth rate (3.50). Plane linear wave
modes possess a phase factor exp i(k ·x−ω t). It is clear that instability sets on whenever
the imaginary part of the frequency becomes positive; γ(ωr,k, . . .) > 0 is the growth rate
of the instability of the particular wave mode that becomes unstable.

Another view is that a wave grows along its path of propagation. In this case the growth
is spatial and, at real frequency ω , is described by the imaginary part of the wave number
ki < 0, which must be negative for a wave growing when propagating into direction +x.
For propagating waves there is a natural relation between the temporal and spatial growth
rates that is given by ki = −γ/(|∂ω/∂k|) (here written just for one component of the
spatial growth vector and given in terms of the group velocity ∂ω/∂k of the wave in this
particular direction).

In the context of collisionless shocks the instabilities of interest can be divided into
two classes. The first class contains those waves which can grow themselves to become
a shock. It is clear that these waves will be of low frequency and comparably large scale
because otherwise they would not evolve into a large macroscopic shock. We have already
discussed a few candidates and their nonlinear evolution in the previous sections, among
them magnetosonic, Alfvénic and whistler modes. In this section we will investigate a
number of waves which form secondarily after an initial seed shock ramp has grown in
some way out of one of these wave modes, these are ion modes which have now been
identified to be responsible for structuring, shaping and reforming the shock. In fact real
oblique shocks – which are the main class of shocks in interplanetary space and probably
in all space and astrophysical objects – cannot survive without the presence of these ion
waves which can therefore be considered the wave modes that really produce shocks in a
process of taking and giving between shock and waves.

The second class are waves that accompany the shock and provide anomalous transport
coefficients like anomalous collision frequencies, friction coefficients, heat conductivity
and viscosity. These waves are also important for the shock as they contribute to entropy
generation and dissipation. However, they are not primary in the sense that they are not
shock-forming waves.

Among them there is another group that only carries away energy and information
from the shock. These are high-frequency waves, mostly electrostatic in nature, produced



82 3. EQUATIONS AND MODELS

by electrons, or when electromagnetic they are in the free-space radiation modes. In the
latter case they carry the information from remote objects as radiation in various modes,
radio or x-ray to Earth, informing of the existence of a shock. In interplanetary space it
is only radio waves which fall into this group as the radiation measure of the heliospheric
shocks is too small to map them into x-rays. These groups of waves we will briefly men-
tion below; they will however play a more important role in this text when discussing
measurements and observations of the various types of shock waves that are encountered
in the heliosphere.

Ion-Beam Driven Instabilities – ω ! ωci

The shock waves in the heliosphere are magnetised. As long as we are interested in their
formation and properties we can restrict to low frequency electromagnetic waves in warm
plasma. Such waves are excited by plasma streams or kinetic anisotropies in one or the
other way. The simplest instability known which distorts the magnetic field by exciting
Alfvén waves that are propagating along the magnetic field is the firehose mode.

Firehose Mode. The firehose mode is the result of a pressure (or temperature) anisotro-
py in plasma with the parallel pressure P∥ exceeding the perpendicular P⊥ and magnetic
B2/2µ0 pressures. Sagdeev [1966] gave a simple intuitive explanation of this instability
based on the insight that the parallel thermal motion of the adiabatic magnetised ions along
the magnetic field exerts a centrifugal force on the field lines. When this force exceeds the
restoring forces of the magnetic pressure and perpendicular plasma pressure, the centrifu-
gal force wins and a small excursion of the magnetic field starts growing and propagates
as a wave along the magnetic flux tube like on a string. The condition for instability is

P∥ −P⊥> B2/µ0 (3.75)

Since the pressure anisotropy on the left means that there is an excess in parallel energy in
the plasma, the plasma possesses free energy which by the instability is fed into the excita-
tion of Alfvén waves with frequencies ωA ≪ ωci, transported away with Alfvén speed and
ultimately dissipated in some way – as expected. The waves excited are ordinary Alfvén
waves, however, and not suited for shock formation. Below we will once more encounter
this mode in discussing ion beam instabilities.

Kinetic Alfvén Waves. Excitation of kinetic Alfvén waves requires β < 1 and a differ-
ent process. In the solar wind the β -condition is barely satisfied except possibly in the very
strong coronal magnetic fields or locally (possibly in Corotating Interaction Region bound-
aries when the magnetic field may become compressed without just forming a shock).
Kinetic Alfvén waves possess a finite electric field component parallel to the magnetic
field which can accelerate electrons. However, the inverse mechanism is also possible that
electrons moving along the magnetic field in the opposite direction, become retarded by
this field component and feed their energy into the kinetic Alfvén wave. A process similar
to this has been suggested by Hasegawa [1979] in different context for bouncing electrons
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in a locally inhomogeneous magnetic field represented as B(z) = B0(1+az2). The electron
beam conserves the magnetic moment when moving along the magnetic field, interacting
adiabatically with the parallel wave electric field for long wavelength

E∥ =
k2
⊥r2

ci
1+ k2

⊥r2
ci

∣∣∣∣
ωB⊥
k⊥

∣∣∣∣ (3.76)

The condition that the electrons form a beam is that at the resonance with the wave the
derivative of the electron distribution with respect to the resonant parallel electron energy
of motion ε∥ = meω2

b /2a is positive, ∂Fe/∂ε∥ > 0. Here the square of the bounce frequency
is ω2

b = 2µωce/me, and µ = meV 2
∥ /2B is the magnetic moment. One can calculate the

growth rate of the wave as

γ KAW ≃ (k⊥λe)
−2(ω4/ak3

∥v3
e
)
, ω = k∥VA (3.77)

Thus, an electron beam moving along an inhomogeneous magnetic field can excite kinetic
Alfvén waves.

Probably more important than this is, however, the interaction of ions which are reflect-
ed from a solitary pulse and move back upstream ahead of the pulse, as had been suggested
by Sagdeev [1966]. The reflected ions will represent a beam that is moving against the
initial plasma inflow which by itself is another ion beam neutralised by the comoving
electrons. This configuration leads to a ion beam-ion beam interaction and should cause an
instability because free energy is present in the two counter-streaming beams. The various
instabilities this process may cause have been reviewed by Gary [1993].

Kinetic Growth Rate. Before coming to discussing the relevant instabilities we should
briefly mention the waves which can be driven by them. We already noted that in thermal
plasma most waves will rest in thermal fluctuations. Once a wave which is an eigenmode
of the plasma is injected it will experience thermal damping until it disappears in the back-
ground fluctuations. Hence, a wave that is assumed to grow must overcome this damping
which for propagation parallel to the average magnetic field B0 in a uniform plasma is
given by

γ(ω ,k) ≃
√

π
2 ∑

s

ω2
s

2ωvs

(
Vs −

ω
k∥

)
exp

[
(ω ± ωcs − k∥Vs)2

2k2
∥v2

s

]
(3.78)

where the index s identifies the species, vs =
√

2Ts/ms is the thermal velocity of spe-
cies s, Vs its average parallel bulk drift velocity, ωs ≡ωps its plasma frequency, and we have
dropped the index r (for real) at ω which in this expression is understood as real anyway.
Note that we are going to take into account several different ion species and thus need an
extra index to distinguish between them all. The simplified cold dispersion relation is

ω2 − k2c2 −∑
s

ω2
s (ω − k∥Vs)

ω − k∥Vs ± ωcs
= 0 (3.79)
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which determines the approximate real frequency. However, when thermal effects are in-
cluded, then there is no way to avoid the numerical solution of the full kinetic dispersion
relation. In the following we will generally refer to such numerical solutions.

It is obvious from the expression for the damping rate, that for sufficiently large aver-
age drift velocities Vs of species s larger than the phase velocity ω/k∥ of the wave this
particular species contributes a positive term to the damping rate γ which, when large
enough can dominate the entire damping rate. In this way streaming is one way to cause
instability. In the absence of streaming γ is independent of Vs and is negative for a ther-
mally isotropic plasma. In the presence of a temperature anisotropy, however, this may
change as we have seen for the firehose mode. The above damping rate (3.78) does not
account for thermal anisotropy which is, however, simple matter to include [cf., e.g, Gary,
1993].

We note finally that γ is a resonant damping/growth rate yielding resonant instability
driven by small groups of resonant particles. The firehose mode is non-resonant since all
particles contribute to it. Generally most non-resonant instabilities can only be found by
solving the full dispersion relation numerically.

At low frequencies it suffices for our purposes of understanding shock physics to deal
with a three-component plasma consisting of two ion species and one neutralising elec-
tron component which we assume to follow a Maxwellian (thermal) velocity distribu-
tion. Moreover, we assume that the drifting ion components are Maxwellians as well. In
conformity with the above remarks on a resonant instability we assume that the domi-
nant ion component has large density Ni ≫ Nb, and the second component represents a
weak fast beam of density Nb propagating on the ion-electron background with velocity
Vb ≫Vi ≈ 0. Following Gary [1993] it is convenient to distinguish the three regimes: cool
beams (0 < vb < Vb), warm beams (vb ∼Vb), and hot beams (vb ≫Vb). Figure 3.12 shows
the beam configurations for these three cases and the location of the wave resonances
respectively the position of the unstable frequencies.

Cool Ion Beam: Right-Hand Instability. Assume that the ion beam is thermally iso-
tropic and cool in the above sense, i.e. its velocity relative to the bulk plasma is faster than
its thermal speed. In this case a right-handed resonant instability occurs. In the absence of
a beam Vb = 0 the parallel propagating mode is a right-circularly polarised magnetosonic
wave propagating on the lowest frequency whistler dispersion branch with ω ≈ k∥VA. In
presence of a drift this wave becomes unstable, and the fastest growing frequency is at
frequency ω ≃ k∥Vb −ωci. This mode propagates parallel to the beam, because ω > 0,
k∥ > 0, and Vb > 0. The numerical solution of this instability for densities 0.01 ! Nb/Ni !
0.10 at the wave-number k∥ of fastest growth rate identifies a growth rate of the order of
the wave frequency γ ∼ ω and

γm ≃ ωci(Nb/2Ne)
1
3 (3.80)

for the maximum growth rate γm, where Ne = Ni + Nb is the total density from quasi-
neutrality. This instability drives waves propagating together with the beam in the direc-
tion of the ion beam on the plasma background which has been assumed at rest. If applied,
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Figure 3.12: The three cases of ion beam-plasma interaction and the location of the unstable frequencies.
Shown is the parallel (reduced) distribution function Fi(k∥v∥), where for simplicity the (constant) parallel wave-
number k∥ has been included into the argument. Right handed resonant modes (RH) are excited by a cool not too
fast beam. When the beam is too fast the interaction becomes nonresonant. When the beam is hot, a resonant left
hand mode (LH) is excited. In addition the effect of temperature anisotropy is shown when a plateau forms on
the distribution function [after Gary, 1993].

for instance, to shock reflected ions then for 2% reflected ions the maximum growth rate
is ∼0.2ωci, and Vb ∼ 1.2ωci/k∥, and k∥ ∼ 0.2ω −ci/VA which gives Vb ∼ 6VA. In the solar
wind the Alfvén velocity is about VA ≈ 30 km/s. Hence the velocity difference between
shock reflected ions and solar wind along the magnetic field should be roughly ∼180 km/s.
The thermal velocity of the ion beam must thus be substantially less than this value, cor-
responding to a thermal beam energy less than Tb ≪ 100 eV which in the solar wind, for
instance, is satisfied near the tangential field line. The solar wind travels at 300–1200 km/s.
Complete reflection should produce difference speeds twice these values. The above value
is thus not unreasonable for travelling shocks, but for bow shock reflected ions applies to
the quasi-perpendicular portion of the bow shock only. We may thus conclude that this
wave mode could be excited in the solar wind by shock reflected ion beams near quasi-
perpendicular shocks.

Warm Ion Beam: Left-Hand Instability. The above instability is present when the
ion beam is rather cold. When the temperature of the ion beam increases and the back-
ground ions remain to be cold, then beam ions appear on the negative velocity side of the
bulk ion distribution and go into resonance there with the left-hand polarised ion-Alfvén
wave. Their maximum growth rate is a fraction of the growth rate of the right-hand low
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frequency whistler mode. Nevertheless it can excite the Alfvén-ion cyclotron wave which
also propagates parallel to the beam. For this instability the beam velocity must exceed the
Alfvén speed Vb > VA.

At oblique propagation both the right and left hand instabilities have smaller growth
rates. But interestingly, it has been shown [Goldstein et al, 1985] that the fastest growing
modes then appear for oblique k and harmonics of the ion cyclotron frequency ω ∼ nωci,
with n = 1,2, . . . .

Nonresonant Ion Instability: Firehose Mode. When the ion beam is fast and cold it
does not go into resonance because its velocity is too high. In this case all ions participate
in a nonresonant instability which in fact is a thermal firehose mode where the ion beam
has sufficient energy to shake the field line. This mode propagates antiparallel to the ion
beam, has small phase speed and negative helicity. This mode has large growth rate for
large Nb/Ne and Vb/VA simply because then there are many beam ions and the centrifugal
force is large while the beam velocity lies outside any resonant wave speed. It is trivial
that this instability becomes stronger when the ion beam is composed of heavier ions as
the larger mass of these increases the centrifugal force effect.

Electron Instabilities and Radiation – ω ∼ ωpe

Other than ion beam excited instabilities electron-beam instabilities are not involved in
direct shock formation (unless the electron beams are highly relativistic which in the entire
heliosphere is not the case; we do not investigate relativistic shocks in this text anyway).
The reason is that the frequencies of electron instabilities are high. However, just because
of this reason they are crucial in anomalous transport being responsible for anomalous
collision frequencies and high frequency field fluctuations. The reason is that the high
frequency waves lead to energy loss of the electrons retarding them while for the heavier
ions they represent a fluctuating background scattering them. In this way high frequency
waves may contribute to the basic dissipation in shocks even though this dissipation for
supercritical shocks will not be sufficient to maintain a collisionless shock or even to create
a shock under collisionless conditions. This is also easy to understand intuitively, because
the waves need time to be created and to reach a substantial amplitude. This time in a
fast stream is longer than the time the stream needs to cross the shock. So waves will not
accumulate there; rather the fast stream will have convected them downstream long before
they have reached substantial amplitudes for becoming important in scattering.

When we are going to discuss electromagnetic waves which can be excited by elec-
trons we also must keep in mind that such waves can propagate only when there is an
electromagnetic dispersion branch in the plasma under consideration. These electromag-
netic branches in (ω ,k)-space are located at frequencies below the electron cyclotron fre-
quency ωce. The corresponding branch is the whistler mode branch. Electrons will (under
conditions prevailing at shocks) in general not be able to excite electromagnetic modes at
higher frequencies than ωce. We have seen before that ion beams have been able to excite
whistlers at low frequencies but above the ion-cyclotron frequency. This was possible only
because of the presence of the high frequency electron whistler branch as a channel for
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wave propagation. In fact, ion cyclotron waves can for this reason also have higher elec-
tromagnetic harmonics. For electrons under conditions in the shock environment it is gen-
erally not possible to directly excite free space electromagnetic modes. Electromagnetic
waves excited by them propagate on the whistler branch or its low frequency Alfvénic
extension.2 Electron beams thus excite electromagnetic whistlers and right-handed Alfvén
waves. They also excite a variety of electrostatic emissions which we will mention later as
well.

Whistlers. Whistlers can be driven in two ways, either by an electron temperature aniso-
tropy [Kennel & Petschek, 1966], or by electron beams (or heat fluxes) [Gary, 1993]. In the
former case the conditions for instability are that the perpendicular electron temperature
Te⊥> Te∥ exceeds the parallel electron temperature, and that the parallel energy of the
resonant electrons E∥ = 1

2 meV 2
∥ > B2/2µ0Ne exceeds the magnetic energy per electron.

Gary [1993] has investigated the more relevant case of whistler excitation by an elec-
tron beam. He finds from numerical solution of the full dispersion relation including an
electron beam in parallel motion that with increasing beam velocity Vb the real frequency
of the unstable whistler decreases, i.e. the unstably excited whistler shifts to lower frequen-
cies on the whistler branch while remaining in the whistler range ωci < ω < ωce. Both, the
background electrons and beam electrons contribute resonantly. The most important find-
ing is that the whistler mode for sufficiently large βi ∼ 1 (which means low magnetic
field), Nb/Ne and Tb/Te has the lowest beam velocity threshold when compared with the
electrostatic electron beam instabilities as shown in Figure 3.13. This finding implies that
in a relatively high-β plasma a moderately dense electron beam will first excite whistler
waves. In the shock environment the conditions for excitation of whistlers should thus be
favourable whenever an electron beam propagates across the plasma along the relatively
weak magnetic field. The electrons in resonance satisfy V∥ = (ω −ωce)/k∥ and, because
ω ≪ ωce the resonant electrons move in the direction opposite to the beam. Enhancing the
beam temperature increases the number of resonant electrons thus feeding the instability.

On the other hand, increasing the beam speed shifts the particles out of resonance and
decreases the instability. Hence for a given beam temperature the whistler instability has a
maximum growth rate a few times the ion cyclotron frequency.

3.4.5 “Transport Ratios”

Measured wave spectra are complex and opaque, i.e. it is very difficult from an inspec-
tion of their shape to identify the wave modes that are present in the plasma volume
under investigation. In some rare clean cases one can conclude from the observation of
a particular maximum peak in the wave power or the observation of only one single field
component which wave has been detected. In the general case of broad spectra or mixed

2In fact there is one exception to this statement. There exist free space electromagnetic mode branches (radi-
ation) above and even below the electron cyclotron frequency on which electron excited electromagnetic waves
could in principle propagate. The mechanism to excite them is the electron cyclotron maser instability [for a
recent review see, e.g, Treumann, 2006], which is a very particular instability that becomes awakened under
conditions which to our knowledge are barely satisfied in the non-relativistic shock environment.
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Figure 3.13: The regions of instability of the electron beam excited whistler mode in density and beam velocity
space for two different β compared to the ion acoustic and electron beam modes. Instability is above the curves.
The whistler instability has the lowest threshold in this parameter range [after Gary, 1993].

spectral peaks and various field components lacking clear dominance of one field compo-
nent it becomes nearly impossible to decide about the waves. Clearly, when the spectrum is
shapeless power-law one, in most cases, is dealing with developed turbulence or localised
structures in which case it makes no sense to distinguish and search for single modes. Then
one must seek shelter among the well developed methods of analysing turbulence.

On the other hand, if the spectra indicate the presence of single waves, one would like
to have some quantities at hand which help identifying which modes one is dealing with.
It would be helpful if one could measure simultaneously both, the wave frequency and the
wave number spectra. This is possible, however, only with sophisticated multi-spacecraft
constellations. And even then only in the rarest cases the determination of the dispersion
relation from experiment will be possible.

In application of these theoretical arguments to real observations one therefore has
defined some quantities, called “transport ratios”, which have turned out to be quite valu-
able in helping identifying some of the wave modes. Such transport ratios for electromag-
netic waves have been given by Gary [1993]. Below we list the for our purposes most
interesting of them.

Polarisation. The polarisation of a wave magnetic field with respect to wave number k
is given by

P = ibS/bA (3.81)

where bS, bA are the components of the magnetic fluctuation field b in the directions S,A of
magnetosonic and Alfvén waves, respectively, i.e. the vector A = k×B0 is perpendicular
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to the wave vector and the ambient magnetic field, while the vector S is perpendicular to
k (because of the vanishing divergence ∇ ·b = 0) in the plane (k,B0). The waves are more
magnetosonic or more Alfvénic whether |P| > 1 or |P| < 1, respectively. For Re P > 0
(<0) the waves are right-hand (left-hand) polarised.

Compression. The magnetic compression of the wave measures the relative variation in
the parallel magnetic fluctuation field

CB =
〈
b2
∥
〉
/
〈
|b|2

〉
(3.82)

where the fluctuations are taken at a given pair (ω ,k). The angular brackets ⟨ab⟩ mean
taking the real part of the correlation function of the two bracketed quantities.

Parallel Compressibility. This ratio together with the compression ratio provides a tool
for estimating how compressive a wave is. It is defined for species s as

C∥s =
B2

0
⟨b2

∥⟩
⟨b∥∆Ns⟩

NsB0
(3.83)

Non-coplanarity Ratio. This ratio measures the fluctuating field component out of the
plane (k,B0), and is given by

Cc =
〈
|bA|2

〉
/
〈
|b|2

〉
(3.84)

Alfvén Ratio. Defining ∆VA = b/
√

µ0miN, where N is the total plasma density, the
Alfvén ratio is defined as

RAs =
〈
|∆Vs|2

〉
/
〈
|∆VA|2

〉
(3.85)

Here ∆Vs is the flow velocity of species s. An Alfvén wave has ∆Vi = ± VAb/B0, and its
own Alfvén ratio is RAi = 1. The Alfvén ratio thus measures the fraction of Alfvén waves
contained in the near-zero frequency fluctuations.

Cross-Helicity. Helicity of a wave is another identifier of the wave mode, it is in par-
ticular useful for determining the direction of propagation of the wave by considering its
sign. One has therefore defined a ratio which provides a measure of it:

1
2

Hcs = ⟨b ·∆Vs⟩/
[〈

|∆Vs|2
〉
+
〈
|b|2

〉]
(3.86)

Parallel propagating Alfvén waves have helicity Hci = −1. Fast magnetosonic nearly par-
allel propagating modes have also |Hci| ∼ 1, and Hci = 0 for perpendicular propagation.
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3.5 Anomalous Transport

It has been mentioned several times that the evolution of shocks requires the generation
of some kind of dissipation. Under the conditions of non-collisionality the generation of
dissipation must be intrinsic to the plasma. In fact, assume that a source of free energy is
switched on in the plasma. It is then quite natural to imagine that this available free energy
will act on the plasma in a way to dissipate itself, distribute itself all over the plasma and
ultimately transform itself into heat, entropy and create a new thermal equilibrium. Seen
from this point of view the occurrence of instability is the first step in this chain of pro-
cesses directed toward thermal equilibrium. Putting an obstacle into a fast but otherwise
thermalised plasma stream is clearly a way of providing free energy, because seen from the
frame of the obstacle the plasma is not in equilibrium; there is a large velocity difference
between plasma and obstacle and thus a large amount of free latent energy available in the
system. Dissipation, however, requires small scale interactions between the plasma con-
stituents. Macroscopic motions with their long scales contribute to large scale structures
but do not directly act on the microscopic scales.

In order to affect the particle motion and contribute to friction among the particles
small scale processes have to be called for. These processes take mostly place on elec-
tron scales. Moreover, since it is much easier to excite fluctuations in the electric field
than in the magnetic field, these interactions are electrostatic. In the following we consider
the electrostatic fluctuations which are expected to contribute to the generation of anoma-
lous dissipation. These processes can be divided into those which are not affected by the
presence of an external magnetic field called unmagnetised, and those where the external
magnetic field must be taken into account in the particle motion, i.e. magnetised processes.
The distinction is made by the relation between plasma and cyclotron frequencies.

When VA ≪ c
√

me/mi, the electron cyclotron frequency is much less than the electron
plasma frequency, ωpe ≫ ωce and one is dealing with an unmagnetised case. Also, when
the entire dynamics is restricted to the direction parallel to the magnetic field, the problem
can be considered to be unmagnetised. The complete unmagnetised dispersion relation
including all species s and their drifts Vs is

1+∑
s

Ks(ω ,k) = 0, Ks(ω ,k) =
ω2

s
Ns

∂
∂ω

∫ dv3F0s(v )

ω −k · v
(3.87)

The function Ks is the susceptibility contribution of species s with average distribution
function F0s. In a Maxwellian component plasma Ks = −(1/2k2λ2

Ds)Z
′(ζs) can be expres-

sed through the plasma dispersion function Z(ζs), with λDs the Debye-length, ζs = (ω −
k · Vs)/

√
2kvs, and thermal speed vs of component s. Note that here the sign of charge is

included in the cyclotron frequency, i.e. for electrons −ωce, for ions +ωci.
When the plasma is magnetised, which applies to all other cases, the susceptibility

becomes more involved. For Maxwellian components it reads

Ks(ω ,k) =
1

k2λDs

[
1+

ωe−ηs
√

2|k∥|vs

∞

∑
l=−∞

Il(ηs)Z
(
ζ l

s
)
]
, ζ l

s ≡
ω + lωcs√

2|k∥|vs
(3.88)

Here ηs = (k⊥rcs)2 with Il(ηs) the order-l Bessel function of imaginary argument.
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This last expression suggests that magnetised electrons will support electron cyclotron
harmonics lωce, which, when purely perpendicular, are Bernstein modes. There are also
ion Bernstein modes lωci, but (with the exception of injection of a localised perpendicular
ion beam) they do not play any susceptible role in transport. Exciting both electron and
ion Bernstein modes requires beams perpendicular to the magnetic field, in which case
when applied to shocks the lower hybrid instability will become the most important agent
in generating anomalous dissipation.

As with the electromagnetic waves discussed in the previous sections the electrostatic
dispersion relations can be solved analytically in closed form only in particular simple
cases, and one has to retreat to a numerical approach. In the following we present the few
most important cases and their effect on the generation of anomalous dissipation keep-
ing in mind, however, that most collisionless shocks in the heliosphere are supercritical,
and anomalous dissipation does not contribute substantially to their evolution and mainte-
nance. Dealing in Chapter 6 with supercritical shocks, particle reflection is the dominant
dissipation process, and we will refer to the instabilities of the previous section.

3.5.1 Electrostatic Wave Particle Interactions

The wave friction term Eq. (3.26) requires the determination of the fluctuation amplitudes
of the wave modes that are responsible for causing anomalous friction. Again, the first
step is to identify the unstable wave modes. In the second step we will then either have
to determine the saturation level amplitudes of these waves or to consider their further
interaction with particles or other waves.

Here we list instabilities of interest in the anomalous dissipation process only. When
discussing application to observations we will later in passing also mention instabilities
which are involved in radiation from shocks. However, radiation provides no substantial
energy loss, and the dissipation caused by radiation under the conditions of the nonrela-
tivistic shocks in the heliosphere is completely negligible and does neither affect shock
formation nor shock structure. One possible exception are shocks in the solar atmosphere
which sometimes are accompanied by x-ray emission which, however, is not a genuine
unstable plasma process in this case. Such processes are believed to take place in solar
coronal shocks.

Unmagnetised Electron and Ion Instabilities

The unmagnetised dispersion relation in a Maxwellian component plasma consisting of
one electron and one ion component has two solution, electron plasma waves or Langmuir
waves ω2 = ω2

pe + 3k2
∥v2

e at k∥λDe ≪ 1 and ion-acoustic waves. The Langmuir wave can
be driven unstable by a parallel electron beam of velocity Ve " 3ve.

Ion-Acoustic Waves. More interesting are ion-acoustic waves. In the absence of any
difference velocity between electrons and ions these are strongly damped plasma waves
propagating along the magnetic field with dispersion
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ω2

k2
∥
≃ 3Ti

mi
+

Te

mi

1
1+ k2

∥λ2
De

, k∥λDi ≪ 1 (3.89)

These waves become dispersive at larger k∥ and for large electron temperatures with con-
cave dispersion curve. At small parallel wave numbers their dispersion is linear resem-
bling sound waves with velocity c2

ia ≃ (Te +3Ti)/mi. Obviously for dispersion to compen-
sate nonlinearity large electron temperatures Te > 3Ti are required in which case also the
damping is small. Ion acoustic waves if managing to overcome damping are therefore a
candidate for electrostatic unmagnetised shock formation: Their dispersion favours shock
ramps with slow moving wave trails and, as we will see later, they also can contribute
to dissipation thus satisfying all conditions as candidates for shock formation. However,
such shocks are purely electrostatic and do not affect the magnetic field. They will there-
fore only be of interest in sub-structuring magnetised shocks, possibly contributing to the
formation of subshocks of short wavelength of the order of several Debye lengths.

In fact going from the kinetic description to the fluid description and writing down
the continuity and momentum conservation equations for ion acoustic waves for parallel
propagation and one-dimensionality and combining it with Poisson’s equation

∂N
∂ t

+∇∥(NV ) = 0,
∂V
∂ t

+V ∇∥V = − e
mi

E∥, E∥ = −∇∥φ (3.90)

under the well justified assumption that for the low ion-acoustic frequencies the elec-
trons behave as thermalised hot Boltzmannians with density Ne = N exp(eφ/Te) depend-
ing exponentially on the electrostatic potential φ , assuming quasi-neutrality and localised
stationary solutions, we manipulate all these equations into the Sagdeev pseudo-potential
form

1
2
(∇∥φ)2 = −S(φ), S = −miN1V 2

1
ε0

[(
1− 2eφ

miV 2
1

)1
2
+

Te

miV 2
1

exp
eφ
Te

]
(3.91)

As usual the subscript 1 refers to values far upstream of the localised solution. In the
absence of dissipation this solution for S < 0 yields solitons of maximum potential ampli-
tude φm found from setting the bracket to zero. φm corresponds to a maximum compres-
sive amplitude Nm = N exp(eφm/Te). With ion acoustic Mach number Mia = V1/cia it is
found that solitons exist only in the supersonic regime Mia > 1. The soliton speed can be
expressed through the maximum potential (or density via Boltzmann’s expression) as

V1

cia
=

1√
2N

Nm −N

{Nm −N[1+ ln(Nm/N)]} 1
2
, miV 2

1 > 2eφm

The condition on the maximum compression amplitude Nm in this expression simply
requires that the potential energy must be less than the initial flow energy. This sets a limit
on the possible Mach numbers M 2

ia > 2eφm/Te or, when combined with the definition of
the latter, M 2

ia/2 > ln(Nm/N).
Since the denominator in the former equation must be real, this condition requires that

ln(Nm/N)+1−Nm/N < 0
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Expressing herein the density ratio through the Mach number, one finds that for ion-
acoustic solitons to exist the Mach number is limited to values below a surprisingly small
critical Mach number

Mia < M crit
ia ≃ 1.6

Ion acoustic solitons cannot exists for Mach numbers exceeding M crit
ia . For higher inflow

velocities V1 the ion acoustic soliton will either not evolve or break down.
The range of possible Mach numbers is rather limited which is simply due to the fact

that for higher speeds the dispersion is unable to sustain a stationary state. Any solu-
tion will be non-stationary, wave like or unstable. Concerning the formation of shocks
one in addition to dispersion requires that dissipation is produced. Since it is known that
ion acoustic waves are Landau damped with damping rate γL,ia, one can argue that Landau
damping will cause a shock profile on the ion acoustic soliton with downstream state differ-
ent from the upstream state [Ott & Sudan, 1969; Tidman & Krall, 1971]. The downstream
density is then found to be N2 ≃ N1 exp[2(Mia −1)] and will exhibit trailing oscillations,
as has been discussed above. However, Landau damping takes time, and therefore the gen-
eral argument applies to this kind of shock formation that the damping will not have time
to work for large Mach numbers. Thus the damping argument applies only to subcritical
shocks of Mach numbers smaller than Mia ≃ 1.6. Such weak (electrostatic) ion acoustic
shocks can indeed evolve and may contribute to sub-structuring of stronger supercritical
shocks in the region where the Mach number has already dropped to values below the
critical.

Sagdeev [1966] has favoured reflection of inflowing particles from the leading edge of
the soliton [Moiseev & Sagdeev, 1963] over Landau damping. This reflection affects ions
with energy less than the soliton potential φm and causes oscillations of long wave length.
More important is that the reflected ions form an ion-ion beam configuration and are thus
subject to the ion instabilities discussed previously yielding waves which may generate
dissipation but do also propagate upstream of the shock where they cause wave particle
interactions and retard the inflow ahead of the shock.

Electron Current Driven Ion Acoustic Instability. So far we have not asked for the
reason of an ion acoustic wave to grow. This can be achieved in the simplest way by letting
one of the plasma components drift with respect to the other. If in a two-component plasma
the electron drift with respect to the ions they effectively carry a current j∥ = −eNVe∥
which is in most cases – but not necessarily – along the magnetic field. Here we assumed
again quasi-neutrality Ne = Ni = N which dispenses us from considering space charges and
solving Poisson’s equation. In this case assuming weak growth such that we can apply the
general instability theory with γ ≪ ω the growth rate of the ion acoustic wave Eq. (3.89)
becomes

γia

ω =

√
π
2

ω2

k3c2
ia

k ·Ve −ω
2ve

exp
[
−

(ω − k∥Ve)2

2k2
∥v2

e

]
(3.92)

Instability sets on for Ve > ω/k∥ when the electron velocity, which is the current drift
velocity, exceeds the phase velocity of the ion acoustic wave, i.e. when – approximately –
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Figure 3.14: Left: The threshold drift speed for the electron current driven ion-acoustic instability as function
of the electron to ion temperature ratio. For comparison the threshold for the parallel electron current driven
ion cyclotron instability in a magnetised plasma is show for a dense plasma with ωpe/ωce = 10 [after Kindel &
Kennel, 1971, courtesy American Geophysical Union]. Right: Buneman electron drift-ion two-stream instability,
frequency and growth rate as function of wave number at large electron current drifts when the ion-acoustic
instability has changed to the Buneman mode.

Ve > cia. These waves have relatively long wavelength k∥λDe ≪ 1. The threshold for
marginal stability of these electron current driven ion acoustic waves can be obtained from
setting γia = 0, yielding

Ve ≃
ω
k∥

[
1+

(
mi

me

) 1
2
(

Te

Ti

) 3
2
exp

(
−3

2
− Te

2Ti

)]
(3.93)

The second term in the brackets results from the Landau damping of the ion acoustic
waves. It is seen that this term disappears for hot electrons with Te ≫ Ti thus lowering the
threshold for instability to its marginally smallest value Ve = cia. The threshold is shown
graphically as function of the temperature ratio in Figure 3.14. The threshold is measured
in ion thermal speeds vi and is quite high. Moreover, the electron temperature must be
high implying that the electron distribution must be much hotter than the ion distribution.
In the solar wind this is usually satisfied but fails downstream of the shock. The physical
reason for the electron temperature to be high for instability is that the distribution must
have a positive slope in v in the region of overlap with the cold ion distribution for resonant
instability, ∂F0e/∂v∥|ω/k∥ > 0. There must be more fast than slow electrons in the phase
velocity frame of the wave in order to push the wave to higher momentum and energy, i.e.
causing instability.

It is clear that this kind of interaction between the ion acoustic wave goes on the
expense of the motional energy of the resonant electrons. Hence one expects that ion
acoustic waves retard and scatter the current electrons thereby reducing the current flow,
implying that first an electron current along the magnetic field has to be generated. This
resembles collisional friction which the resonant electrons experience and can thus be
interpreted as the production of anomalous resistance in the plasma. An interpretation like
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this has been put forward by Sagdeev [1966] and has been elaborated in depth afterwards.
Below we will return to this theory.

Buneman Electron Current Two Stream Instability. Returning to Figure 3.14 we
observe a change in the threshold curve for Ve/vi >

√
mi/meTe/Ti. Here the electrons

become thermally slow with respect to their drift velocity, ve < Ve. The ion-acoustic insta-
bility under this condition changes into the Buneman instability which is an electron cur-
rent fluid instability and is also known under the name electron current drift or electron-ion
two stream instability. It has been discovered by Buneman [1958] and favoured for applica-
tion in shock physics already by Sagdeev [1966]. It should be noted that the transition from
ion-acoustic to two-stream instability has been investigated in depth by Dum & Chodura
[1979].

Now, treating the electrons as cold the kinetic effects disappear, and the complex dis-
persion relation of the Buneman instability becomes

1−
ω2

pi

ω2 −
ω2

pe

(ω − k∥Ve)2 = 0 (3.94)

Note that under these conditions the weak growth theory cannot be applied anymore.
Instead one must find the growth rate from the complex solutions of this quartic expres-
sion. Fortunately, this equation can be solved since for resonant electrons the third term
becomes dominant. The instability has real frequency ω ∼ k∥Ve and maximum growth rate
of the order of the ion plasma frequency

γ Bun,max ≃
√

3

16
1
3

(
mi

me

) 1
6
ωpi ∼ 2.4ωpi (3.95)

Figure 3.14 on its right shows the Buneman frequency and growth rate for a case of very
large electron current drift Ve = 600vi in dependence on the wave number k∥λDi. The max-
imum growth of the instability is close to k∥λDi ∼ 0.9 at short wavelengths slightly larger
than the Debye length. The growth rate of this instability is very large. This implies that
the instability is very strong and grows very fast thereby consuming a substantial fraction
of the current streaming energy. The nonlinear treatment of this instability is of particular
interest for shock physics. Since the instability grows so fast it makes little sense to treat
it analytically for reasons which will become clear when dealing with the application of
numerical simulations to shocks. The physics involved into the two stream instability can
be described as follows. Both the electrons carrying the current and the ions are cold. The
situation is thus two stream, and the instability is not resonant but reactive with all parti-
cles participating. This is the reason for its strength and rapidity. Because it consumes a
fraction of the bulk flow energy of the electron current, the current becomes decelerated,
and the energy is going mainly into the electrons which are heated by the instability until
the instability stabilises when Ve < ve. Then the ion-acoustic instability takes over. The
Buneman two stream instability is thus accompanied by a burst in electron temperature
and a rapid decrease in current. However, the final state of the instability is not a stationary
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Figure 3.15: Left: Regions of existence of electron and ion acoustic modes in the density/temperature plane.
Here N = Nc + Nh = Ni is the total quasi-neutral density. The temperatures given as the hot to cold temperature
ratio. The electron acoustic mode extends to larger cold density and higher hot temperatures than the ion acoustic
mode. Right: Unstable versus stable domains for electron and ion acoustic modes in the density/drift velocity
plane for the case when the electron acoustic mode is destabilised by a drifting hot plasma carrying a current.

state because the ion acoustic instability continues to grow with its own dynamics, possibly
ending up in the formation of solitons when the Mach number has sufficiently decreased
by current relaxation and heating, the former decreasing Ve, the latter increasing cia. But
even during the blow-up phase of the two-stream instability structuring similar to soliton
formation occurs. This can only be inferred from numerical simulation.

Modified Two-Stream Instability. This is a variant of the ordinary two-stream insta-
bility driven by a relative drift between electrons and ions but this time with the drift
direction across the ambient magnetic field B [McBride et al, 1972] thereby accounting
for differences in the cross field particle drifts which may lead to cross-field (e.g. dia-
magnetic) current flow. The dispersion relation for the modified two-stream instability
is

[
1−

ω2
pi

(ω − kVi)2 −
ω2

pe

ω2

][
1− ω2

ce cos2 ΘBn

ω2(1+ k−2λ−2
D )

]
=

ω2
ce sin2 ΘBn

ω2(1+ k−2λ−2
D )

[
1−

ω2
pi

(ω − kVi)2

]

(3.96)

This expression is written here in the electron frame of reference and with angle ΘBn.
One recognises that the first term is the ordinary Buneman two-stream term. However, for
oblique propagation ΘBn ̸= 90◦ and ΘBn ̸= 0◦ the two-stream mode couples to the whistler
mode. It is this coupling which makes the modified two-stream instability interesting for
shocks. Dispersion curves and growth rates are shown in Figure 3.16 for ΘBn = 60◦, and
Vi =VA, and an artificial mass ratio mi/me = 80 which has been taken in view of numerical
simulations to be discussed later.
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Figure 3.16: Top: Dispersion curves for the MTSI and Buneman TSI showing the coupling of the modes in
dependence on wave number [after Matsukiyo & Scholer, 2003, courtesy American Geophysical Union]. Bottom:
Growth rates for the Buneman TSI and MTSI. The Buneman TSI is at shorter wavelengths and higher frequencies
but has larger growth rate while the MTSI has longer wavelengths, lower frequency. However, even though the
MTSI does not exist for ΘBn = 0◦ and ΘBn = 90◦, it has much lower threshold than the Buneman TSI and
therefore is much more likely to be excited than the Buneman TSI.

The modified two-stream instability (MTSI) operates also for relative drifts smaller
than the electron thermal but larger than the ion-acoustic velocity and even for Ti ∼ Te
which makes it potentially important if only such perpendicular drifts can be generated.
The unstable frequency is in the range of the lower-hybrid frequency. Hence the ions can
be taken unmagnetised with strongly magnetised electrons. However, it requires oblique
relative electron drifts since for perpendicular drift the instability disappears meaning that
the unmagnetised ions propagate under an angle to the magnetic field while the magnetised
electrons move only parallel to the magnetic field.

On the other hand, for unmagnetised ions and in the presence of a perpendicular
electric field E ⊥B the electrons may perform a Vde = E × B/B2 drift perpendicular
to both fields relative to the ions which corresponds to a perpendicular drift current J de⊥=
−eNVde, in which case the modified two-stream instability will become unstable if only
Vde > cia exceeds the ion acoustic velocity. This might easily be the case inside the shock
ramp where the shock produces an electric field the action of which is threefold: it retards
the inflowing ions and reflects the lower energy ions back into the upstream flow, and it
gives rise to the electron drift current on the transverse shock scale on which the ions are
unmagnetised, i.e. under shock conditions this is the ion inertial length λi.
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Electron-Beam Electron-Acoustic Instability. A mode very similar to the ion-acous-
tic mode is the electron acoustic mode. Here the role of the ions is played by the cold (sub-
script c) electron background. In presence of another hot (subscript h) electron component
the physics becomes very similar to the ion-acoustic wave, and a weakly damped resonant
mode with real dispersion relation

ω2 ≃ ω2
pe,c

1+3k2
∥λ2

De,c

1+1/k2
∥λ2

De,h
, k∥λDE,c < 1 < k∥λDE,h (3.97)

can propagate in the range of wave numbers indicated on the right. This weak damping can,
like in the case of the ion acoustic instability, be overcome if the hot electron component
performs a drift or if another electron beam is injected into the plasma. In the former case
with ions and cold electrons at rest the hot electron drift implies current flow. The regions
of existence and stability of the electron acoustic instability are shown in Figure 3.15 in
comparison with the ion acoustic instability. Growth rates have been found numerically
to be quite large, the order of the ion plasma frequency and thus similar to the Buneman
mode. On the other hand, numerical experiments have not detected strong electron acoustic
waves.

Inspection of the electron acoustic dispersion relation shows that the mode is dispersive
as well. For very low cold electron temperatures this dispersion is similar to ion acoustic
waves suggesting that electron acoustic solitons could be formed in a similar way. In fact,
such solitons have been calculated analytically for different parameter regimes [Dubouloz
et al, 1991]. However, observations do not seem to support their existence. Also numer-
ical simulations [Matsukiyo et al, 2004] have not shown the formation of such solitons.
Clearly, electron acoustic waves can have a different dynamics because of the fast reac-
tion times of the electrons, leading to rapid thermalisation of the plasma. These questions
still remain to be open. In any case, if electron acoustic waves exist, the electron acoustic
mode is quite well suited for plasma heating in shocks where plasmas of different tem-
peratures mix. Its advantage is also that it proceeds on a very fast time scale close to the
inverse of the plasma frequency. It is hence well suited for fast production of anomalous
dissipation of energy. Moreover, since it very obviously damps rapidly it may act as an
agent of about immediate transformation of excess energy in the electrons into heating
electrons. None of these question has been understood nor answered properly at the time
of writing.

Ion-Beam Ion-Acoustic Instability. An instability very similar to electron beam driv-
en electron acoustic instability is its ion pendant when a cold ion core and hot ion beam in
presence of a neutralising electron background become unstable [Gary & Omidi, 1987].
The mode excited in this case is again the ion acoustic mode, this time propagating at
very low phase velocities ω/k ≃ cia(Ni,c − N − i,b)/Ne less than cia. In this range the
waves have no dispersion. This wave is, however, very easy to destabilise because of its
low beam velocity threshold which can lie even below the thermal speed of the ion core
component. On the other hand the growth rates of this instability are very low. Measured
as before for the electron-acoustic, ion-acoustic and Buneman instabilities in terms of the
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ion plasma frequency, its maximum growth rate is just of the order of a few per cent of
γm ∼ 0.3ωpi, very small compared to the growth rate of the electron-current driven ion
acoustic instability which was of the order of γm ∼ ωpi. It should thus be less important in
anomalous processes.

Electrostatic Ion-Cyclotron Harmonic Instabilities. So far we have considered only
unmagnetised instabilities. We now turn to listing the most important – in view of the
anomalous processes we have in mind when considering shock formation – magnetised
electrostatic instabilities. These instabilities occur when a magnetic field is present in the
plasma and the electrons must be considered to be magnetised.

The frequencies of the waves in question will therefore be well below the electron
cyclotron frequency ω ≪ ωce falling into the range of and above the ion cyclotron fre-
quency ω " ωci. According to linear theory the magnetised modes in this range occur at
harmonics ωl ∼ lωci of the ion cyclotron frequency. We are thus dealing here with electro-
static ion-cyclotron harmonics.

Following a suggestion by Drummond & Rosenbluth [1962] ion cyclotron instabilities
have been proposed as generating anomalous collisions by Kindel & Kennel [1971] who
advocated their importance because of their apparently lower instability threshold than the
ion acoustic instability for electron current shown in Figure 3.14. In fact ion-cyclotron
harmonic waves oblique to the magnetic field can become unstable in the presence of an
electron current flowing along the magnetic field. The reason is that – in contrast to the
earlier mentioned strictly perpendicular Bernstein mode resonances – such oblique waves
posses a field-aligned projection component of their electrostatic field which can resonate
with the parallel current electrons via the Doppler-shifted resonance condition k∥V∥e =

ω ± lωci of which only Landau resonance l = 0 is effective for |ω − k∥Ve∥| <
√

2|k∥|ve.
The ions contribute only a weak resonant damping of the waves for l = −1. Note that
the obliqueness of propagation of these modes implies in contrast to Bernstein modes that
the resonance does not occur precisely at the harmonics but lies somewhere in between
in the harmonic bands where the dispersion curves have particular geometrical forms [cf.,
any book on basic plasma wave physics, e.g., Baumjohann & Treumann, 1996]. Its precise
location depends heavily on the exact prescribed conditions of the plasma and current
velocity Ve∥, and no analytic expression can be provided.

Strongest weak instability occurs in the harmonic range 1 < l < 2 with growth rate γ ≪
ω and k∥rci ∼ 1, i.e. wavelengths comparable to the thermal ion gyro-radius in the frame of
the ions and propagation angles θ < 85◦. The velocity threshold decreases with increasing
electron temperature Te/Ti simply because more electrons go into resonance then. But
for large ratios it is taken over by the ion acoustic instability as seen from Figure 3.14.
(Note that in the solar wind/bow shock system, for instance, the ratio is about Te/Ti ≈
10 changing across the bow shock to become Te/Ti ! 1; hence one may expect the first
electrostatic ion-cyclotron harmonic to be present wherever parallel electron currents flow
in the shock on the upstream side, while downstream neither current driven ion cyclotron
nor ion acoustic instabilities should exist.)

We have already noted that ion beams can also excite ion cyclotron harmonic waves.
Parallel beams excite similar waves with similar properties like parallel electron currents
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for propagation angles 0◦ ≪ θ < 90◦ rather close to perpendicular. Perpendicular ion
beams, on the other hand excite a broad spectrum of ion cyclotron harmonics on the back-
ground ion component depending on beam energy and background temperature. These
excitations are restricted to a distance of the order of the ion gyro-radius r < rci,b of the
beam ions only, because at larger perpendicular scales the beam ions are themselves mag-
netised. Thus this kind of excitation is of importance merely when heavy ion beams pen-
etrate the plasma, for instance when a heavy ion beam component of large perpendicular
energy is reflected from a supercritical shock wave back upstream, or when ions become
highly accelerated in interaction with the shock and penetrate across the shock onto the
downstream side where they have much larger gyro-radii than background ions. On the
other hand, in the shock foot of a quasi-perpendicular supercritical shock a large number
of electrostatic ion cyclotron harmonics may be excited as on this scale the reflected ions
are effectively unmagnetised.

Electrostatic Electron-Cyclotron Instability. This instability is the pendant to the
former ion cyclotron instability at the much higher frequency perpendicular (or oblique)
electron cyclotron harmonics (for purely perpendicular propagation these are the Bernstein
modes). It is driven by the coupling between a sufficiently fast ion beam and the electron
cyclotron harmonics at perpendicular wave numbers k⊥> 0 and can also be driven unsta-
ble when reflected ions are present for instance in the foot of the supercritical perpendicular
shock. When driven unstable by an oblique current it becomes the electrostatic modified
two stream instability gaining high importance thereby.

Electrostatic Drift Instabilities in Inhomogeneous Plasma

The last group of instabilities we will refer to in the context of shock physics are insta-
bilities that are caused in presence of plasma inhomogeneity. Three basic kinds of plasma
inhomogeneities can be identified: density N(x), magnetic B(x), and temperature T (x)
real space inhomogeneities. The dependencies of these (average) quantities on space may
in most cases not be independent. In the following, for the purposes of investigation of
their effects on wave excitation, we will take them as being in fact mutually independent.
For simplicity we will take into account only density inhomogeneities perpendicular to
B0 on scales much larger than the wave length. We also assume linearity, which is justi-
fied because under the assumption of weak gradients the effects of the inhomogeneity will
be weak as well and thus cause only slow wave growth. In this case one can expand the
density with respect to the perpendicular direction x up to first order and write

Ns(x) = Ns0(1+ εNx), where εN ≡
[
∇xNs(x)

]
x=0

The effect of the inhomogeneity is that the magnetised particle component behaves adi-
abatically and starts performing a diamagnetic drift motion VNs ŷ = (εNv2

s / ± ωcs) ŷ per-
pendicular to the magnetic field and density gradient into ± y direction, depending on the
sign of the particle charge. The ± -sign in the denominator indicates that the cyclotron fre-
quency is taken here including the sign of the charge. Drift motions of this kind cause a
perpendicular drift current jdy to flow in the plasma because particles of different charge
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sign move in opposite directions. The waves excited under such conditions satisfy the
modified dispersion relation

1− εN +∑
s

Ks(k,ω ,εN) = 0 (3.98)

The new susceptibility Ks(εN) is still local, i.e. it changes on scales larger than the gra-
dient scale, but locally depends only on εN . It is of the same for as Eq. (3.88) with two
differences: because of the occurrence of the finite perpendicular drift Vdyŷ the frequency
in the factor in front of the sum in (3.88) is exchanged with the Doppler-shifted frequency
ω → ω − k⊥VNs. In addition a new drift term

+
ω VNs

k⊥v2
s

e−ηs
∞

∑
l=−∞

lωs Il(ηs)

ω + lωcs

must be added inside the brackets. Instabilities resulting from this dispersion relation in
the weak instability limit bear the general name of drift or universal instabilities. They
resonant with the drift motion and have frequencies ω ≃ k⊥VNi and long wave lengths
satisfying k⊥rci ! 1. for smaller wavelengths these waves are highly dispersive and thus
can form nonlinear structures.

This mode becomes particularly interesting and important in shock physics when the
drift speed is so large that the ions can be considered as unmagnetised. This happens
because the frequency of the drift mode increases with VN and quickly exceeds the ion
cyclotron frequency. In this case the frequency of maximum growth is close to the lower-
hybrid frequency ωlh and the drift mode becomes a lower-hybrid drift wave.

Lower-Hybrid Drift Instability. For unmagnetised ions, when the frequency of the
drift wave is ω ≫ ωci, the ion cyclotron frequency can be neglected and the susceptibility
simplifies

Ks(ω ,k) =
1

k2λ2
Ds

[
1+

ω −k⊥·VNs√
2kvi

Z
(

ω√
2kvi

)]
(3.99)

The positive slope on the distribution function which is responsible for instability is in this
case on the perpendicular part which depends on the drift velocity. There the maximum
of the distribution is shifted out of the origin to the location of the drift velocity. The real
frequency and growth rates are given by [Gary & Sanderson, 1979]

ω
k⊥VNe

≃−
[(

1+
Te

Ti

)
eηe

I(ηe)
−1

]−1
(3.100)

γ
ω ≃

√
π
2

Te

Ti

VNe

vi

eηe

I0(ηe)

[(
1+

Te

Ti

)
eηe

I(ηe)
−1

]−2
(3.101)

The unstable wave propagates antiparallel to the direction of the electron gradient drift. i.e.
in the direction of the electric drift current. Maximum growth of this lower hybrid wave
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has been found at long wavelengths k⊥,mrci ∼
√

mi/me over a relatively broad frequency
range close to the lower hybrid frequency ω lh ≃ ωce

√
me/mi.

The reason for the lower-hybrid drift instability to just excite the lower-hybrid fre-
quency is that it is a perpendicular two-stream instability similar to the Buneman mode
that is, however, driven by the bulk velocity difference between electron and ion gradient
drifts. It thus propagates on the background ion component. In fact in the (ω ,k⊥)-plane the
drift-beam mode ωd ≃ k⊥VNe couples to many ion cyclotron harmonics thereby exciting
almost all of them. However, largest growth occurs in the harmonic dispersion band that
contains the lower hybrid frequency which is a strong plasma resonance.

The lower-hybrid drift instability is the strongest in the family of the electrostatic ion
cyclotron instabilities. As a two stream instability its maximum growth rate remains still
modestly large being of the order of a few ion cyclotron frequencies, γ lh,m ≃ (1−3)ωci. In
a plasma leaving sufficient time τnl,sat ≫ ω−1

ci for growth and saturation it may well play
a substantial role in generating dissipation. We will see later that this instability indeed
provides the highest so far inferred from instabilities anomalous collision frequency which
turns out to be of the order of the lower-hybrid frequency itself. Its relevance in application
to collisionless shocks is however questionable, because of the above argument.

In addition, the lower-hybrid drift instability appears to stabilise under β > 1 condi-
tions [Davidson et al, 1977]. In application to shocks this restriction, if it translates into the
nonlinear regime, presents a severe barrier to the use of the lower hybrid drift instability
as generator of anomalous resistance, dissipation and entropy generation.

3.5.2 Anomalous Resistivity

Resistivity is defined via the Drude formula η = ν/ε0ω2
pe, with ν = σcNve the collision

frequency. The latter, under collisionless conditions, becomes the anomalous collision fre-
quency νa and is the quantity containing the interaction between electrons and the nonlin-
ear wave fluctuations.

This becomes obvious when realising that the Spitzer-Coulomb collision frequency
νC ∼ ωpe/Nλ3

De is proportional to the ratio of the plasma wave fluctuation level in thermal
equilibrium Wth = 1

2 ε0⟨e2
th⟩ to thermal energy, νC ∼ ωpeWth/NTe. Under saturated insta-

bility conditions it is then reasonable to assume that the actual fluctuations ⟨e2⟩ replace the
thermal fluctuations in this expression which yields the Sagdeev formula

νa ≃
Wsat

NTe
ωpe (3.102)

The problem is thus reduced to the determination of the nonlinear saturation level of
the unstable wave spectrum. Its determination requires knowledge of the electric current
j ≃−e⟨NVe⟩ as a functional of the electric wave fluctuation field e. (We are speaking here
only of electrons since in collisionless plasma electrons – because of their much faster
mobility than ions – are the particles which carry the electric current. The electrons feel
the friction of the waves and become retarded by anomalous collisions thereby dissipating
the kinetic energy of the current and contributing to collisionless Joule heating of the
plasma.) The evolution of the electron current is – in principle – given by the electronic
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part of Eq. (3.24), respectively Ohm’s law (3.30), if on the right-hand sides the average
anomalous electronic friction terms (3.26) are added, since these are the crucial terms
containing the wave-particle interactions.

We are interested only in the parallel collision frequency here. In the nonlinear station-
ary state the time derivatives can be neglected. In order to obtain a first expression for the
parallel anomalous collision frequency νa we assume that the last term in Eq. (3.24) is of
the form

− νa

me
NV∥ =

∫
dv3v∥Ce

When inserting from Eq. (3.26), keeping only the parallel component and the electric part
which in the microscopic interactions dominates over the electromagnetic fluctuations,
since these affect only frequencies below ωci, one obtains for the anomalous collision
frequency

νa ≃
1

NV∥
∇∥⟨Wsat⟩ (3.103)

which is general but still preliminary. It requires knowledge of the average power density
of the electric wave field ⟨Wsat⟩ = 1

2 ε0⟨∂ω(ωε)|e2|⟩ which here can be of arbitrarily large
amplitude and arbitrary spatial structure. Remember that the only condition implied in
deriving (3.26) was that the fluctuations were fast both in space and time compared to
the slow changes in the plasma background quantities. In this sense the parallel gradient
operator ∇∥ acts on the slow variability of the wave power.

In order to proceed, another equation is required which determines the evolution of
the wave power. This lacking equation can only be formulated in Fourier space (ω ,k)
and should contain all the nonlinear interactions and thus cannot be of general nature. A
simplifying assumption is that it describes the nonlinear evolution according to a kind of
wave-kinetic equation

d
dt

Wk ≃
∂Wk

∂ t
+

(
V− ∂ω

∂k

)
·∇Wk = 2γ (ω ,k,Wk)Wk + . . . (3.104)

We assume the system has reached stationarity such that the wave spectrum Wk does not
evolve with time anymore. In this case the left-hand side simplifies, and we can express
the spatial derivative of the stationary wave spectrum as

∇∥Wk ≃
2γ (ω ,k,Wk)

|V∥ −∂ω/∂k∥|
Wk (3.105)

which after transforming from Fourier into real space and averaging over the fast fluc-
tuations can be used in the above expression (3.103) to express the anomalous collision
rate through the average wave power. Such expressions will be given below. Usually the
current-drift speed |V∥| ≫ |∂ω/∂k∥| is much larger than the wave group velocity, and the
latter can be neglected. This yields the inverse square dependence of νa ∝ |V∥|−2 on the
current drift velocity.
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The derivation of an anomalous collision rate contains a number of crucial assumptions
of which the most severe concern the simplifications in the terms in the kinetic wave equa-
tion (3.104) where we suppressed a refraction term (∇ω) · (∂Wk/∂k) – which becomes
important in strongly inhomogeneous plasmas like in a shock ramp – and neglected all
terms on the right with the exception of the growth rate term. Since the dependence of
γ on the wave amplitude has been retained, some generality in the nonlinearity is still
retained. Stronger simplifications are made when restricting to pure quasilinear theory. In
this theory the nonlinear dependence of the growth rate on the wave amplitude is dropped.
This confirms to the conventional approach to anomalous dissipation. The most elaborated
quasilinear theory (valid for any direction of propagation including electromagnetic con-
tributions) can be found in Yoon & Lui [2007] where also the application to one particular
mode (the lower-hybrid drift mode discussed below) is given and a rudimentary contribu-
tion of the neglected Coulomb collision term is retained.

In any case the mechanism of saturation of the nonlinear wave field must be known in
order to obtain a useful practical expression for νa. In the following we review only the
three wave modes that contribute strongest to anomalous resistance, ion-acoustic, Bune-
man two-stream, and lower-hybrid drift modes.

Nonlinear Evolution of Waves

Quasilinear theory [Sagdeev, 1979; Yoon & Lui, 2007] is so far the simplest and most
effective approach to the calculation of anomalous collision frequencies. This approach
uses the linear growth rate γ(k) of the instability yielding the simplified formula

νa ≃
1

meNV 2
∥

∫ d3k
8π3

k ·Ve

ω(k)
γ(k)Wsat(k), Wsat(k) ≡ ε0

2
∂ωε(ω ,k)

∂ω
〈
|e2|

〉
(3.106)

It requires in addition knowledge of γ(k) and the drift velocity Ve = V∥ẑ.

Anomalous Ion Acoustic Collision Frequency. For instance, from this expression,
assuming V∥ > cia and kmaxλDe ∼ 1, and γia ∼ ωV∥/ve which holds for the ion acoustic
instability in the large drift limit, one just obtains the above Sagdeev expression (3.102)
for the anomalous collision rate which is good for application when the saturation level of
the instability is measured.

Ion acoustic waves saturate by scattering off thermal plasma ions according to the
resonant scattering process ω −ω ′ = (k−k′) · v i where the prime ′ indicates the frequency
and wave numbers of the scattered wave. This process has been used by Sagdeev [1966]
to explicitly calculate the ion acoustic anomalous collision frequency

νa,ia ≃ 0.01ωpi
V∥
cia

Te

Ti
θ−2 (3.107)

which holds for large electron current drifts V∥ ≫ cia and for narrow angles θ > 0. Actu-
ally, experiments have shown that this expression overestimates the anomalous resistance
suggesting that anomalous collisions are less effective than theory predicts. More precise
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theories than the above estimate have been developed by Vekshtein et al [1970], and have
been reviewed by Sagdeev [1979].

Anomalous Two-Stream Collision Frequency. As noted earlier, the two-stream in-
stability is a very strong instability causing large current momentum losses and rapid
plasma heating. It switches itself of during evolution and will therefore not be a stationary
instability. It causes, in fact, different effects which probably destroy its direct importance
in collision generation.

It has phase speed ω/k∼ ve
√

me/mi substantially below electron thermal speed imply-
ing that it stays relatively long in the volume of excitation which supports its effect on the
local plasma. Its wave energy density, from simple consideration is less than ion energy
Wts ≤Ti. It yields a large theoretical collision frequency

νa,ts ≃ ωpi ≫ νa,ic with νa,ic ∼ 0.3k∥ve < ωci (3.108)

of the order of the ion plasma frequency and several orders of magnitude larger than
Spitzer-Coulomb collision frequency. As such it is a serious candidate for generating
anomalous dissipation and heating in shocks whenever a two-stream situation is encoun-
tered. This is indeed frequently the case as we will see in the supercritical shock Chapters 5
and 6.

If in the above Eq. (3.108) we compare the two-stream collision rate, for instance, with
the ion-cyclotron collision rate νa,ic that had been favoured by Kindel & Kennel [1971],
we find that it has far larger growth rate than the ion cyclotron wave and will thus always
dominate when the current is strong, V∥ > ve. At weaker currents the ion-acoustic instabil-
ity will be faster (because of the slowness of the ion-cyclotron instability) as long as the
magnetic field is weak and V∥ ≫ cia.

Anomalous Lower-Hybrid Drift Collision Rate. As noted earlier, the lower-hybrid
drift instability is particularly important as it is the exceptional representative of a fast
growing (universal) drift wave instability which in the presence of gradients in plasma can
always be expected to grow. Clearly shocks are a particularly good candidate for such an
instability because of the steep density and magnetic field gradients occurring in compres-
sive shocks. Moreover, in application to shocks, other than at pressure equilibrium bound-
aries like the magnetopause [see, e.g., Treumann et al, 1991; Winske & Omidi, 1995], the
magnetic gradient adds positively to the growth rate.

In calculating the quasilinear saturation level of this instability makes use of the wave
number at maximum growth k2

maxλ2
Di = 2/(1+ω2

pe/ω2
ce) and ∂ (ωε)/∂ω = 1+ω2

pe/ω2
ce ≫

1 in dense plasma like the vicinity of the bow shock, for instance. The saturation wave
level [Davidson, 1978] then follows after solving the quasilinear diffusion equation to be
fraction of the drift energy

Wsat,lh ≃
meNV 2

de
8(1+ω2

pe/ω2
ce)

(3.109)
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From here the anomalous collision rate follows as

νa,lh ≃
√

π
2

(ω2
pe

ωlh

)
Wsat,lh

NTi
≈
√

π
2

(
rci

4LN

)2
ωlh (3.110)

proportional to the ratio of ion-gyroradius to density gradient scale length LN = |∇ lnN|−1.
This growth rate is large for steep gradient scales close to the ion gyro-radius, a condition
that holds in the shock ramp. The propagation of electrons in the lower-hybrid drift case is
perpendicular to the magnetic field since the electrons perform a diamagnetic drift which
constitutes the electric current. In the above one-dimensional theory everything has been
reduced to the coordinate parallel to the current. In a shock wave this current will flow
along the shock surface, perpendicular to the magnetic field and shock ramp density/field
gradient.

The anomalous lower-hybrid drift collision frequency is large and renders the lower-
hybrid drift instability a viable candidate for generation of anomalous dissipation in shocks
if only the condition that maximum growth is found for β < 1 can be circumvented. Shocks
in the heliosphere in most cases satisfy the inverse condition β " 1. For the same rea-
son anomalous lower-hybrid drift collision frequencies are not believed to be involved in
reconnection, for instance, except in the presence of a very strong guide field. Whether
this condition on β indeed provides a serious restriction has not yet been clearly verified,
however, neither theoretically nor in numerical simulation or observation.

Recently Yoon & Lui [2007] reviewed the theory of anomalous resistivity for the lower-
hybrid drift and two-stream instabilities and derived some (slightly) more precise (but con-
siderably more involved) expressions than the formulae given above. They also included
electromagnetic effects and arbitrary directions of propagation to maintain that the lower-
hybrid drift anomalous resistance can be very large indeed, up to a factor of 1010 larger
than Spitzer-Coulomb resistance.

Runaway Effects. Since the collision frequency is an inverse function of the particle
current drift velocity it allows for the interesting effect that particles of sufficiently high
speed cannot be captured by the electric field. They instead get another push and escape
as so-called runaway electrons. This effect (the physical reason of which is momentum
balance) is known since long and applies to some of the anomalous collision processes as
well as to Spitzer collisions. The reason is that the wave level saturates yielding a constant
collision frequency for every mode in question. Hence, fast particles do simply not interact
but escape like in free ballistic flight. Hence there will always be some energetic particles
which behave like freely streaming particles. These, when flowing along the magnetic
field, constitute a moderately energetic particle beam and may provide a seed particle
population for further acceleration even in the presence of anomalous collisions.

Other Effects. Several other effects have not been mentioned here in relation to anoma-
lous effects. These are wave decay processes, generation of radiation, and resonant wave
absorption processes in inhomogeneities. It is interesting to note that, historically, Sagdeev
[1966] in following calculations of Moiseev & Sagdeev [1963] proposed that such wave
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decay processes would contribute substantially to anomalous dissipation in subcritical
shocks by enhancing the number of waves present and thus enhancing the probability
of particle scattering by waves.

Wave Decay Processes. The first of these belong to the class of wave-wave inter-
action which are the pendant of collisions between particles in the wave picture without
invoking particles. Such interactions must satisfy the wave momentum and wave energy
conservation laws which can be written simply as

∑
α

kα = 0, ∑
α

ωα(k) = 0 (3.111)

where the index α marks the particular wave mode, and each pair [ωα(k),kα ] satisfies its
own linear (or nonlinear) dispersion relation. According to the number of waves involved,
the smallest possible number is 3, there are three-wave interactions, four-wave interactions,
. . . with for weak interactions decaying probability. For the three-wave case one important
case is that a strong wave (one that has become very strong due to linear wave growth)
such a three wave process can lead to wave decay into two other weaker modes of different
dispersion due to the relations

ω 0 → ω1 +ω2, k0 +k1 +k3 = 0, ω 0 ≫ (ω1,ω2) (3.112)

We do not go into the details of these process; they are rather involved because of the
complexity of the three dispersion relations which have to be taken into account and which
can be different when waves from one branch jump over into another branch feeding a
wave mode there. These processes have, however, a number of consequences of which
four are important:

• They contribute to the excitation of wave modes in a plasma which are not directly
driven by an instability but result from the decay of an instability-driven large ampli-
tude intense wave, in this way contributing to the production of a broad spectrum of
turbulence that consists of many different and even possibly weakly damped modes
in the plasma which otherwise would not exist, when only the decay is stronger than
the natural damping of the wave.

• Decay processes limit the intensity of an instability-driven mode and reduce it sub-
stantially to the advantage of other modes. In this way they weaken the contribution
of the particular mode to anomalous collisions while they might enhance collision-
ality by producing a broad turbulent background fluctuation spectrum.

• By generating other waves in the plasma they may provide a background from which
other instabilities may grow which are driven by sources which otherwise would not
overcome the instability threshold.

• The broad spectrum produced in plasma wave decay processes may move upstream
of the shock and modify the upstream conditions in a way not foreseen in the
Rankine-Hugoniot relations. Hence such processes cannot be handled in simple



108 3. EQUATIONS AND MODELS

plasma modelling of shock wave generation. They can only be investigated by par-
ticularly tailored numerical simulation techniques.

Radiation. Only radiation generated from plasma waves is of interest in heliospheric
shocks because the densities are generally far too low for reaching a substantial emission
measure in synchrotron or x-ray radiation. Radiation can then be generated predominantly
by mode conversion or mode coupling. The difference between the two is that in mode
conversion an intense high frequency plasma wave propagating up a density gradient grad-
ually transforms into a free space mode while mode coupling or mode decay involves at
least three modes in a stimulated wave collision process which also works in homogeneous
plasma.

The more interesting case is a special case of the wave decay process, it is in fact
its inversion, when two plasma waves join in interaction to inject their energies into a
high frequency radio wave that is able to escape from the plasma. Radiation production is
thus always a process of energy loss that leads to cooling of the plasma. However, in the
heliosphere this cooling is weak and can be safely neglected. this kind of radiation is in
fact degraded to an energetically completely unimportant process that has only indicative
power.

The free space modes can be either an ordinary or an extraordinary wave, both prop-
agating above their upper cut-off frequencies which for the left-hand polarised ordinary
(LO) mode with dispersion ω2 = ω2

pe + k2c2 is the plasma frequency, and for the right-
hand extraordinary (RX) mode is a cut-off frequency slightly higher than the upper-hybrid
frequency ω2

uh = ω2
pe +ω2

ce.
The following wave-wave processes are of interest in generating radiation:

• the interaction of two counter-streaming electron plasma (Langmuir) waves into the
transverse (T) electromagnetic wave, following the symbolic process L + L → T,
where the symbols L, T mean the tuples (ωL,kL) and (ωT,kT), respectively. The
energy and momentum conservation equations have been given above in Eq. (3.112).
This process produces a transverse wave with nearly perpendicular propagation
kT ≪ kL in the RX-mode and of frequency ωT ≃ 2ωpe, which can clearly propa-
gate above the cut-off in weakly magnetised plasma,

• the process L + L′ → T of interaction of a Langmuir wave with another Langmuir
wave that has been scattered off thermal ions (i) according to the process L + i →
L′ + i∗, where the prime indicates the scattered Langmuir wave, and the star on
the ion the excited ion. The wave interaction in this case causes a lower frequency
transverse wave still above the plasma frequency but closer to the cut-off of the
RX-mode,

• a process similar to the one under the first item in which harmonic Langmuir waves
have been generated in L–L interaction. This yields weak higher plasma harmonic
radiation at frequencies ω ! lωpe with harmonic numbers l = 3, . . . in the RS-T
mode with intensity that decreases steeply with increasing harmonic number l,
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• merging of a Langmuir and an ion acoustic wave (S) according to L+S → T, which
produces a transverse wave with frequency above but very close to ωpe. Whether
this wave can escape from the plasma depends on whether its frequency is above
the cut-off of the RX-mode, which is possible only for high frequency S waves, or
whether it can tour into the OL mode for which generally the conditions of being
selected in the merging process are worse than for the RX mode,

• merging of another electrostatic plasma wave like, for instance, an electron acoustic
mode (EA) with a Langmuir mode according to L + EA → T. Since the EA wave
is near 1

2 ωpe, this produces a T wave at frequency ω ∼ 3
2 ωpe well above the cut-off

still even though still counted as fundamental mode radiation,

• then, the lower-hybrid mode can also merge with the Langmuir mode. The product
of this process can, however, not escape in the RX mode as it usually does not exceed
the cut-off. On the other hand, it could excite the LO mode,

• finally several nonlinear processes exciting transverse free space electromagnetic
waves have been proposed like Langmuir wave collapse.
Collapse is very attractive because Langmuir waves become trapped in this process
inside deep density depressions where they bounce back and forth between the walls.
Thus in quite a natural way collapse generates counter-streaming Langmuir waves
in highly localised places. These waves are particularly well configured for merging
and escaping in the RX mode.
Moreover, during collapse the internal plasma frequency decreases rapidly, causing
as well a decrease of the radiation frequency. This allows only the higher frequency
part of the radiation with frequency just above the plasma frequency of the environ-
ment to escape. Radiation occurs as intense fundamental but highly bursty radiation
at the plasma frequency because at the end of the collapse the intensity of the waves
explodes and therefore the emitted power also explodes.
However, experimentally this process could never been proven. It has been replaced
by another mechanism known as ‘stochastic growth’ which itself is doubtful as well
but very popular. It takes into account the stochastic modulation of Langmuir growth
in a medium of spatially fluctuating density, i.e. containing a broad spectrum of weak
ion acoustic turbulence. This causes the growth rate to experience spatial modula-
tions leading to exponential modulation of the Langmuir amplitude. Contribution to
the intensity comes only from localised places, and thus the volume contributing to
radiation is a fraction only of the total volume while locally radiation may be rather
intense.

All these radiation processes are nonlinear of second order in the amplitudes of the
involved waves. A direct process would be the linear unstable excitation of one of the
free-space modes. This process, called electron-cyclotron maser, is well know to work in
a highly underdense plasma with ωpe ≪ ωce of the kind present in the magnetospheres of
the magnetised planets under auroral conditions [for a review see Treumann, 2006]. In the
shock environment we have instead ωpe ≫ ωce and this condition is strongly violated.
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On the other hand, it is not unlikely that in the shock ramp strong electric fields may
accelerate electrons such that they either evolve into a loss cone distribution or form a
ring distribution in phase space, both distributions favouring conditions for the electron
cyclotron maser to work. In a dense plasma the maser can excite free space modes only in
oblique direction at higher electron cyclotron harmonics. At Earth’s bow shock we have
ωpe/ωce ∼ 50−100. This implies that in order to reach the free space X-mode the maser
should work at a very high harmonic, which is very unlikely as the maser growth rate read-
ily decreases with harmonic number. However, excitation of the O-mode and Z-mode – the
quasi-electrostatic lower frequency X-mode branch ω < ωuh –, the latter near the upper
hybrid frequency ωuh, may become possible. The growth rate for the O-mode is small
while that for the Z-mode may be higher.

If the conditions for excitation of these modes are satisfied then it might be possible that
the maser will also work in a supercritical shock wave in the presence of a strong shock
ramp electric field. Yoon et al [2007] have recently, in a brute force numerical solution
of the relevant loss-cone maser dispersion relation, tried to determine conditions when
the growth rates become sufficiently high for maser excitation. While the O-mode can in
principle leave the plasma directly, the Z-mode must find a way to escape from the dense
plasma to free space. If excited in the shock ramp, this way may be provided by mode
conversion from the shock Z-mode to the upstream X-mode or, otherwise, by coupling
across the boundary of the Z-X-mode wave guide. The advantage of this kind of maser
excitation, if realised in shocks, would be that it would be capable of explaining the so-
called shock backbone radiation in solar and interplanetary type II radio bursts.

3.5.3 Shock Particle Reflection

The process of particle reflection from a shock wave is one of the most important processes
in the entire physics of collisionless shocks, as we have noted already in several places.
The mechanism of particle reflection has not yet been fully illuminated, however.

Particle reflection is required in supercritical shocks as, to our knowledge, it is the
only process that can compensate for the incapability of dissipative processes inside the
shock ramp to digest the fast inflow of momentum and energy into the shock. Shock
particle reflection is not dissipative by itself even though in a fluid picture which deals
with moments of the distribution function it can be interpreted as kind of an ion viscosity
Macmahon [1965], i.e. it generates an anomalous viscosity coefficient which appears as a
factor in front of the second derivative of the ion velocity in the ionic equation of motion.
As such it also appears in the ion heat-transport equation. The kinematic ion viscosity can
be expressed as

µvis = miNviλmfp ≃ Pi/2ωci (3.113)

through the ion pressure Pi and the ion-cyclotron frequency ωci when replacing the mean
free path through the ion gyro-radius. In this sense shock particle reflection constitutes by
itself a very efficient non-dissipative dissipation mechanism. However, its direct dissipa-
tive action is to produce real dissipation as far as possible upstream of the shock in order to
dissipate as much energy of motion as remains to be in excess after formation of a shock
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ramp, dissipation inside the ramp, and reflection of ion back upstream. The shock does this
by inhibiting a substantial fraction of inflow ions to pass across the shock from upstream
into the downstream region. It is sending these ions back into the upstream region where
they cause a violently unstable upstream ion beam-plasma configuration which excites a
large amplitude turbulent wave spectrum that scatters the uninformed plasma inflow, heats
it and retards it down to the Mach number range that can be digested by the shock. In this
way the collisionless shock generates a shock transition region that extends far upstream
with the shock ramp degrading to the role of playing a subshock at the location where the
ultimate decrease of the Mach number from upstream to downstream takes place.

Shock reflection has another important effect on the shock as the momentum trans-
fer from the reflected particle component to the shock retards the shock in the region of
reflection thereby decreasing the effective Mach number of the shock.

The outcome of the previous paragraphs is that shock particle reflection is of incom-
parable importance in shock formation and in the understanding of collisionless shock
physics. On the other hand it is barely understood and can, in principle, be treated only by
numerical simulations. Before, in the next chapters, coming to discuss those problems in
greater depth we will present below a few attempts to understand shock reflection.

Specular Reflection

Specular reflection of ions from a shock front is the simplest case to be imagined. It
requires that the ions experience the shock ramp as an impenetrable wall. This can be
the case when the shock itself contains a positive reflecting electric potential which builds
up in front of the approaching ion. Generation of this electric potential is not clarified yet.
In the soliton picture the shock potential is related to the density gradient, however, dis-
sipation processes are also involved. Understanding its formation requires understanding
the entire collisionless shock physics. In a very naive approach one assumes that in flow-
ing magnetised plasma a potential wall is created as the consequence of charge separation
between electrons and ions in penetrating the shock ramp. It occurs over a scale typically
of the spatial difference between an ion and an electron gyro-radius, because in the ideal
case the electrons, when running into the shock ramp, are held temporarily back in the
steep magnetic field gradient over this distance while the ions feel the magnetic gradient
only over a scale longer than their gyro-radius and thus penetrate deeper into the shock
transition.

Reflection from Shock Potential. Due to this simplistic picture the shock ramp
should contain a steep increase in the electric potential ∆φ which will reflect any ion
which has less kinetic energy miV 2

N/2 < e∆φ (see Figure 3.17). This condition contains
the perpendicular ion velocity component along the shock normal. Since the ion gyrates it
depends on the instantaneous angle the ion velocity has with respect to the magnetic field at
the location of the ramp. In this reflection the ion velocity component −VN →+VN simply
changes sign. For the gyrating particles this component adds up of the normal components
of the bulk flow velocity V f

N and the microscopic particle speed v = (v⊥cosα,v⊥sinα,v∥),
with α the gyration angle, projected on the direction of the shock normal n. This yields
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Figure 3.17: The two cases of shock reflection. Left: Reflection from a potential well Φ(x). Particles of energy
higher than the potential energy eΦ can pass while lower energy particles become reflected. Right: Reflection
from the perpendicular shock region at a curved shock wave as the result of magnetic field compression. Particles
move toward the shock like in a magnetic mirror bottle, experience the repelling mirror force and for large initial
pitch angles are reflected back upstream.

−VN = −V f
N + v∥ cosΘBn + v⊥cosα sinΘBn

and the condition for specular reflection can be written as
(
−V f

N + v∥ cosΘBn + v⊥cosα sinΘBn
)2

< 2e∆φ/mi

This is a condition on the gyration angle α restricting the gyration phases of the reflected
particles. For a gyrotropic upstream distribution one can average over all gyration angles
from 0 to π/2 since only upstream directed velocity components reduce the inflow velocity
to values below the reflection threshold, obtaining

(
v∥ cosΘBn −V f

N
)2

+
4
π
(
v∥ cosΘBn −V f

N
)
v⊥sinΘBn +

1
π v2

⊥sin2 ΘBn <
2e∆φ

mi

This condition must be used on one of the velocity components v∥, v⊥ when determining
the number of specularly reflected particles from the upstream ion distribution function
Fup

i (v∥,v⊥).

Mirror Reflection. Another simple possibility for particle reflection from a shock ramp
in magnetised plasma is mirror reflection. An ion approaching the shock has components
vi∥ and V∥ = V1 cos(V1 ·B1) along the magnetic field. Assume a curved shock like Earth’s
bow shock. Close to its perpendicular part where the upstream magnetic field becomes
tangential to the shock the particles approaching the shock with the stream and moving
along the magnetic field with their parallel velocities experience a mirror magnetic field
configuration that results from the converging magnetic field lines near the perpendicu-
lar point (compare the right part of Figure 3.17). Conservation of the magnetic moment
µ = Ti⊥/B implies that the particles become heated adiabatically in the increasing field;
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they also experience a reflecting mirror force −µ∇∥B which tries to keep them away
from entering the shock along the magnetic field. Particles will mirror at the perpendic-
ular shock point and return upstream when their pitch angle becomes 90◦ at this loca-
tion [this theory has been developed in detail by Leroy & Mangeney, 1984; Wu, 1984].
We will return to this mechanism in Chapter 7 when describing shock particle accelera-
tion.

A rough estimate of the marginal upstream pitch angle for mirror reflection can be
given from conservation of µ . Since the increase in field strength is according to the mag-
netic gradient across the shock ramp one has roughly at the perpendicular shock point
B = B1 +(∇nB)∆ where ∆ is the shock width and ∇n the field gradient across the shock.
Hence, to lowest order, B = B1 + δB with δB the magnetic compression. This yields for
the upstream pitch angle at reflection sin2 α1 > (1 + δB/B1)−1. With compression fac-
tor δB/B1 ∼ 3 particles of upstream pitch angles α1 > 60◦ will become mirror reflected
from the perpendicular shock area due to the action of the mirror force, a condition which
has to be used upstream in the inflowing distribution if one wants estimating the fraction
of reflected particles. This requires knowledge of the compression factor, however. The
compression factor and the number of reflected particles are not independent. Hence, a
selfconsistent determination requires developing the full shock theory. This can be done
only by numerical simulations.

Of course, the above estimate is very crude. It demonstrates, however, that a fraction
of upstream particles can, in principle, become reflected from a curved shock surface by
mirroring in the converging magnetic field geometry around the perpendicular area of
the shock. For fast flows reflection will always be located on the nose inflow side of the
shock. This holds for ions as well as for electrons. Reflection of both sorts of particles
has continuously been observed at the bow shock as is shown schematically, for instance,
in Figure 2.6 which has been drawn for condition in front of a perpendicular shock at a
distance inside the foot, roughly within <1rci from the shock ramp.

Consequences of Shock Reflection. How far the reflected ions return upstream de-
pends on the direction of the magnetic field with respect to the shock, i.e. on the shock nor-
mal angle ΘBn. For perpendicular shocks the reflected ions only pass just one gyro-radius
back upstream. Seeing the convection electric field |Ey| = |V f B| they become acceler-
ated along the shock forming a current, the velocity of which in any case exceeds the
inflow velocity (which is zero in the perpendicular direction) and for sufficiently cold
ions also the ion acoustic velocity cia in which case the ion-beam plasma instability will
be excited in the shock foot region where the ion current flows. This may generate and
anomalous collision frequency in the shock foot region. Moreover, since the excited waves
accelerate electrons along the magnetic field other secondary instabilities can arise as
well.

In quasi-perpendicular and oblique shocks the ions can escape along the magnetic
field. In this case an ion-beam/ion beam situation arises between the upstream beam and
the plasma inflow with the consequence of excitation of a variety of instabilities, electro-
magnetic and electrostatic. In addition, however, an ion beam-electron beam two stream
situation is caused between the upstream ins and the inflow electrons which because of
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the large upstream electron temperatures probably excites mainly ion-acoustic modes but
can also lead to Buneman two-stream mode excitation. These modes contribute to turbu-
lence in the upstream foreshock region creating a weakly dissipative state in the foreshock
where the plasma inflow becomes informed about the presence of the shock. The electro-
magnetic low frequency instabilities on the other hand, which are excited in this region,
will grow to large amplitude, form localised structures and after being convected by the
main flow towards the shock ramp interact with the shock and modify the shock profile or
even contribute to shock formation and shock regeneration.

Specular reflection from shocks is the extreme case of shock particle reflection. Other
mechanisms like turbulent reflection are, however, not well elaborated and must in any
case be investigated with the help of numerical simulations. In the following subsection
we will in passing encounter one such mechanism in phase space hole formation in a
two-stream unstable collisionless plasma.

Figure 3.18 shows the expected particle distributions for shock reflection of ions in a
perpendicular shock right in the foot region. The upper part of this figure is perpendicular
to the shock in flow direction. The lower part is along (tangential to) the shock surface.
The different configurations of the distributions in this region can lead to the excitation
of ion acoustic and two-stream instabilities. Ion beam-ion beam interaction is expected
in the direction perpendicular to the shock in addition to ion-acoustic instability between
the reflected ions and the main electron component in the region of positive gradient on
the electron distribution. In the direction parallel to the shock surface, on the other hand,
one expects and ion beam-ion interaction and a two stream instability of the main elec-
tron component with the accelerated along the shock surface reflected ion beam. Inside
the ramp conditions are more involved and will be describe in more detail in the context
with observations in the respective chapters for both quasi-perpendicular and quasi-parallel
shocks.

We note in addition that there is a peculiarity concerning quasi-parallel supercritical
shocks. Due to the presence of an intense reflected and transformed ion component in the
foreshock of a quasi-parallel shock there is a broad spectrum of large amplitude low fre-
quency electromagnetic waves which are convected by the inflow stream towards the shock
ramp, steepen and interact with the shock. These waves are predominantly transverse hav-
ing components tangential to the shock on scales of the order and shorter than the ion
gyro-radius. Consequently, quasi-parallel shocks remain to be quasi-parallel for ions, in
particular for the more energetic accelerated ions. However, for the electrons all quasi-
parallel supercritical shocks become quasi-perpendicular in the vicinity of the shock ramp
transition such that for electrons no quasi-parallel supercritical shocks exist. This has the
consequence that electrons will become reflected and accelerated all-over the shock front
independent of its quasi-parallel character. We will later prove this statement by referring
to observations and simulations.

Hole Formation

As the last item in this section we consider the stability of an high velocity Vb > ve elec-
tron beam or electron current. In the fluid picture we have found that such high speed
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Figure 3.18: Expected particle distributions in the shock foot of a supercritical perpendicular shock which
reflects ions back upstream. Top: Distribution functions in flow direction. The ion and electron distributions
flow with velocity V1 in shock direction. For the electrons with their high thermal speed the flow velocity is
practically negligible. Reflected ions in the foot occur at velocity −V1 on the scale of about one ion gyro-radius.
This yields a two-ion beam configuration which is electrostatically unstable. Moreover, ion acoustic waves are
excited to the right of the reflected ion distribution by the ion-acoustic instability in the positive slope of the
hot electron distribution. Bottom: Same in the direction along the shock front. Inflowing ions and electrons have
only thermal velocities in this direction. The reflected ions are accelerated to about twice the inflow velocity in
the tangential inflow electric field |E| = |V1 ×B1|. This causes an unstable ion beam-ion configuration and a
two-stream configuration between accelerated reflected ions and electrons.

currents flowing through the plasma along the magnetic field or (in the presence of steep
density gradients) perpendicular to both, the gradient and the magnetic field, will excite
the fast growing Buneman two-stream instability. It has, however, been predicted early
[Schamel, 1972; Dupree et al, 1975] that currents of this strength will undergo a kinetic
instability which structures the electron and ion phase space into so-called phase space
holes, which are regions of lacking particles localised in phase space while in real space
represent localised electric fields, trapped particles and particle acceleration. Such holes
have meanwhile been found to exist all-over in collisionless space plasmas in relation to
spatially localised strong current flow as in reconnection, auroral phenomena, and also in
shocks [Bale et al, 2002]. Since strong currents are expected in shocks as well in the ramp
as in the foot, as we have discussed above, it is not unreasonable to assume that phase
space holes might form under shock conditions as well.

Hole formation follows a nonlinear interaction known as Bernstein-Green-Kruskal
(BGK) mode formation [cf., e.g., Davidson, 1972] and is based on the splitting of the
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Figure 3.19: Left: Electron and ion phase space plots at three simulation times of the interaction of a marginally
two-stream unstable plasma with a shock ramp. The ramp has been modelled as a density dip (potential wall for
electrons) in the centre of the simulation box. The box has one space and one velocity coordinate. The fast
electron beam current is injected into the quiet ion plasma and [after Newman et al, 2001]. Right: Time history
of the electric field during the interaction with the shock ramp showing the evolution of electron and ion phase
space holes and their interaction [after Newman et al, 2002].

phase space distribution function into two components, particles that are energetic enough
to surpass the electric potential of a localised electric field inside a soliton, for instance,
and particles of lesser energy that become either trapped or reflected from these poten-
tials depending on the sign of particle and potential. Even if the potential is repulsive and
ejects, say, electrons from the region, some trapped electrons will remain there perform-
ing oscillations and become heated up to a certain energy that leaves them still trapped.
These electrons are in disordered motion and are assuming a high temperature, while the
rejection and expulsion of other particles from the potential site causes their acceleration.
This mechanism is quite complicated and has been treated analytically only up to a certain
approximate degree in the above cited papers. In order to investigate it one better performs
numerical simulations.

Figure 3.19 shows the example of a simulation of hole formation in interaction of a
marginally two-stream stable current (of electron and ion of opposite bulk velocity and
same initial temperature Te = Ti with a localised inhomogeneity [from Newman et al,
2001, 2002]. The localised plasma inhomogeneity has been modelled as a simple den-
sity dip ∝ −cos2(x− x0) at the centre. This is not a shock, it is, however, a potential wall
which should reflect one sort of particles, in this case electrons.
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The figure shows on the left phase space plots at three different simulation times for
electrons and ions when due to electron reflection at the potential ramp a strong two-
stream instability evolves. The holes formed on the electron distribution appear early in the
simulation as egg-like distortions of the distribution in the reflected electron component.
Widening of the distribution indicates the strong heating of the electrons. The holes contain
dilute trapped electron, and some part of the beam becomes accelerated. At later times the
heating becomes violent with a strong broadening of the electron distribution when the
ion hole starts forming in the lower panels. Strong acceleration of a narrow and thus very
cool electron beam is also observed in the final state. In addition the holes move along the
beam, while the ion hole moves in the opposite direction.

Most interesting is the time history shown on the right in the figure. It shows the initial
evolution of many small amplitude electron holes moving at fast speed to the right away
from the potential ramp. At later times the ramp steepens, and the electron holes start inter-
acting with the ion hole which moves slowly to the left. The holes intensify and finally can
break through the potential ramp to escape to the right where a whole fabric of interfering
holes evolves.

The importance of this observation is that the two-stream instability can form as a
cause of reflection at a potential ramp. This is expected for shocks as well. Moreover, the
instability causes electron and ion phase space holes to evolve and leads to completely
collisionless heating due to electron trapping inside the holes, i.e. it causes irreversible
heating and entropy which is needed for shocks, and it also generates a very cool electron
beam to escape from the holes by continuous acceleration and collimation of cool but fast
electrons. This is a very interesting and important mechanism which is capable of injecting
a fast seed particle population into shock acceleration. As a side product it is a method of
cooling electrons and generating cold electron beams.

3.6 Briefing on Numerical Simulation Techniques

The modern age of physics is to a large degree determined by the availability of high
speed and high capacity computer systems. The use of these computing facilities for per-
forming numerical experiments on collisionless plasmas covers now almost half a century
of experience. It started with the introduction of Fermi’s Monte-Carlo method and blos-
somed after the formulation of the Fermi-Ulam 1961 numerical model approach to cosmic
ray acceleration [cf., e.g., Lichtenberg & Lieberman, 1992] which was based on nonlinear
particle motions in electromagnetic fields. The modern state of the art in application to
plasma physics has been formulated in several textbooks [e.g., Birdsall & Langdon, 1985]
and review articles [e.g., Dawson, 1983, 1995]. Many problems in plasma and in partic-
ular space plasma physics with their enormous complexity could not have been solved or
even attacked without computers and numerical simulations. Also, most of the discussion
on shocks in the following chapters will be based on such numerical simulations which
must accompany observation and experiment in order to understand what is going on in
the shock environment. A brief discussion about numerical methods is therefore not only
unavoidable but even necessary.
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3.6.1 Basic Equations

Computers are capable of dealing simultaneously with the dynamics of many particles as
we have already described in Chapter 2. The most fundamental approach in numerical
simulations is hence based on the full Newton-Maxwell set of microscopic equations of
which we write down here only the Newtonian subset

dv is

dt
=

es

ms
(E+ v is ×B),

dx
dt

= v (3.114)

The connection to Maxwell’s equations is done by the microscopic definition equations of
the space charge ρ(x, t) and conduction current j(x, t) according to

ρ(x, t) = ∑
is

esδ (x−xis), j(x, t) = ∑
is

esv sδ (x−xis) (3.115)

In fact, these are the most general equations of a classical plasma consisting of i point-
like space charges es of species s with mass ms and momentum msv is located at time t at
location xis(t). The point-like character is taken care of by the δ -functions. This whole
set is the set of Liouville’s equations [which could also formally be combined into one
single exact equation in phase space (x, v ) by introducing an exact phase space distribution
function F(x, v ) = ∑is δ (x − xis)δ (v − v is). Such an equation is know as the Liouville
equation].

These equations can be simplified depending on the nature of the problem. For in-
stance, when electromagnetic effects are not of interest, the magnetic field will drop out
and one uses only Poisson’s equation for the electrostatic potential and the electric field
in Ampère’s law. When the plasma is collisionless one can use another simplification,
i.e. replace the Liouville distribution with the one-particle distribution and switch to the
Vlasov equation. This then produces Vlasov-codes. When one is interested only in low
frequency responses of the plasma, the electrons can be treated as Boltzmannian elec-
trons, and the electron equations are replaced by the Boltzmann dependence of the elec-
tron density on the electric potential with the ions being treated as single particles. The
corresponding codes that have found extensive application in shock physics are the hybrid
codes [for a brief description see, e.g., Winske, 1985a]. An even stronger simplification
is the assumption of quasi-neutrality when the Poisson equation is replaced by the condi-
tion Ne = Ni and the electrons are merely an instantaneously reacting neutralising back-
ground. The strongest simplification consists in the recourse to the replacement of the
above kinetic equations by hydrodynamic equations, i.e. by treating electrons and ions
as fluids respectively even as one single fluid. Such codes are not numerical experiments
in the above sense of the words, rather they are methods to solve the hydrodynamic (or
magneto-hydrodynamic) system of equations. They are not suited for the investigation of
the evolution of collisionless shocks except for determining their global shapes and the
gross features of the plasma fluid flow behind them around the obstacle.
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3.6.2 General Methods

Either of the resulting sets of equations must be represented in digitised form in order
to be prepared for treatment on a computer. One represents the spatial coordinates as a
discrete grid and advances the equations over discrete time intervals. The choice of space
and time steps is prescribed by the necessary accuracy of the result and by the stability of
the code. The particles in the code are, however, no more point particles but of finite size,
i.e. the Delta-functions assume bell-function shapes. This has the consequence that parti-
cle experience only small angle collisions well suited for studying collisionless plasmas.
The integration of the equations is then performed in a series on a large number of such
discrete steps of the finite sized particles the Lagrangean positions of which are used to
deposit the charges and currents onto the fixed discrete grid points, followed by solving the
field equations on these grid points of the many spatial cells. This produces self-consistent
fields which are used in the next time step and which are smeared out over the volume
by interpolation in order to construct a field continuum in which the particle orbits are
advanced further. One is thus working with space and time differences and an interpola-
tion from charge to grid and subsequently of the fields from grid to particle. In view of
application to the heliospheric shocks in the following we briefly discuss the discretisation
only for the electromagnetic case.

Units. Numerical methods require that all quantities including coordinates space and
time are pure numbers. One thus needs to normalise them by introducing constant ref-
erence values, a density N0, charge-to-mass ratio e/m0 (here m0 is the particle rest mass
either for electrons or for ions), velocity of light c (for instance, another choice is the
upstream Alfvén velocity). Time is then normalised, for instance, to the plasma frequency
expressed in these reference units ω−1

p = (e2N0/ε0m0)−
1
2 , space in inertial lengths c/ωp

(either for ions or electrons), the electric potential for instance in m0c2/e (or in units of
electron temperature Te/e), the magnetic vector potential in m0c/e. This choice of units is
one of many possibilities only.

Discretisation. Both the field and particle equations must be discretised. The idea of
discretisation is quite simple. One returns in history to the time just one step before New-
ton and Leibniz. Differential quotients become quotients of differences, higher order dif-
ferential quotients become the corresponding powers of quotients of differences, mixed
differential quotients become products of quotients of differences. The only trick is to
assign the results to some location inside the difference interval, not necessarily the centre
(!), and to do this properly. Also, time runs only in one direction: forward. Applying such
a scheme one arrives at recursive equations which can be solved on a sufficiently powerful
computer.

Let us assume that we reduce the electromagnetic set of equations to the electromag-
netic wave equation for the vector potential component A. This must be written in differ-
ence form

1
4

∇2(A( 3
2 ) +2A( 1

2 ) +A(− 1
2 )
)
− 1

c2∆t2

(
1+βD2∇2)(A( 3

2 )−2A( 1
2 ) +A(− 1

2 )
)

= −j(
1
2 )

T
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The superscripts indicate the time levels of the various terms, the ad hoc parameter β is
introduced to modify the dispersion at short wavelengths, and ∇2, D2 are defined as

∇2A =
A j+1,m −2A j,m +A j−1,m

∆x2 +
A j,m+1 −2A j,m +A j,m−1

∆y2 ,
1

D2 =
1

∆x2 +
1

∆y2

The transverse current density in the Coulomb gauge is jT = j−∇∂φ/∂ t. Since ∇ · jT = 0,
the additional equation ∇2(∂φ/∂ t) = ∇ · j must be solved. The electrostatic potential φ (1)

is to be taken at full time step (1), while j( 1
2 ) belongs to each half time step ( 1

2 ). The former
is obtained from ∇2φ (1) = −ρ(1). Finally, the fields follow from

E(1) = −∇φ (1) − A( 3
2 ) −A( 1

2 )

∆t
, B(1) =

1
2

∇×
(
A( 3

2 ) +A( 1
2 )
)

Fields, charge and currents are defined at the centre of the cells. These equations must
be solved with a so-called Poisson solver. In addition one needs to specify appropriate
boundary conditions at the boundaries of the simulation box.

In a similar way one discretises the equation of motion of the particles. For this one
defines h = e∆t/m and obtains a centred form of the equation of motion as a recursion
equation with unknown v (1)

v ( 3
2 ) = v ( 1

2 ) +h
(
E(1) + v (1) ×B(1)

)

In order to determine B = 1
2 (v ( 3

2 ) + v ( 1
2 )) the former equation is solved implicitly taking

the scalar and vector products of the former equation with B(1). Up to terms second order
in ∆t this yields the expression

v ( 3
2 ) = v ( 1

2 )

(
1− h2

2
B2

)
+h

(
E+ v ( 1

2 ) ×B
)
+

h2

2
(
E×B+BB · v ( 1

2 )
)

for use in the expression for v (1) only. The set of equation obtained is then ready for
computing.

However, there are two ways of computing, so-called explicit and implicit techniques.
In the explicit technique one solves the equations as they are obtained after discretisation.
In such an approach the internal errors will necessarily grow and at some stage become
unstable such that the calculation must be truncated. One can artificially introduce some
kind of damping of these growing error modes in order to suppress them. Justification for
this is discussed in the literature [Birdsall & Langdon, 1985]. The implicit technique solves
the problem by calculating backward in time [Friedman et al, 1981] such that the error
modes decay away when time runs negative. We do not describe this technique here. It
suffices to note that in this approach the dangerous unstable short-wavelength error modes
disappear by definition and become partially eliminated from the system. The most effi-
cient ways of calculation are the combinations of both methods.
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All these methods work on a fixed grid. In application to shock ramp research the grid
mash has to be chosen refined enough for resolving shock structure. Recently Karimabadi
et al [2005] developed a self-adaptive technique which takes care of the steeping and
narrowing of a shock front in order to resolve its substructure. This is a significant progress
in shock simulation technique.

We do not go into detail of the various methods and refinements of simulation tech-
niques. Those readers who are interested in and prepare themselves for doing simulation
research in collisionless shocks we rather refer to the mentioned basic literature on the
techniques of numerical simulation.
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