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Quasi-perpendicular Supercritical Shocks

Abstract. Quasi-perpendicular shocks are the first and important family of collisionless magne-
tised shocks which reflect particles back upstream in order to satisfy the shock conditions. Discussion
of the particle dynamics gives clear definition for distinguishing them from quasi-parallel shocks by
defining a shock normal angle with respect to the upstream magnetic field. They exist for shock
normal angles <45◦. Reflected particles at quasi-perpendicular shocks cannot escape far upstream
along the magnetic field. They form a foot in front of the shock ramp. We discuss the reflecting
shock potential and the explicit shock structure. Most theoretical insight is provided by numerical
simulations which confirm reflection, foot formation and reformation of the shock. The latter being
caused by steeping of the foot disturbance until the foot itself becomes the shock transition, reflecting
particles upstream. Reformation modulates the shock temporarily but on the long terms guarantees
its stationarity. Ion and electron dynamics are explicitly discussed in view of the various instabilities
involved as well as particle acceleration and shock heating. Finally, a sketchy model of a typical
quasi-perpendicular shock transition is provided.

5.1 Setting the Frame

As long as the shocks are subcritical with Mach numbers M < Mc the distinction between
quasi-perpendicular and quasi-parallel shocks is not overwhelmingly important, at least as
long as the shock normal angle is far from zero. The mechanisms of dissipation in such
sub-critical (or laminar) shocks have been discussed in the previous chapter. However,
when the Mach number increases and finally exceeds the critical Mach number, M > Mc,
the distinction becomes very important.

We speak of quasi-perpendicular super-critical shocks when the shock-normal angles
ΘBn < 45◦, and this because of good reasons. First, super-critical shocks cannot be main-
tained by dissipation alone. This has been clarified in Chapters 2 and 3. The inflow of
matter into a supercritical shock is so fast that the time scales on which dissipation would
take place are too long for dissipating the excess energy and lowering the inflow velocity
below the downstream magnetosonic velocity. Hence, the condition for criticality, as we
have shown in Chapter 2, is that the downstream flow velocity becomes equal to the down-
stream magnetosonic speed, which yielded the critical Mach number, Mc ! 2.76. We have
also shown that Mc(ΘBn) is a function of the shock normal angle and can become quite
small, even though Mc(ΘBn) " 1 for existence of a shock, of course.

In order to help maintain a shock in the supercritical case the shock must forbid an
increasing number of ions to pass across its ramp, which is done by reflecting some par-
ticles back upstream. This is not a direct dissipation process, rather it is an emergency act
of the shock. It throws a fraction of the incoming ions back upstream and by this reduces
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both the inflow momentum and energy densities. Clearly, this reflection process slows the
shock down by attributing a negative momentum to the shock itself. The shock slips back
and thus in the shock frame also reduces the difference velocity to the inflow, i.e. it reduces
the Mach number. In addition, however, the reflected ions form an unexpected obstacle for
the inflow and in this way reduce the Mach number a second time.

These processes are very difficult to understand, and we will go into more detail of
them in this chapter. However, we must ask first, what the reason is for this rigid limit
in ΘBn for calling a shock a quasi-perpendicular supercritical shock. The answer is that
a shock as long belongs to the class of quasi-perpendicular shocks as reflected particles
cannot escape from it upstream along the upstream magnetic field. After having performed
half a gyro-circle back upstream they return to the shock ramp and ultimately traverse it to
become members of the downstream plasma population.

5.1.1 Particle Dynamics

To see this we must return to the orbit a particle performs in interaction with a super-
critical shock when it becomes reflected from the shock. In the simplest possible model
one assumes the shock to be a plane surface, and the reflection being specular turning the
component vn of the instantaneous particle velocity v normal to the shock by 180◦, i.e.
simply inflecting it. In a very simplified version we have already considered this problem
in Chapter 3. Here we follow the explicit calculation for these idealised conditions as given
by Schwartz et al [1983] who treated this problem in the most general way. One should,
however, keep in mind that the assumption of ideal specular reflection is the extreme limit
of what happens in reality. In fact, reflection must by no means be specular because of
many reasons. One of the reasons is that the shock ramp is not a rigid wall; the particles
penetrate into it at least over a distance of a fraction of their gyroradius. In addition, they
interact with waves and even excite waves during this interaction and during their approach
of the shock. Altogether, it must be stressed again that the very mechanisms by which they
become reflected are poorly known, indeed. Specular reflection is no more than a con-
venient assumption. Nevertheless, observations suggest that assuming specular reflection
seems to be quite a useful approximation to reality as long as nothing more precise is
known about the inelastic reflection processes.

Figure 5.1 shows the coordinate frame used at the planar (stationary) shock, with
shock normal n, magnetic b̂ and velocity v̂ unit vectors, respectively. Shown are the angles
ΘBn, θV n, θBV . The velocity vector VHT is the de Hoffmann-Teller velocity which lies
in the shock plane and is defined in such a way that in the coordinate system moving
along the shock plane with velocity VHT the plasma flow is along the magnetic field.
V−VHT = −v∥ b̂. Because of the latter reason it is convenient to consider the motion
of particles in the de Hoffmann-Teller frame. The guiding centres of the particles in
this frame move all along the magnetic field. Hence, using V = −V v̂, n · v̂ = cosθV n,
n · (b̂, x̂, ŷ) = (cosΘBn,sinΘBn,0),

v∥ = V
cosθVn

cosΘBn
, VHT = V

(
−v̂+

cosθV n

cosΘBn
b̂
)
≡ n×V×B

n ·B
, VHT,n ≡ 0 (5.1)
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Figure 5.1: The shock coordinate system showing the shock normal n, velocity and magnetic field directions
v̂, b̂, the three angles ΘBn, θV n, θBV between b̂ and n, velocity V and n, and velocity V and b̂, respectively.
The velocity VHT in the shock plane is the de Hoffmann-Teller velocity [after Schwartz et al, 1983, courtesy
American Geophysical Union].

The de Hoffmann-Teller velocity is the same to both sides of the shock ramp, because
of the continuity of normal component Bn and tangential electric field Et . Thus, in the de
Hoffmann-Teller frame there is no induction electric field E =−n×V×B. The remaining
problem is two-dimensional (because trivially n, b̂ and −v∥b̂ are coplanar, which is nothing
else but the coplanarity theorem holding under these undisturbed idealised conditions).

In the de Hoffmann-Teller (primed) frame the particle velocity is described by the
motion along the magnetic field b̂ plus the gyromotion of the particle in the plane perpen-
dicular to b̂:

v ′(t) = v′∥b̂+ v⊥
[
x̂cos(ωci t +φ0)∓ ŷsin(ωci t +φ0)

]
(5.2)

The unit vectors x̂, ŷ are along the orthogonal coordinates in the gyration plane of the ion,
the phase φ0 accounts for the initial gyro-phase of the ion, and ± accounts for the direction
of the upstream magnetic field being parallel (+) or antiparallel to b̂.

In specular reflection (from a stationary shock) the upstream velocity component along
n is reversed, and hence (for cold ions) the velocity becomes

v ′ = −v∥ b̂+2v∥ cos ΘBn n̂

which (with φ0 = 0) yields for the components of the velocity

v′∥
V

=
cosθVn

cosΘBn

(
2cos2 ΘBn −1

)
,

v⊥
V

= 2sinΘBn cosθV n (5.3)

These expressions can be transformed back into the observer’s frame by using VHT. It is,
however, of greater interest to see under which conditions a reflected particle turns around
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in its upstream motion towards the shock. This happens when the upstream component of
the velocity vx = 0 of the reflected ion vanishes. For this we need to integrate Eq. (5.2)
which for φ0 = 0 yields

x′(t) = v′∥t b̂+
v⊥
ωci

{
x̂ sin ωcit ± ŷ(cos ωcit −1)

}
(5.4)

Scalar multiplication with n yields the ion displacement normal to the shock in upstream
direction. The resulting expression

x′n
(
t∗
)

= v′∥t
∗ cosΘBn +

v⊥
ωci

sinΘBn sinωcit∗ = 0 (5.5)

vanishes at time t∗ when the ion re-encounters the shock with normal velocity vn(t∗) =
v′∥ cosΘBn +v⊥sinΘBn cosωcit∗. The maximum displacement away from the shock in nor-
mal direction is obtained when setting this velocity to zero, obtaining for the time tm at
maximum displacement (again including the initial phase here)

ωcitm +φ0 = cos−1
(

1−2cos2 ΘBn

2sin2 ΘBn

)
(5.6)

This expression must be inserted in xn yielding for the distance a reflected ion with gyro-
radius rci = V/ωci can achieve in upstream direction

∆xn = rci cosθV n
{
(ωcitm +φ0)

(
2cos2 ΘBn −1

)
+2sin2 ΘBn sin(ωcitm +φ0)

}
(5.7)

For a perpendicular shock ΘBn = 90◦ and φ0 = 0 this distance is ∆xn ≃ 0.7rci cosθV n,
less than an ion gyro radius. The distance depends on the shock normal angle, decreas-
ing for non-planar shocks. Note that the argument of cos−1 in Eq. (5.6) changes sign
for ΘBn ≤45◦. Equation (5.5) has solutions for positive upstream turning distances only
for shock normal angles ΘBn > 45◦, for an initial particle phase φ0 = 0. (A finite initial
phase φ0 ̸= 0 may, however, modify this conclusion shifting the boundary between quasi-
parallel and quasi-perpendicular shock to angles larger or smaller than 45◦, depending
on the sign of the initial phase.) Reflected ions can return to the shock in one gyration
time only when the magnetic field makes an angle with the shock normal that is larger
than this value. For less inclined shock normal angles the reflected ions escape along the
magnetic field upstream of the shock and do not return within one gyration. This sharp
distinction between shock normal angles ΘBn < 45◦ and ΘBn > 45◦ thus provides the nat-
ural (kinematic specular) discrimination between quasi-perpendicular and quasi-parallel
(planar) shocks we were looking for.

The theory of shock particle reflection holds, in this form, only for cold ions, which
implies complete neglect of any velocity dispersion and proper gyration of the ions. The
ions are considered of just moving all with one and the same oblique flow velocity V.
In a warm plasma each particle has a different speed, and it is only the group of zero
velocity ions which are described by the above theory. Fortunately, these are the particles
which experience the reflecting shock potential strongest and are most vulnerable to spec-
ular reflection. When temperature effects will be included, the theory is more involved in
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a number of ways. Firstly, the de-Hoffmann-Teller velocity must be redefined to include
the microscopic particle motion. Secondly, the assumption of ideal specular reflection
becomes questionable, as the particles themselves become involved into the generation
of the shock potential. This problem is still open to investigation. Observations in space
suggest that, for high flow velocities and supercritical Mach numbers, the simple kinematic
reflection is a sufficiently well justified mechanism, however.

We may, formally, extend the above approach for warm ions to include the proper
particle motion. In order to distinguish the different velocity components in this case, we
indicate the bulk flow components by a tilde, Ṽ ′, and write the proper microscopic velocity
v i. Warm particles obey a phase space velocity distribution with different velocity compo-
nents parallel, v∥i, and perpendicular, v⊥i, to the magnetic field, as well as gyration phases
ωcit +φ0. These add to the gyro-centre velocity. (One should note that in principle for high
Mach numbers V ≫ vi the velocity addition theorem should be applied in its relativistic
version even if the proper particle motions particles are considered non-relativistic.) In the
completely non-relativistic case where the velocities simply add linearly, the specularly
reflected normal component of the particle velocity after reflection becomes sufficiently
complicate:

vn =
(
v∥i +Ṽ ′

∥
)

cosΘBn +
[
v⊥i cos(ωcit +φ0)+Ṽ ′

⊥cosωcit
]

sinΘBn (5.8)

The gyration phase φ0 of the particle must be retained in this case as it is different from
that of the bulk flow phase. The inclusion of many gyrating particles inhibits to identify
it with that flow phase. Setting this normal component of velocity after reflection to zero
does not lead to a simple expression for the turning point of an upstream reflected particle
orbit, and the distinction between parallel and perpendicular shocks becomes blurred as it
can at most be defined only approximately and in the average over the particle distributions
and phases. On defining a new phase ψ through

tanψ =
v⊥i sinφ0

Ṽ ′
⊥+ v⊥i cosφ0

(5.9)

the above expression set to zero can be rewritten into the form

cos(ωcit +ψ) = −
v∥i +Ṽ ′

∥

Ṽ ′
⊥

cosΘBn

sinΘBn
(5.10)

again with the modulus of the expression on the right-hand side required to be <1 as
the new condition to discriminate between parallel and perpendicular shocks. Clearly this
condition makes sense only when averaged over the thermal particle distribution and over
the phases of all particles. This average should, however, be taken already in Eq. (5.8).

In order to do so, we assume a simple thermal distribution of the upstream particles
with anisotropic temperature Ti. In carrying out the averaging one must observe that the
phase of the reflected particles can vary only in the forward half-space interval 0 ≤φ0 ≤π ,
while the limits on the reflected parallel and perpendicular velocities are −Ṽ∥ ≤v∥ ≤∞,
and 0 ≤v⊥≤∞, respectively.
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Now carrying out the integration and defining the new mock phase through tanψ =
v⊥i/

√
πV ′

⊥, we find that for a hot plasma (for generality including a temperature anisotropy
Ti⊥/Ti∥) the condition for a turning upstream gyration orbit after specular reflection can
formally be written as

cos(ωcit +ψ)√
π

=
1−2cos2 ΘBn

2sin2 ΘBn
+

v∥i

V
cosΘBn

2sin2 ΘBn cosθV n

exp(−Ṽ ′2
∥ /v2

∥i)√
π[1+ erf(Ṽ ′

∥/v∥i)]
(5.11)

which in this case replaces the earlier simple condition (5.6) of the cold plasma. This is
contained here in the first term on the right to which the second term adds a rather com-
plicated thermal correction which becomes important at large parallel temperatures only,
however, as indicated by the appearance of the ratio v∥i/V . The presence of this term mod-
ifies the angle at which the sign of the right-hand side changes and thus also modifies
the angle of transition from a quasi-parallel to a quasi-perpendicular shock. This modi-
fication will, of course, be more substantial the larger the upstream parallel temperature
is and will further be modified if the plasma becomes relativistic, in which case it should
depend on Γ. One, on the other hand, expects that highly relativistic plasmas with Γ ≫ 1
will behave about like cold plasmas and therefore yield the ordinary distinction between
quasi-parallel and quasi-perpendicular shocks. However, the thermal modification, though
possibly not of vital importance for this distinction, will substantially affect the distance
up to that a specularly reflected particle at the quasi-perpendicular shock can penetrate the
upstream flow, i.e. it affects the width of the quasi-perpendicular shock-foot, even in the
case when the reflection process is genuinely specular.

5.1.2 Foot Formation and Acceleration

Shock reflected ions in a quasi-perpendicular shock cannot escape far upstream (see Fig-
ure 5.2). Their penetration into the upstream plasma is severely restricted by formula (5.7).
Within this distance the ions perform a gyration orbit before returning to the shock.

Since the reflected ions are about at rest with respect to the inflowing plasma they are
sensitive to the inductive convection electric field E = −V1 ×B1 behaving very similar
to pick-up ions and becoming accelerated in the direction of this field to achieve a higher
energy [Schwartz et al, 1983]. When returning to the shock their maximum (minimum)
achievable energy is

Emax =
mi

2
[(

v′∥ +VHT∥
)2

+(VHT⊥± v⊥)2] (5.12)

This energy is larger than their initial energy with that they have initially met the shock
ramp and, under favourable conditions, they now might overcome the shock ramp potential
and escape downstream. Otherwise, when becoming reflected again, they gain energy in a
second round until having picked up sufficient energy for passing the shock ramp.

In addition to this energisation of reflected ions which in the first place have not made it
across the shock, the reflected ions when gyrating and being accelerated in the convection
electric field constitute a current layer just in front of the shock ramp of current density
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Figure 5.2: Top: Reflected ion orbits in the foot of a quasi-perpendicular shock in real space. The ion impacts
under an instantaneous angle θvn, is reflected from the infinitely thin shock, performs a further partial gyration in
the upstream field B1 where it is exposed to the upstream convection electric field E = −V1 ×B1 in which it is
accelerated as is seen from the non-circular section of its orbit in the shock foot. It hits the shock ramp a second
time now at energy high enough to overcome the shock potential, passing the ramp and arriving in the compressed
downstream magnetic field behind the shock where it performs gyrations of reduced gyro-radius. Bottom: The
ion distribution function mapped into velocity space vx, vy for the indicated regions in real space, upstream in the
foot, at the ramp, and downstream of the shock ramp. Upstream the distribution consists of the incoming dense
plasma flow (population 1, dark circle at vy = 0) and the reflected distribution 2 at large negative vy. At the ramp
in addition to the incoming flow 1 and the accelerated distribution 2’ there is the newly reflected distribution 3.
Behind the ramp in the downstream region the inflow is decelerated 1’ and slightly deflected toward non-zero
vy, and the energised passing ions exhibit gyration motions in different instantaneous phases, two of them (2”, 4)
directed downstream, one of them (2”’) directed upstream. [redrawn after Sckopke et al, 1983, courtesy American
Geophysical Union].

jy ∼ eNi,reflvy,refl which gives rise to a foot magnetic field of magnitude Bz,foot ∼ µ0 jy∆xn.
It is clear that this foot ion current, which is essentially a drift current in which only the
reflected newly energised ion component participates, constitutes a source of free energy
as it violates the energetic minimum state of the inflowing plasma in its frame. Being the
source of free energy it can serve as a source for excitation of waves via which it will
contribute to filling the lack of dissipation. However, in a quasi-perpendicular shock there
are other sources of free energy as well which are not restricted to the foot region.

Figure 5.3 shows a sketch of some of the different free-energy sources and processes
across the quasi-perpendicular shock. In addition to the shock-foot current and the pres-
ence of the fast cross-magnetic field ion beam there, the shock ramp is of finite thickness.
It contains a charge separation electric field Ex which in the supercritical shock is strong
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Figure 5.3: Geometry of an ideally perpendicular supercritical shock showing the field structure and sources of
free energy. The shock is a compressive structure. The profile of the shock thus stands for the compressed profile
of the magnetic field strength |B|, the density N, temperature T , and pressure NT of the various components of
the plasma. The inflow of velocity V1 and outflow of velocity V2 is in x direction, and the magnetic field is in
z direction. Charge separation over an ion gyroradius rci in the shock ramp magnetic field generates a charge
separation electric field Ex along the shock normal which reflects the low-energy ions back upstream. These ions
see the convection electric field Ey of the inflow, which is along the shock front, and become accelerated. The
magnetic field of the current carried by the accelerated back-streaming ions causes the magnetic foot in front of
the shock ramp. The shock electrons are accelerated antiparallel to Ex perpendicular to the magnetic field. The
shock electrons also perform an electric field drift in y-direction in the crossed Ex and compressed Bz2 fields
which leads to an electron current jy along the shock. These different currents are sources of free energy which
drives various instabilities in different regions of the perpendicular shock.

enough to reflect the lower energy ions. In addition it accelerates electrons downstream
thereby deforming the electron distribution function.

The presence of this field, which has a substantial component perpendicular to the
magnetic field, implies that the magnetised electrons with their gyro radii being smaller
than the shock-ramp width experience an electric drift Vye = −Ex/Bz2 along the shock
in the ramp which can be quite substantial giving rise to an electron drift current jye =
−eNe,rampVye = eNe,rampEx/Bz2 in y-direction. This current has again its own contribution
to the magnetic field, which at maximum is roughly given by Bz ∼ µ0 jye∆xn. Here we
use the width of the shock ramp. The electron current region might be narrower, of the
order of the electron skin depth c/ωpe. However, as long as we do not know the number
of magnetised electrons which are involved into this current nor the width of the electric
field region (which must be less than an ion gyro-radius because of ambipolar effects) the
above estimate is good enough.

The magnetic field of the electron drift current causes an overshoot in the magnetic
field in the shock ramp on the downstream side and a depletion of the field on the upstream



5.1. Setting the Frame 157

side contributing to the steepness of the ramp. When this current becomes strong it con-
tributes to current-driven cross-field instabilities like the modified two-stream instability.

Finally, the mutual interaction of the different particle populations present in the shock
at its ramp and behind provide other sources of free energy. A wealth of instabilities and
waves is thus expected to be generated inside the shock. To these micro-instabilities add the
longer wavelength instabilities which are caused by the plasma and field gradients in this
region. These are usually believed to be less important as the crossing time of the shock is
shorter than their growth time. However, some of them propagate along the shock and have
therefore substantial time to grow and modify the shock profile. In the following we will
turn to the discussion of numerical investigations of some of these processes reviewing
their current state and provide comparison with observations.

5.1.3 Shock Potential Drop

One of the important shock parameters is the electric potential drop across the shock ramp
– or if it exists also across the shock foot. This potential drop is not necessarily a constant
but changes with location along the shock normal. We have already noted that it is due
to the different dynamical responses of the inflowing ions and electrons over the scale of
the foot and ramp regions. Its theoretical determination is difficult, however when going to
the de Hoffmann-Teller frame the bulk motion of the particles is only along the magnetic
field, and in the stationary electron equation of motion the Ve ×B-term drops out and,
to first approximation, the cross shock potential is given by the pressure gradient (when
neglecting any contributions from wave fields). The expression is then simply

∆Φ(x) =
∫ x

0

1
eNe(n)

[
∇ ·Pe(n)

]
·dn (5.13)

Integration is over n along the shock normal n. For a gyrotropic electron pressure, valid
for length scales longer than an electron gyroradius, Pe = Pe⊥I+(Pe∥ −Pe⊥)BB/BB one
obtains [Goodrich & Scudder, 1984], taking into account that E ·B is invariant,

d
dn

Φ(n) = −
E∥

cosΘBn
=

1
eNe

[
d
dn

Pe∥ − (Pe∥ −Pe⊥)
d
dn

(lnB)

]
(5.14)

which, when used in the above expression, yields

e∆Φ(x) =
∫ x

0
dn

{dTe∥
dn

+Te∥
d
dn

ln
[

N(n)

N1

B1

B(n)

]
+Te⊥

d
dn

ln
[

B(n)

B1

]}
(5.15)

This expression can approximately be written in terms of the gradient in the electron mag-
netic moment µe = Te⊥/B as follows:

e∆Φ(x) ≃ ∆(Te∥ +Te⊥)−
∫ x

0
dn

dµe(n)

dn
B(n) (5.16)

with Te in energy units. When the electron magnetic moment is conserved, the last term
disappears, yielding a simple relation for the potential drop e∆Φ(x) ≃ ∆(Te∥ +Te⊥) as the
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sum of the changes in electron temperature. The perpendicular temperature change can be
expressed as ∆Te⊥= Te⊥,1∆B/B1 which is in terms of the compression of the magnetic
field. Non-adiabatic effects contribute via the dropped integral term.

The parallel change in temperature is more difficult to express. One could express it
in terms of the temperature anisotropy Ae = Te∥/Te⊥ as has been done by Kuncic et al
[2002], and then vary Ae. But this depends on the particular model. It is more important to
note that this adiabatic estimate of the potential drop does not account for any dynamical
process which generates waves and substructures in the shock. It thus gives only a hint
on the order of magnitude of the potential drop across the foot-ramp region in quasi-
perpendicular shocks.

5.2 Shock Structure

Figure 5.4 shows observations from one of the first unambiguous satellite crossings of a
quasi-perpendicular supercritical (magnetosonic Mach number Mms ∼ 4.2) shock in near
Earth space. The crossing occurred at the Earth’s bow shock, the best investigated shock
in the entire cosmos! A complete discussion of its properties will be given in Chapter 10.
Here it should mainly serve for visualisation of the properties of a real collisionless shock
how it appears in the data. The shock crossing shown in the figure is indeed a textbook
example.

5.2.1 Observational Evidence

The crossing occurred on an inbound path of the two spacecraft ISEE 1 (upper block of
the figure) and ISEE 2 (lower block of the figure) from upstream to downstream in short
sequence only minutes apart. In spite of some differences occurring on the short time
scale the two shock crossings are about identical, identifying the main shock transition as
a spatial and not as a temporal structure. Temporal variations are nevertheless visible on
the scale of a fraction of a minute.

From top to bottom the figure shows the electron density (NE ), energetic ion density
(NI), proton and electron temperatures (TP,TE ), bulk flow velocity (VP), electron pressure
(PE ), magnetic field (B), and ΘBn. The latter is close to 90◦ prior to shock crossing (in the
average ΘBn ∼ 85◦), and fluctuates afterwards around 90◦ identifying the shock as quasi-
perpendicular. Accordingly, the shock develops a foot in front of the shock ramp as can
be seen from the slightly enhanced magnetic field after 22:51 UT in ISEE 1 and similar in
ISEE 2, and most interestingly also in the electron pressure. At the same time the bulk flow
velocity starts decreasing already, as the result of interaction and retardation in the shock
foot region. The foot is also visible in the electron density which increases throughout the
foot region, indicating the presence of electrons which, as is suggested by the increase in
pressure, must have been heated or accelerated.

The best indication of the presence of the foot is, however, the measurement of ener-
getic ions (second panel from top). These ions are observed first some distance away from
the shock but increase drastically in intensity when entering the foot. These are the shock-
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reflected ions which have been accelerated in the convection electric field in front of the
shock ramp. Their occurrence before entrance into the foot is understood when realising
that the shock is not perfectly perpendicular. Rather it is quasi-perpendicular such that part
of the reflected ions having sufficiently large parallel upstream velocities can escape along
the magnetic field a distance larger than the average upstream extension of the foot. For
nearly perpendicular shocks, this percentage is small.

The shock ramp in Figure 5.4 is a steep wall in B and PE , respectively. The electron
temperature TE increases only moderately across the shock while the ion temperature TP
jumps up by more than one magnitude, exceeding TE downstream behind the shock. This
behaviour is due to the accelerated returning foot-ions which pass the shock. PE , B, and
NE exhibit overshoots behind the shock ramp proper. Farther away from the shock they
merge into the highly fluctuating state of lesser density, pressure, and magnetic field that
can be described as some kind of turbulence. Clearly, this region is strongly affected by
the presence of the shock which forms one of its boundaries, the other boundary being the
obstacle which is the main responsible for the formation of the shock.

The evidence provided by the described measurements suggests that the quasi-perpen-
dicular shock is a quasi-stationary entity. This should, however, not been taken as apodic-
tive. Stationarity depends on the spatial scales as well as the time scales. A shock is a very
inhomogeneous subject containing all kinds of spatial scales. Being stationary on one scale
does not imply that it is stationary on another scale. For a shock like the Earth’s bow shock
considered over times of days, weeks or years the shock is of course a stationary subject.
However on shorter time scales of the order of flow transition times this may not be the
case. A subcritical shock of the kind discussed in Chapter 4 may well be stationary on
long and short time scales. However, for a supercritical shock the conditions for forming a
stationary state are quite subtle. From a single spacecraft passage like that described above
it cannot be concluded to what extent, i.e. on which time scale and on which spatial scale
and under which external conditions (Mach number, angle, shock potential, plasma-β , . . . )
the observed shock can be considered to be stationary [a discussion of the various scales
has been given, e.g, by Galeev et al, 1988]. Comparison between the two ISEE spacecraft
already shows that the small-scale details as have been detected by both spacecraft are very
different. This suggests that – in this case – on time scales less than a minute variations in
the shock structure must be expected.

Generally spoken, one must be prepared to consider the shock locally (on the ion gyro-
scale) and temporarily (on the ion-cyclotron frequency scale) as a non-stationary phe-
nomenon [this has been realised first by Morse et al, 1972] which depends on many com-
peting processes and, most important though only secondarily related to non-stationarity,
a shock as a whole is not in thermal equilibrium. It needs to be driven by some energy
source external to the shock in order to be maintained. It will thus be very sensitive to small
changes in the external parameters and will permanently try to escape the non-equilibrium
state and to approach equilibrium. Since its non-equilibrium is maintained by the con-
ditions in the flow, it is these conditions which determine the time scales over which a
shock evolves, re-evolves and changes its state. In the following we will refrain from ana-
lytical theory and, forced by the complexity of the problem, mainly discuss numerical
experiments on shocks. However, at a later stage we will return to the problem of non-
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Figure 5.4: Time profiles of plasma and magnetic field parameters across a real quasi-perpendicular shock that
had been crossed by the ISEE 1 and 2 spacecraft on November 7, 1977 in near-Earth space [after Sckopke et al,
1983, courtesy American Geophysical Union]. The shock in question is the Earth’s bow shock wave which will
be described in detail Chapter 10. Here the measurement serve as typical for a quasi-perpendicular shock. NE
is the electron density, NI the reflected ion density, both in cm−3, Tp, TE are proton and electron in K. VP is the
proton (plasma) bulk velocity in km s−1, PE electron pressure in 10−9 N m−2, B the magnitude of the magnetic
field in nT, and ΘBn. The vertical lines mark the first appearance of reflected ion, the outer edge of the foot in
the magnetic profile, and the ramp in the field magnitude, respectively. The abscissa is the Universal Time UT
referring to the measurements. The upper block are observations from ISEE 1, the lower block observations from
ISEE 2.
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stationarity again. Real supercritical shocks, whether quasi-perpendicular or quasi-parallel
are in a permanently evolving state and thus are intrinsically nonstationary.

5.2.2 Simulation Studies of Quasi-perpendicular Shock Structure

Perpendicular or quasi-perpendicular collisionless shocks are relatively easy to treat in
numerical simulations. Simulations of this kind have been mostly one-dimensional. Only
more recently they have begun to become treated in two dimensions.

Already from the first one-dimensional numerical experiments on collisionless shocks
[for an early review cf., e.g., Biskamp, 1973] if became clear that such shocks have a
very particular structure. This structure, which we have describe in simplified version in
Figure 5.3 and which could to some extent also be inferred from the observations of Fig-
ure 5.4, becomes ever more pronounced the more refined the resolution becomes and the
better the shorter scales can be resolved.

As already mentioned, collisionless shocks are in thermodynamic non-equilibrium and
therefore can only evolve if a free energy source exists and if the processes are vio-
lent enough to build up and maintain a shock. Usually in a freely evolving system the
free energy causes fluctuations which serve dissipating and redistributing the free energy
towards thermodynamic and thermal equilibria. (Thermal equilibria are characterised by
equal temperatures among the different components, e.g. Te = Ti which is clearly not given
in the vicinity of a shock as seen from Figure 5.4. Thermodynamic equilibria are charac-
terised by Gaussian distributions for all components of the plasma. To check this requires
information about the phase space distribution of particles. Shocks contain many differing
particle distributions, heated, top-flat, beam distributions, long energetic tails, and trun-
cated as well as gyrating distributions which we will encounter later. Consequently, they
are far from thermodynamic equilibrium.)

For a shock to evolve the amount of free energy needed to dissipate is so large that
fluctuations are unable to exercise their duty. This happens at large Mach numbers. The
shock itself takes over the duty of providing dissipation. It does it in providing all kinds of
scales such short that a multitude of dissipative processes can set on.

Scales

For a quasi-perpendicular shock propagating and evolving in a high-β plasma there is
a hierarchy of such scales available (we recall that β = 2µ0nT/B2 refers to the thermal
energy of the flow. The kinetic βkin⊥= 2µ0NmiV 2

n /2B2 ≡M 2 > 1 implies that the kinetic
energy in the flow exceeds the magnetic energy. Hence the flow dominates the magnetic
field, which is transported by the flow. In plasmas with βkin⊥= M 2 < 1 the magnetic
field dominates the dynamics, and shock waves perpendicular to the magnetic field cannot
evolve. Parallel shocks are basically electrostatic in the βkin⊥≪ 1-case and can evolve
when the flow is sufficiently fast along the field, as is observed in the auroral magneto-
spheres of the magnetised planets in the heliosphere. On the other hand, for large Mach
numbers and β " 1 conditions shocks do exist, as the example of the solar wind shows).

The different scales can be organised with respect to the different regions of the shock.
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1. The macroscopic scale of the foot region, which determines the width of the foot,
is the ion gyroradius based on the inflow velocity rci,1 = V1/ωci,1. With the slight
modification of replacing the upstream magnetic field with the (inhomogeneous)
ramp magnetic field Br(x) this also becomes approximately the scale of the macro-
scopic electric potential drop in the ramp, ∆φ ,r ∼ rci,r ∼V1/ωci,r.

Other scales are

2. the ion inertial length c/ωpi, which is also a function of space inside the ramp
because of the steep density increase N(x). It determines the dispersive properties
of the fast magnetosonic wave which is locally responsible for steeping and shock
ramp formation;

3. the thermal ion gyroradius rci = vi/ωci. It determines the transition from unmag-
netised to magnetised ions and from non-adiabatic to adiabatic heating of the ions;

4. the density gradient scale LP = (∇x lnP)−1. It determines the importance of drift
waves along the shock which, when excited, structure the shock in the third dimen-
sion perpendicular to the shock normal and the magnetic field;

5. the electron inertial length c/ωpe. It is the scale length of whistlers which are
excited in front of the shock and are generally believed to play an essential role in
shock dynamics;

6. the thermal electron gyroradius rce = ve/ωce. It determines whether electrons
behave magnetised or non-magnetised. In the shock they are usually magnetised
under all conditions of interest. However, when non-adiabatic heating becomes im-
portant for electrons it takes place on scales comparable to rce;

7. the Debye length λD. It determines the dispersive properties of ion acoustic waves
which are responsible for anomalous resistivity and for smaller scale density sub-
structures in the shock like the phase space holes mentioned earlier which evolve
on scales of several Debye lengths. It also determines the scales of the Buneman
two-stream (BTS) and modified two-stream (MTS) instabilities which are the two
most important instabilities in the shock foot.

The importance of some of these scales has been discussed by [Kennel et al, 1985]
assuming that some mostly anomalous resistance has been generated in the plasma. In
this case the speed of the fast magnetosonic wave, which is responsible for fast shock
formation, is written as

c2
ms = c2

ia +
V 2

A
1+ k2R2 , R =

{
Rη = (η/µ0)(k/ω), η ̸= 0
λe = c/ωpe, η → 0 (5.17)

taking explicitly care of the dispersion of the wave which leads to wave steeping. The
macroscopic scale of shock formation enters here through the definition of R which in the
collisionless case becomes the electron skin depth. Starting from infinity far away from
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the shock one seeks for growing solutions of the linear magnetic disturbance bz ∼ expλx
in the stationary point equation

R2
eb′′z +Rη b′z = Dbz, D ≡ 1−M−2

1− c2
ia/V 2

where the prime ′ ≡ ∂/∂x indicates derivation with respect to x. With bz → 0 for x →−∞
this yields for the spatial growth rate

λ> = −
Rη
2λ2

e
+

[
D
λ2

e
+

(
Rη
2λ2

e

)2] 1
2
→ D

1
2

λe
for Rη ≪ λe (5.18)

which identifies the approximate shock transition scale as proportional to the electron skin
depth, ∆ ≃ c/ωpeD

1
2 , just what one intuitively would believe to happen for freely moving

electrons and ions. Since the upstream sound speed cia ≪ V is small compared with the
fast flow V , we have D ≈ 1−M−2, and the shock ramp width becomes slightly larger
than the electron skin depth λe = c/ωpe, viz.

∆ ≃ M
(
M 2 −1

)− 1
2 λe (5.19)

For large Mach numbers this width approaches λe. However, we have already seen that
at large Mach numbers the competition between dispersion and dissipation does not hold
anymore in this simple way.

With increasing wave number k the fast magnetosonic mode merges into the whistler
branch with its convex dispersion curve. This implies that dispersive whistler waves will
outrun the shock becoming precursors of the shock, a problem we have discussed in Chap-
ter 3. Whistlers propagate only outside their resonance cone. The limiting angle between
k and the magnetic field B for which the whistler outruns the shock is given by θwh,lim !
cos−1[MA(me/mi)

1
2 ], artificially limiting the Alfvénic Mach number MA = V/VA < 43.

In one-dimensional simulations with all quantities changing only along the shock nor-
mal n and the k-vectors of waves along n as well, one choses angles between (k,n) and
B larger than this in order to have clean effects which are not polluted by those whistlers.
However, the maximum phase speed of whistlers does not exceed the Alfvén speed by
much (see Figure 3.10). Hence, as long as the upstream velocity is less than this maximum
whistler speed, a standing whistler precursor will be attached to the shock in front. When
the upstream velocity exceeds this velocity, phase standing whistlers become impossible.
This happens at the critical whistler Mach number given in Chapter 3. The shock structure
becomes more complicated then by forming shock substructures [Galeev et al, 1988] on
scales of c/ωce, and the shock might become non-stationary [Krasnoselskikh et al, 2002].

One-Dimensional Structure

One-dimensional observations as those presented in Figure 5.4 confirm the theoretical
prediction of the gross structure of a quasi-perpendicular shock. They can, however, when
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taken by themselves, not resolve the spatial structure of the shock on smaller scales, nor
do they allow to infer about the evolution of the shock. To achieve a clearer picture of
both, the structure and the evolution, the observations must be supported by numerical
simulations.

Such simulations have been performed in the past in various forms either as hybrid
simulations or as full particle simulations. In hybrid simulations the electrons form a neu-
tralising, massless background with no dynamics, i.e. the electrons react instantaneously
while maintaining and merely adjusting their equilibrium Boltzmannian distribution to
the locally changing conditions. Such simulations overestimate the role of the ions and
neglect the dynamical contribution of the electrons. They nevertheless give a hint on the
evolution and gross structure of a shock on the ion scales. Hybrid simulations have the
natural advantage that they can be extended over relatively long times ωcit ≫ 1.

On the other hand full particle simulations are usually done for unrealistically small
mass ratios mi/me ≪ 1836 much less than the real mass ratio. The electrons in these
simulations are therefore heavy even under non-relativistic conditions. Their reaction is
therefore unnaturally slow, the electron plasma and cyclotron frequencies are low, and
the electron gyroradius, inertial length, and Debye length are unnaturally large. Under
these conditions electrons readily become unmagnetised, non-adiabatic electron heating is
prominent, and dispersive effects on ion-acoustic waves are overestimated.

Moreover, because of the large electron mass the electron thermal speed is reduced,
and the Buneman two-stream instability sets on earlier and grows faster than under realistic
conditions. This again should affect electron heating and structuring of the shock. On the
other hand, the reduced electron gyroradius also reduces the shock potential, because the
differences in ion and electron penetration-depths into the shock are smaller than in reality.
This reduces the reflection capability of the shock, reduces the direct electric field heating
of the impacting electrons, reduces the electron drift current in the shock ramp and shock
transition and thus underestimates the dynamic processes in the shock, its structure, time
dependence, formation and reformation and the strength of the foot effect and density of
the foot population.

It is very difficult to separate all these effects, and comparison of different simulations
is needed.

Low-Mass Ratio Simulations

Figure 5.5 shows an early one-dimensional low-mass-ratio perpendicular shock simulation
with mi/me = 128. Simulation times are short, not more than four ion-gyration times when
energy conservation starts breaking down. Moreover, only a very small number of macro-
particles (see Chapter 2) per simulation grid cell could be carried along in these simulation.
Thus the noise in the simulations is large, not allowing for long simulation times, readily
introducing diverging fake modes and fake dissipation/heating.

Nevertheless, the left-hand side of the figure shows the evolution of the magnetic field
from the homogeneous state into a shock ramp and further the destruction and, what is
known by now from much longer and better resolved simulation studies, the reformation
of the shock profile. It should be noted that the shock in this case forms by reflection of the
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Figure 5.5: One-dimensional full particle-in-cell (PIC) simulations [after Biskamp & Welter, 1972] of shock
formation assuming a mass ratio of mi/me = 128. Left: Time-evolution of the magnetic field in stack-plot rep-
resentation. Time is measured in units of ω−1

ci , space in units of (heavy) electron inertial lengths c/ωpe. The
simulations are for a supercritical shock with M = 2.3. Note the evolution of the magnetic field and the forma-
tion of a ramp, a foot and an overshoot. Right: Ion phase space plots (vx,x) and (vy,x) at time ωcit = 3. Velocities
are measured in units of the Alfvén velocity VA = B/

√
µ0Nmi.

fast initial supercritical flow with Mach number M = 2.3 (which is above critical for the
conditions of the simulation), entering the one-dimensional simulation ‘box’ from the left,
from a ‘magnetic piston’ located at the right end of the box. This reflection causes a back-
streaming ion-beam that interacts with the inflowing ions and drives an electromagnetic
ion-ion instability which grows to large amplitude. The system is not current-free. In the
interaction region of the two ion components the magnetic field forms a shock ramp. But
after a short time of a fraction of an ion gyro-period a new ramp starts growing in the foot
of the ramp, which itself evolves into a new ramp while the old ramp becomes eroded.
This new ramp has not sufficient time to evolve to a full ramp as another new ramp starts
growing in its foot. This causes the shock ramp to jump forward in space in steps from one
ramp to the next, leaving behind a downstream compressed but fluctuating magnetic field
region. The jump length is about the width of the foot region. It will become clear later
why this is so.

Hybrid simulations [Leroy et al, 1981, 1982; Leroy, 1984] with fluid electrons and an
artificially introduced anomalous resistivity show similar behaviour even though a number
of differences have been found which are related to shock reformation. In particular shock
reformation is slow or absent in hybrid simulations if not care is taken on the reaction of
the electrons. The responsible instability in the foot region cannot evolve fast enough even
though the hybrid simulation which take care of the ion dynamics also find reflection of
ions and the evolution of a foot in front of the ramp. These differences must be attributed
to the above mentioned lesser reliability of hybrid simulations than full particle codes.

Extended low-mass ratio full particle simulations in one space dimensions over a wide
range of shock-normal angles ΘBn < 45◦ have been performed by Lembège & Dawson
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[1987a, b] with the purpose to study plasma heating. These simulations used mass ratios
of mi/me = 100 and a magnetic-piston generated shock. The simulations were completely
collisionless, relatively small Mach number but nevertheless supercritical when taking into
account the decrease in critical Mach number with ΘBn [Edmiston & Kennel, 1984]. They
showed the formation of a foot and overshoot, the generation of an electric charge sepa-
ration field in the shock transition from the foot across the shock with a highly structured
electric field which was present already in the shock foot. Moreover, indications for a peri-
odicity of the electric field structure in the foot region were given which we now under-
stand as standing whistler wave precursors in the shock foot for oblique shock angles and
supercritical but moderate Mach numbers [Kennel et al, 1985; Balikhin et al, 1995]. In
addition to the field variations these simulations already demonstrated much of the super-
critical particle dynamics related to shock reflection and foot formation which we will
discuss separately below.

Before discussing the ion phase space plots in Figure 5.5 on the right we are going
to describe recent investigations on the effects of the mass ratio dependence of the one-
dimensional full particle simulations on the shock structure. Of course, in the end only
such simulations can be believed which not only take into account the full mass ratio but
which are long enough for following the evolution of the shock from a small disturbance
up to a stage where the shock on some time scale has approached kind of a state that in
a certain sense does non further evolve. This state is either stationary or it repeats and
restores itself such that it is possible to speak at all of a quasi-perpendicular supercritical
shock.

The Shock Transition Scale

Determination of the shock foot scale is relatively easy both in simulations as also from
observation. From observations, as already mentioned, it has been first determined by Sck-
opke et al [1983] who found that the foot scale is slightly less but close (∼0.7rci,refl) to the
reflected ion gyroradius in quasi-perpendicular shocks. The reasons for this number have
been given by Schwartz et al [1983] and are related to the reflected ions coupling to the
upstream convection electric field in which they are accelerated. This can also be checked
in simulations. Of more interest is the determination of the shock transition, i.e. the width
of the shock ramp which from theory is not well determined since it depends on several
factors which can hardly be taken into account at once.

The width of the shock transition is particularly important in its relation to the width
of the electrostatic potential drop across the shock. There are essentially three transition
scales: the magnetic scale ∆B, the density scale ∆N , and the electric potential scale ∆E .
Since the shock is not in pressure equilibrium, the first two scales must not necessarily
be proportional to each other. However, the electric field and density gradient might be
related, so one expects that ∆N ∼∆E even though this is not necessarily so, in particular not
when instabilities arise which cause very small scale electric field gradients. In principle
one can distinguish three different cases [Lembège et al, 1999] which describe different
physics:
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Figure 5.6: Left: Shock density transition-fit by a tanh-function in order to determine the shock-ramp transition
scale [after Bale et al, 2003]. 98 of those shock transitions have been used in order to find a dependence of the
shock ramp width from some physical parameter. Right: The dependence inferred by Bale et al [2003]. The upper
part of the figure scales the dependence of the gyroradius with Mach number, the lower part the dependence of
the ion inertial scale. Apparently there is no dependence of gyroradius on Mach number, while there is a clear
linear dependence of the inertial scale on Mach number.

1. ∆E ≫ ∆B. This is a case that has been reported to have been observed in Bow
shock crossings [Scudder et al, 1986; Scudder, 1995]. The magnetic ramp is much
steeper in this case than the structure of the electric field. The latter smears out over
the foot and ramp regions. In this case the electrons will behave adiabatically, while
the ions may be only partially or even non-magnetised.

2. ∆E ∼ ∆B. In this case there will be a significant deviation from adiabatic behav-
iour of the electrons in the shock transition. Electron heating and motion will not be
adiabatic anymore, and the electron distribution will significantly be disturbed [see,
cf., Balikhin et al, 1995]. Observations of such cases have been reported [Formisano
& Torbert, 1982].

3. ∆E ≪ ∆B. This case which is also called the ‘isomagnetic’ transition [Eselevich,
1982; Kennel et al, 1985] corresponds to shock transitions with electrostatic sub-
structuring which are sometimes also called subshocks.

The most recent experimental determination of the density transition scale has been
provided by Bale et al [2003] using data from 98 Bow Shock crossings by the Cluster
spacecraft quartet. The result is shown in Figure 5.6 for an example of this fit-determina-
tion by fitting a tanh-profile to the shock density transition. The point is that these authors
found a dependence of the shock ramp transition on Mach number when the transition is
scaled in ion inertial units, while there is no dependence when scaled in ion gyroradii. This
scaling suggests that the shock scales with the gyroradius, since (V/c)(ωpi/ωci) ∼ MA.
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Figure 5.7: Left: Density profile in two full PIC simulations of large Mach numbers. Indicated is the pronounced
overshoot and the long extended foot. The straight lines are tanhx-fits to the simulations showing the neglect of
the overshoot and ramp during such fits which only account for the foot region. From fitting the ramp width the
curves on the right are obtained. Right: Density ramp scales and convected ion gyroradii (in units of upstream
inertial length) obtained in one-dimensional full particle PIC simulations of quasi-perpendicular shocks [after
Scholer & Burgess, 2006] as function of Alfvénic Mach number. Use has been made of the full particle mass
ratio 1838, ΘBn = 87◦, and ωpe/ωce = 4. The magnetic field used is that of the overshoot. One observes that the
ratio of ion gyroradius to ion inertial length is constant. Also the scale of the ramp is about ∼1c/ωpi, supporting
a narrow ramp. The simulations also show that the scale of the ramp sharpens with increasing Mach number.

In order to check this behaviour numerically, Scholer & Burgess [2006] performed a
series of one-dimensional full-particle PIC simulations with the correct mass ratio mi/me =
1838 and for the Alfvénic Mach number range 3.2 ≤MA ≤14 and a shock normal
angle ΘBn = 87◦ in order to have a component of k∥ parallel to B, but with small ratio
ωpe/ωce = 4 to compromise computing requirements. Figure 5.7 shows the results of
these simulations. A tanhx-fit neglects in fact the entire ramp and takes account only of
the foot region. Correcting the above described measurements it is thus found that the
ramp thickness is just of the order of ∼1λi = c/ωpi and decreases slightly with increasing
Mach number. However, from the form of the density profile it seems clear that the shock
ramp is basically determined by the overshoot, and one must take the overshoot magnetic
field value in calculating the gyroradius. The convected gyroradius based on the overshoot
magnetic field Bov and measured in λi is about constant very close to unity. Thus the shock
ramp scale is given by the convective ion gyroradius based on the overshoot magnetic
field. One should, however, note that the computing power in the simulations does not
yet allow for larger ratios ωpe/ωce which may affect the result. Moreover, higher dimen-
sional simulations would be required to confirm the general validity of those calculation
and conclusions.

Hence, combining the observations of Bale et al [2003] and the results of the simula-
tion studies of Scholer & Burgess [2006] we may conclude that the scale of the shock foot
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is given by the upstream-convected ion gyroradius rci = V/ωci,1 based on the upstream
field B1, while the scale of the shock ramp is given by the ramp-convected ion gyrora-
dius rci,ov = V/ωci,ov based on the value of the magnetic field Bov overshoot. This is an
important difference which can be taken as a golden rule for estimates of the structure
of quasi-perpendicular shocks even though, of course, these values are dynamical values
which change from position to position across the foot and ramp. The scale differences are
the reasons for the large upstream extension of the foot and the relative steepness of the
shock ramp.

The observed constancy of the overshoot magnetic field-based convective ion gyro-
radius rci ∝ V/Bov with Mach number MA ∝ V can be understood when considering the
about linear increase of the overshoot magnetic field Bov ∝ M with Mach number (or with
upstream velocity V ) which holds for supercritical Mach numbers M > Mcrit as long as
M is not too large. At very large – but still non-relativistic – Mach numbers M < Mmax
the increasing steepness of the shock ramp and the increasing extension of the foot ulti-
mately lead to the excitation of smaller scale structures in the ramp and the foot, which
smear out any further increase in the overshoot.

The generation of these structures by a variety of instabilities might even turn the shock
foot and ramp regions into regions where large anomalous collisions and thus resistances
are generated as the result of wave-particle interactions. In this case the shock returns to
become resistive again due to preventing large numbers of reflected ions from passing
across the steep shock ramp and large shock potential, using the kinetic energy of the
reflected particle population for the generation of a broad wave spectrum which acts to
scatter the particles around in the foot and ramp regions and, possibly, also up to some
distance in the transition region behind the ramp. This kind of confinement of reflected
particles over long times will then be sufficiently long for providing the heating and dis-
sipation which is required for sustaining a resistive shock which, then, is the result of the
combined action of ion viscosity and anomalous resistivity, i.e. anomalous collisions. In
addition, the scattering of the trapped reflected particle population necessarily results in
plasma heating, and some particles will become accelerated to high velocities in these
interactions as well. It is then possible that these particles provide the seed population
for energetic particles which have been accelerated to high energies in the well-known
shock-Fermi-one and shock-Fermi-two acceleration mechanisms.

So far the range of Mach numbers Mmax < M < Mrel where this will happen is
unknown, as it is hardly accessible to numerical simulations. However, the available simu-
lations seem to point in this direction as long as the Mach numbers remain non-relativistic.
In relativistic shocks with M = Mrel different effects arise which are not subject to our
discussion at this place.

5.2.3 Shock Reformation

It has already been mentioned several times that supercritical shocks do under certain con-
ditions reform themselves periodically – or quasi-periodically –, which is kind of a non-
stationarity of the shock that does not destroy the shock but, at the contrary, keeps it intact
in a temporarily changing way. We will come later to the problem of real non-stationarity.
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Figure 5.8: Magnetic field from full particle PIC simulations of shock reformation [after Lembège & Savoini,
2002, courtesy American Geophysical Union]. Left: Reformation cycles of the magnetic field in the shock. Time
is measured in inverse electron plasma frequencies ω−1

pe . The reformation times are indicated by the arrows in
the plot with time given when the cycle is complete. Right: Two snapshots in time of the view of the shock front
in the magnetic field at reformation. The interesting finding is that the front in this two-dimensional view is not
a smooth plane but is quite distinctly structured in space and at the same time evolving.

Reformation in One Dimension: Mass Ratio Dependence

Reformation of quasi-perpendicular shocks is thus an important shock property which is
closely related to highly super-critical shocks and the formation of a foot region, i.e. to the
reflection of ions from the shock ramp.

In fact, reformation was already observed by Biskamp & Welter [1972] in the early
short-simulation time PIC simulations shown in Figure 5.5, where we have noted it explic-
itly. Reformation of quasi-perpendicular shocks has also been reported, for instance, by
Lembège & Dawson [1987a], Lembège & Savoini [1992, 2002], Hellinger et al [2002]
and others who all used small ion-to-electron mass ratios. For illustration, Figure 5.8, on
its left, shows a low mass-ratio example of the temporary evolution of a shock during
shock reformation in a magnetic field stack plot. On its right the structure of the shock
ramp at two different two reformation times is plotted along the shock ramp. There is a
distinct reformation cycle in this simulation and also a distinct structure of the ramp/shock
front in the tangential direction which is far from being smooth, a fact to which we will
return during discussion of non-stationarity of shocks. The shock not only reforms cycli-
cally in time, it also develops ripples along its surface which travel like waves along the
shock.
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Figure 5.9: Left: One-dimensional PIC simulations [after Scholer et al, 2003, courtesy American Geophysical
Union] of quasi-perpendicular ΘBn = 87◦ shock reformation for mass ratios mi/me = 400 and 1840. Time is in
ω−1

ci (here denoted as Ω−1
i ), space in λe = c/ωpe. The parameter τ = ωpe2 /ω2

ce is taken small in both cases. The
higher mass ratio shows a violent time evolution because of the high electron mobility. Reformation of the shock
is due to evolution of the shock feet. The original foot region builds up until becoming itself the shock assuming
the role of the ramp. Afterwards a secondary foot evolves in front of this new ramp. Right: Spatial shock profiles
at two time sections (see arrows on the left). The higher mass ratio run shows a more subtle structure in Bz and
shock potential Φ, but the gross features are similar. The potential drop exists already in the foot but the main
drop occurs in the ramp. The lower mass ratio has a more concentrated foot region.

Full particle electromagnetic PIC simulations with realistically large mass ratios have
been performed only very recently [Matsukiyo & Scholer, 2003; Scholer et al, 2003;
Scholer & Matsukiyo, 2004] and only in one spatial dimension, showing that reforma-
tion at least occurs at small ion-βi ∼ 0.2. In these simulations the shock is produced by
injecting a uniform plasma from −x and letting it reflect from a stationary wall at the right
end of the simulation box. The plasma carries a uniform magnetic field in the (x,z)-plane,
and the plasma is continuously injected in the +x-direction. Since the right-hand reflecting
boundary is stationary the shock, which is generated via the ion-ion beam instability in the
interaction of the incoming and reflected ion beams, moves to the left at velocity given by
the supercritical shock Mach number MA ∼ 4.5. The upstream plasma has βi = βe = 0.05,
and the shock normal angle is ΘBn = 87◦.

Two runs of these simulations are shown in Figure 5.9, one is for a mass ratio of 400,
the other for a mass ratio of 1840. The left-hand side of the figure shows stack plots of
time profiles of the nearly perpendicular magnetic field Bz with time running in equidistant
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units upward on the ordinate. Since the plasma is injected from the left and reflected at the
right boundary the shock is seen to move from the right to the left in this pseudo-three-
dimensional representation. Time is measured in ion cyclotron periods ω−1

ci , while space
on the abscissa is in units of the electron inertial length c/ωpe. The magnetic profiles are
strikingly similar for both mass ratios. In both cases a relatively flat foot develops in front
of the steeper shock ramp caused by the shock reflected ions. The magnetic field of this
foot starts itself increasing with time with growth being strongest close to the upstream
edge of the foot until the foot field becomes so strong that it replaces the former shock
ramp and itself becomes the new and displaced shock ramp.

This is seen most clearly in the upper low mass-ratio part of the figure. The foot takes
over, steepens and becomes itself the shock. One can recognise in addition that, even ear-
lier, the intense foot already had started reflecting ions by himself and developing its own
flat pre-foot region. This pre-foot evolves readily to become the next foot, while the old
ramps become part of the downstream turbulence.

During this reformation process the shock progresses upstream from right to left. This
progression is not a continuous motion at constant speed. Both the foot and the ramp jump
forward in steps. One such step ahead is seen, for instance, at time tωci = 7.6. Sitting in
the shock frame one would experience some forward acceleration at this time, seeing the
ramp moving downstream as a magnetic wave front the apparent source of which is the
instantaneous shock ramp, while it is just the old shock foot. Hence the shock ramp and
shock overshoot act as a source of a pulsating magnetic waves that are injected downstream
from the shock with periodicity of roughly ∆t ∼ 1.8ω−1

ci (for mi/me = 400) and add to the
downstream turbulence.

The realistic mass-ratio run in the lower part on the left also shows reformation of the
shock. However there are some differences. First, the magnetic profiles are much stronger
disturbed exhibiting much more structuring. Second, the foot region is considerably more
extended in upstream direction. Third, the ramp is much steeper, and reformation is faster,
happening on a time scale of ∆t ∼ 1.3ω−1

ci , roughly 30% faster than in the above case.
Reformation is, however, more irregular at the realistic mass ratio with the property of
reforming the shock ramp out of a long extended relatively smooth shock foot which
exhibits pronounced oscillations.

The right-hand side of the figure shows two shock profiles at constant times for the two
different mass-ratio simulations. The first profile at tωci = 6.7 has been taken when a well
developed foot and ramp had been formed on the shock, the second profile at tωci = 7.3
is at the start of the new foot towards the end of the simulations. At the low mass ratio
the foot profile is quite smooth showing that the foot is produced by the accumulation of
reflected ions at the upstream edge of the foot where the ions have the largest velocity in
direction y along the shock. This is where, during their upstream gyration in the upstream
magnetic field, they orbit about parallel to the upstream convection electric field and gain
most energy.

Hence, here, the current density is largest due to the accumulation of the reflected ions,
due to the retardation of some ions from the inflow already at this place, and due to the
speeding up of the reflected and retarded ions in y-direction by the convection electric field
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Ey. All this leads to a maximum in the current density jy and thus causes a maximum in
the magnetic field Bz close to the upstream edge of the foot.

Most interestingly, the electric potential exhibits its strongest drop right here in the foot
region with a second but smaller drop in the ramp itself. It is the electric field that belongs
to this potential drop that retards the inflow already before it reaches the shock ramp. At
the contrary, when the shock ramp is well developed, the main potential drop is for short
time right at the ramp and extends even relatively far into the downstream region.

For the realistic mass ratio the foot- and ramp-transitions are both highly structured at
tωci = 6.4 exhibiting fluctuations in both the magnetic field and electric potential, but the
electric potential drop extends all over the foot region with nearly no drop in the ramp.
When the ramp has been reformed at tωci = 7.1, the foot region still maintains a substan-
tial potential drop, but 50% of the total drop is now found in the ramp with the down-
stream potential recovering. This is interesting as it implies that lower energy electrons
will become trapped in the overshoot region, an effect which is much stronger for the large
mass-ratio than for small mass-ratios and thus closer to reality.

Some recent one-dimensional full particle PIC simulations by Umeda & Yamazaki
[2006] at Mach number MA = 10 and medium mass ratio mi/me = 100 throw additional
light on the reformation process when keeping in mind that reformation is not as strongly
dependent on the mass ratio as originally believed. Figure 5.10 shows a collection of their
results which this time are represented in the shock frame of reference.

The simulations have been performed by assuming an initial Rankine-Hugoniot equi-
librium in the PIC code. The non-physicality of this initialisation is manifested in the initial
evolution over the first few ion cyclotron periods. During this time the simulation adjusts
itself to the correct physics, and the non-physical disturbance decays. The shock frame has
shifted by this to a new position, which in the shock frame is located farther downstream
(which takes into account of the moment transferred to the shock by the reflection of the
upstream ions who lower the shock speed).

The further evolution of the shock shows the quasi-periodic reformation and the play
between the foot and the ramp formation. The periodicity is roughly ∼10ω−1

ci,2. When the
foot takes over to become the ramp, the ramp jumps ahead in a fraction of this time.
Afterwards the formation of the foot retards the ramp motion, and the ramp softens and
displaces itself downstream to become a downstream moving spectrum of magnetic oscil-
lations which is injected into the downstream region in the form of wave packets. The
various plasma parameters in the left part of the figure show in addition the compression
of plasma and field, and the dominance of perpendicular ion heating which is, of course,
due to the accelerated foot ions which pass into downstream.

Two-Dimensional Reformation: Whistlers and Mach Number Dependence

First two-dimensional simulations of a strictly perpendicular ΘBn = 90◦ shock formation
have recently been performed by Hellinger et al [2007]. These simulations were intended
to study the reformation process in two dimensions when the perpendicular shock is super-
critical. Since PIC simulations are very computer-time consuming, most of the simulation
runs by Hellinger et al [2007] used a two-dimensional hybrid code with the shock being
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Figure 5.10: Left: Evolution of the magnetic field in a quasi-perpendicular high Mach number MA = 10 PIC
simulation [after Umeda & Yamazaki, 2006]. Here the presentation is in the shock frame of reference, and the
shock has been initialised by assuming Rankine-Hugoniot initial jump conditions. The non-physical nature of
this assumption is visible in the initial evolution and fast displacement of the shock to the right. After the initial
unphysical disturbance has disappeared a self-consistent physical state is reached in which the shock quasi-
periodically reforms itself. The competition between the shock foot and ramp formation is nicely seen in the
colour plot of the magnetic field Bz. Right: Electron and ion plasma parameters in computational units. Of inter-
est is only their relative behaviour, not the absolute values. The profiles are taken at time tωci,2 = 38.1. They show
the compression of the plasma and heating of electrons and ions. Parallel electron and ion heating is compara-
ble, but ions are heating much stronger than electrons in perpendicular direction causing a large perpendicular
temperature anisotropy downstream of the shock.

generated by a magnetic piston as in the case of the simulations by Lembège & Dawson
[1987a]. The interesting result of this simulation study was that no shock reformation was
found while phase locked whistlers were detected which formed a characteristic interfer-
ence pattern in the shock foot regions. This result is surprising as for strictly perpendicular
shocks no whistlers should be generated according to the one-dimensional theory [see the
above discussion on whistlers and, e.g., Kennel et al, 1985; Balikhin et al, 1995].

In order to cross check their hybrid simulation results Hellinger et al [2007] also per-
formed a two-dimensional PIC [Lembège & Savoini, 1992] simulation choosing a mass
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Figure 5.11: Left: Two-dimensional PIC simulations [after Hellinger et al, 2007, courtesy American Geophys-
ical Union] of the end time ωcit = 28 of the evolution of a strictly perpendicular shock using mi/me = 400.
Shown is the magnetic structure in the (x,y)-plane, the proton phase space (x,vx) and the power of magnetic
fluctuations in dependence on space x and wave numbers (ky,kx). Lengths are measured in ion inertial lengths
c/ωpi, velocities in Alfvén speeds VA, wave numbers in inverse ion inertial lengths ωpi/c. Magnetic fields and
powers are in relative units (see grey scale bar). No shock reformation is seen in the upper panel of By on the left.
A periodic foot evolves periodically causing a higher and steeper ramp overshoot when its cycle ends, but the
shock ramp does not become exchanged with a new ramp. Note also that the next foot cycle begins before the end
of the former cycle, i.e. the shock foot itself reflects ions. The power spectra show a periodic spatial spectrum of
whistlers standing in and restricted to the shock foot. Periodicity in ky is caused by interference between outward
and inward moving whistlers. The proton phase space shows the retardation of the incoming flow in the shock
foot, the occurrence of reflected ions in the foot and the heating of foot ions. Forward heating is also seen in the
overshoot. Right: A parametric (2D-hybrid simulation) investigation of the evolution of phase locked whistlers
in the shock foot in dependence on Mach number MA and βi. Large Mach numbers and small βi support the
excitation of standing whistlers.

ratio mi/me = 400, Mach number MA = 5.5, electron plasma-to-cyclotron frequency ratio
ωpe/ωce = 2, upstream βe = 0.24, βi = 0.15 and 4 particles per cell. The results of this
simulation have been compiled in Figure 5.11, showing only the PIC simulations and no
hybrid simulations. Deviating from the former one-dimensional simulations by Matsukiyo
& Scholer [2003] the magnetic field is in y. The block consisting of the four panels on the
left in the figure are the simulation results at the end of the simulation run, showing the
compression of the magnetic field By in the (x,y)-plane, proton velocity space (vx,x) – only
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the normal velocity component is shown –, and the average magnetic fluctuation spectra
⟨b2⟩ as functions of wave number components kx, ky. As the authors describe, after a short
initial time when the shock foot forms and the shock reforms, reformation stops and does
not recover again in these two dimensional run. Instead, the shock foot starts exhibiting
large magnetic fluctuations. These are seen in the low-frequency magnetic power spectra
being confined solely to the shock foot (as recognised from the By-profile) as seen from
the kx dependence of the magnetic power spectrum and forming an interference pattern
in ky.

These fluctuations are identified as whistler waves propagating obliquely (in kx and ky)
across the foot and the magnetic field. Since kx ∼ 3ky their perpendicular wave numbers
are large, they are quite oblique, and their parallel wavelengths are long. They are excited
in the foot and because of their obliqueness probably propagate close to the resonance
cone. Their main effect is to resonantly suppress shock reformation by inhibiting the ions
to accumulate in the foot. Hence, under the conditions of these simulations the shock turns
out to be stable and does not reform. It maintains its structure thanks to the generation of
oblique whistlers in the shock foot which dissipate so much energy that the shock becomes
about resistive. In one-dimensional simulations this regime has not been seen and is prob-
ably inhibited for strictly perpendicular shocks. In two-dimensional simulations, on the
other hand, the additional degree of freedom provided by the introduction of the second
spatial dimension allows for the generation of the whistlers which are suppressed in the
one-dimensional case (where k has only the component kx).

Guided by these simulations Hellinger et al [2007] have undertaken a parametric study
of the regime where whistler excitation and thus presumably stationary shock structures
lacking reformation should exist. Their results are given on the right in Figure 5.11 in
(βi,MA)-space. According to this figure, whistlers will not be excited at low Mach num-
bers. Here the two-dimensional perpendicular shocks will reform. At higher Mach num-
bers whistlers should be excited, and the shock should become stabilised in two dimen-
sions.

This surprising result suggests that sufficiently high Mach numbers are needed in order
to excite whistlers; on the other hand, when the Mach number will become large (Hellinger
et al [2007] investigated only the range of Mach numbers <5) then other effects should
set on, and the shock should become non-stationary with whistlers becoming unimportant
and reformation becoming possible again.

5.3 Ion Dynamics

Until now we have avoided discussing the behaviour of particles in the simulations. The
mere idealised reflection process we have already discussed, as far as this could be done
analytically. The complicated geometry and dynamics of particle motion in shocks neces-
sitates to return to simulations.

We have mentioned that reflected particles are forming a foot on the shock and may
contribute to the reformation of the shock. We have, however, not yet gone into detail and
into the investigation of the relation of the particle distributions in phase and real space
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observed in the simulations and their relation to the shock dynamics. This will be done in
the present section for the ions on the basis of simulation studies.

5.3.1 Ion Dynamics in Shock Reformation

The two plots on the right-hand side of Figure 5.5 show phase space representations of
ions in the early simulations of shock formation by Biskamp & Welter [1972] at tωci = 3
close to the end of the simulation. The first box is the dependence of the ion velocity
vx on position x (direction of inflow), the second plot the transverse ion velocity compo-
nent vy. Each macroparticle present in the box is identified by a dot. Hence high particle
phase space density is reflected by accumulation of many such dots. The plasma enters
the central region of the box from left at high positive speed vx and vy = 0 and leaves the
central region to the right at high density and very low speed vx. The inflowing plasma
was extended relatively narrow in vx indicating low temperature. The shocked plasma dis-
tribution is broader thus having higher temperature. Moreover, some of the ions are seen
to be smeared out from large positive up to large negative velocities in vx indicating that
strong particle scattering has occurred and that there are particles of high velocity in both
directions being equivalent to heated plasma. In the foot region the closed circle in the
particle distribution signifies the presence of the reflected trapped ions which are acceler-
ated in both direction. their presence decelerates the inflow as can be seen by the drop in
the velocity vx just before entering the closed loop trapped ion region. The reflected par-
ticles are seen on the left of this closed loop having negative speeds in vx therefore being
directed upstream. The (vy,x)-box shows that the reflected and trapped ions gyrate and are
accelerated into y-direction. Also many of the ions downstream of the shock possess non-
zero vy velocity components, some of the large, indicating acceleration along the shock
front.

Even though it seems clear from this figure that reflected ions are involved into shock
reformation and the dynamics of the shock profile, the process remained to be unclear
until simulations at higher resolution and much higher mass ratio had been performed.
Figure 5.9 gave a clearer idea of the ion dynamics. The corresponding ion phase space plots
are shown in Figure 5.12 for the two mass ratios mi/me = 400 (top) and 1840 (bottom)
respectively. Both plots show just the enlarged shock foot transition region over the same
scale of 100c/ωpe. The electron βe = 0.2 has been kept constant in both simulations, while
the ion βi has been changed. Only the normal component of the ion velocity is shown
for the nearly perpendicular supercritical shock. In both plots the magnetic field Bz has
been drawn as a thin continuous line showing the magnetic shock profile over the spatial
distance ∆x.

The upper (low-mass-ratio) low-βi panel shows the cold dense ion inflow at velocity
vix ∼ 5 (in units of the upstream Alfvén velocity) being retarded to nearly Mach number 1
already when entering the foot. This retardation is due to its interaction with the intense
but cold (narrow in velocity space) reflected ion beam which is seen as the narrow negative
vxi-velocity beam originating from the shock ramp. This reflected ion beam needs a certain
distance to interact with the upstream plasma inflow. This distance is the length the beam-
beam excited waves need to grow. But once the interaction becomes strong enough, the
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Figure 5.12: Ion phase space for two simulations of supercritical quasi-perpendicular shock formations for
same Mach number and βe = 0.2 but different mass ratios and βi [after Scholer et al, 2003, courtesy American
Geophysical Union]. Top: Foot formation and shock reformation in a low-βi shock simulation. The reflected ion
beam accumulates in the shock foot forming a hot clump-vortex ion distribution which causes scattering of the
reflected and upstream ions and generates a high foot magnetic field. The hole of the vortex corresponds to low
magnetic field, the ring to large magnetic fields. When the foot field further increases it takes over and becomes
the new ramp. At this time the ramp position jumps from the current position to that of the foot edge thereby
reforming the shock. Such former reformation cycles can be recognised in the downstream distribution as remains
of ion vortices (holes) in the otherwise hot downstream distribution. Bottom: The same simulation with realistic
mass ratio but large βi = 0.4. No reformation and no ion vortex is observed. Instead, the foot ions because of
their high temperature smear out the entire gap between the original inflow and the reflected ion beams. Note
also the occurrence of a large number of downstream diffuse energetic ions in this case.

reflected ions are scattered by the waves into a hot ion clump in addition to being turned
around by gyration. Both effects cause a reduction in velocity vx of the reflected ions
which, being accelerated by the convection electric field, turn to flow in y direction and
cause the magnetic bump that develops in this region of the foot. It is interesting to remark
that in the (vx,x)-plane the reflected ions close with the upstream flow into an hot ion ring
distribution (vortex) just in front of the ramp of which the hot ion clump that brakes the
inflow is the upstream boundary. Behind the ramp, which is the point of bifurcation of the
ion distribution, i.e. the location where the reflection is at work, a broad hot ion distribution
arises which at some locations shows rudimentary remains of ion vortices from former
reformation cycles. Their magnetic signatures are the dips seen in the magnetic field. The
next reformation cycle can be expected to completely close the ion vortex in the foot and
to transform the ramp from its current position to the position of the foot. The first sign of
this process is already seen in the foot ion distribution, which shows the birth of a faint new
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reflected ion beam at high negative speeds. This beam is not participating in the formation
of the ring but serves as the seed of the newly reflected population.

The same behaviour is found in large mass ratio simulations as long as βi is small.
This is obvious from the large mass-ratio magnetic field shown in Figure 5.9. As long as
βi remains to be small, the shock undergoes reformations also for realistic mass ratios. In
other words, as long as the plasma is relatively cool the real shocks found in nature should
develop feet which at a later time quasi-periodically become the shock ramp.

This changes completely, when βi increases as is suggested from consideration of the
lower panel in Figure 5.12. There a realistic mass ratio has been assumed, but βi = 0.4,
and no reformation is observed, at least not during the realisable simulation times. Instead,
the shock develops a very long foot region that is extended twice as far into the upstream
region as in the low-βi case. Clearly, the high ion temperature smears out the reflected ion
population over the entire gap region between the upstream and reflected beam regions,
and no vortex can develop. This implies that the foot remains smooth and does not evolve
into a ramp.

However, inspecting the panels of Figure 5.12 it becomes immediately clear that sup-
pression of reformation is a relative process. Reformation will be suppressed only when
the thermal speed vi of the ions is large enough to bridge the gap between the reflected and
incoming ion beams, i.e. large enough to fill the hole. Semi-empirically one can establish
a condition for shock reformation as vi < αVn1 when taking into account that the normal
speed of incoming ions is simply specularly turned negative. Since this is never exactly
the case, the coefficient will roughly be in the interval 1.5 < α < 2. This condition for
reformation to occur can be written as

MA >
β

1
2

i
α (5.20)

where the Alfvénic Mach number is defined on V1n. The larger the Mach number becomes
the less suppression of reformation will play a role, and at high Mach numbers one expects
that either reformation becomes a normal process or that other time-dependent processes
set on which lead to a non-stationary state where the shock reformation becomes a chaotic
and unpredictable process. As we have argued earlier this is quite normal as the shock is
thermodynamically and thermally in a non-equilibrium state: it is a region where electrons
and ions have violently different temperatures; it is not in pressure equilibrium; upstream
and downstream temperatures are different; and it hosts a number of non-Boltzmannian
phase space distributions all concentrated in a small volume of real space. Under such
conditions stationary states suppressing reformation [advocated e.g. by Hellinger et al,
2007] will occur only very exceptionally.

Hada et al [2003] recently attempted to semi-empirically determine the fraction of
reflected ions needed for reformation to occur. They performed a large parametric search
based on hybrid simulations by changing the Mach number and determined the fraction of
reflected ions in the foot when reformation occurred. Their result is shown in Figure 5.13
for cold electrons βe = 0 (assuming that electrons do not contribute to reformation and ref-
ormation being exclusively due to ion-viscosity, and for fixed thermal velocity of upstream
and reflected ions vi/ωped = 0.2, where d is the spatial simulation-grid spacing). The latter
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Figure 5.13: Parametric determination of the fraction of shock-reflected ions in the foot of a quasi-
perpendicular shock as function of Alfvénic Mach number for the special case of βe = 0 and ion thermal velocities
vi = 0.2 measured in ωped, where d is the numerical grid spacing [after Hada et al, 2003, courtesy American
Geophysical Union].

restriction is certainly not satisfied as the realistic mass ratio simulations show. Therefore
these results must be taken with caution.

5.3.2 Ion Instabilities and Ion Waves

So far we have described the field and particle properties as have been observed in sim-
ulations of quasi-perpendicular supercritical shocks. It has become obvious that in the
different regions of the shock transition the particle distributions carry free energy. This
is true for the foot region, the shock transition and overshoot as well as the downstream
region. And it is true for both species, electrons and ions. This free energy is the source of
a number of instabilities which excite waves of different kinds in the various shock transi-
tion regions which can be measured. Figure 5.14, taken from Gurnett et al [1979], shows
an example of such measurements when the ISEE-1 spacecraft crossed an interplanetary
shock travelling outward in the solar wind. The passage of the shock over the spacecraft
is seen in the wave instrument in the various channels as a steep increase of the power
spectral density of the electric field which is highest in the crossing of the ramp and at
medium frequencies of a few 100 Hz under the conditions of the crossing. After the cross-
ing took place the wave power in the downstream region of the shock still remained high
but was lower than during the shock crossing. In the right part of the figure the different
electric wave power spectra are shown in their time sequence as a stack plot. From this
plot the dramatic increase of the power in the medium frequencies during the crossing is
nicely visible. Most of the waves excited in this frequency range are caused by electron-ion
instabilities which we will discuss in the next section.

The free energy source of the instabilities is less the temperature anisotropy than the
direct differences in bulk flow properties of the different species components. We therefore
ignore the temperature anisotropy differences even though such instabilities may arise,
in particular when ion-whistlers are excited of which we know that they can be driven
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Figure 5.14: Electric wave spectra measured during the spacecraft crossing of an interplanetary shock [after
Gurnett et al, 1979, courtesy American Geophysical Union]. Left: Power spectra (in V2/m2 Hz) with respect to
time in a number of frequency channels. The spacecraft approaches the shock from left and crosses over it. The
increase in power is well documented from low to high frequencies when coming into the shock transition region.
Right: A sequence of shock electric spectra during this crossing given as power spectral density with respect to
frequency. The dramatic increase of the low frequency wave power is seen when the spacecraft approaches and
crosses over the shock. Behind the shock the power remains high but lower than in the transition region. The
Bump around a few 100 Hz is the most interesting from the point of view of instability. These waves are excited
by electron-ion instabilities discussed in the next section.

by a temperature anisotropy. To some extent the occurrence of two (counter-streaming
in direction x of the shock normal) ion beams already fakes a bulk temperature on the
ion component thus generating some relationship between a two-beam situation and a
temperature anisotropy. Similarly transversely heated reflected ions superposed on a low
perpendicular temperature inflowing ion background fakes a perpendicular temperature
anisotropy. For our purposes, however, the bulk flow differences are more interesting and
have, in fact, been more closely investigated right from the beginning [Forslund & Shonk,
1970; Forslund et al, 1970; Papadopoulos et al, 1971; Wu et al, 1984].

Foot Region Waves

Let us first consider the foot region. The free energy sources here are the relative drifts
between the incoming electrons and reflected ions and the incoming electrons and incom-
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Figure 5.15: Instabilities in the Foot Region [copied from Wu et al, 1984].

ing ions. The presence of the reflected ions causes a decrease of the ion bulk velocity in the
foot region. This implies that the incoming electrons are decelerated so that the current in
shock normal direction is zero, i.e. the flow is current-free in normal direction. However,
this has the consequence that a relative bulk velocity between electrons and reflected ions
or electrons and incoming ions arises. These differences will contribute to the excitation of
instabilities. Electrons are not resolved in hybrid simulations, however. In this section we
will restrict to ion instabilities leaving the essentially more interesting ion-electron insta-
bilities for the next section. A list of the most important instabilities in the foot region is
given in Figure 5.15. This list has been complied by Wu et al [1984]. It is interesting to note
that only a few of these instabilities have ever been identified in actual observations and
in the simulations even though theoretically they should be present. This can have several
reasons, too small growth rates, too strong Landau damping, for instance, in the presence
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of hot ions, convective losses or very quick saturation due to heating effects, competition
with other waves or wave-wave interaction and so on.

The ion-ion instability [Papadopoulos et al, 1971; Wu et al, 1984] generates waves
in the whistler/lower hybrid frequency range ωci ≪ ωωce as we have discussed in Chap-
ter 3. Its energy source is the beam-beam free energy of two counter streaming ion beams,
one the reflected ion beam, the other the inflow. As long as the wavelengths re shorter
than the reflected ion beam gyroradius the instability is relatively high frequency and elec-
trostatic close to perpendicular and at the lower hybrid frequency. However, at slightly
longer wavelength the magnetisation of the ions comes into play and the instability gener-
ates electromagnetic whistlers. These are the whistlers which are observed at angles larger
than the critical whistler angle mentioned earlier and probably also in the two-dimensional
simulation case by Hellinger et al [2007] for the parameters used there. An important
ion-driven instability in the foot region of quasi-perpendicular supercritical shocks is the
whistler instability which we have already mentioned several times. It is related either to
reflected ion beams, to assumed temperature anisotropies [as assumed to exist – though
never been confirmed by observations – by Wu et al, 1984], or to result from diamagnetic
density-gradient drifts in the lower-hybrid band as the electromagnetic branch of the lower-
hybrid/modified two stream instability, the electrostatic part of which we will discuss in
the next section on electronic instabilities and electron dynamics.

Hellinger et al [2007], in their two-dimensional hybrid simulations discussed above,
have seen the evolution of whistlers without identifying their sources. Recently Scholer &
Burgess [2007] performed an extensive parametric search for whistler waves in the foot
region of oblique shocks between 60◦ ≤ΘBn ≤80◦, the region where in one-dimensional
PIC simulations intense whistlers should become excited theoretically when reflected ions
are present. This is the case for the more oblique but still quasi-perpendicular supercriti-
cal shocks. A wide range of Alfvénic Mach numbers was used, and strong excitation of
whistlers in the parametric range was found indeed. We will discuss these observations
here in more detail as they are the currently existing best available simulation results rep-
resenting the current state of the art in the field of whistler excitation in connection with
the formation, stability and time dependence of supercritical shocks at the time of writing
this review.

Before discussing their results we briefly review the physics involved in the importance
of whistlers in shock foot stability as had already been anticipated by Biskamp & Welter
[1972] following a suggestion by Sagdeev [1966]. As we have mentioned earlier, a linear
whistler wave precursor can stand in front of the quasi-perpendicular shock as long as the
Mach number M < Mwh is smaller than the critical whistler Mach number

Mwh =
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The second expression results when including the nonlinear growth of the whistler ampli-
tude during the steeping process [for the derivation of this expression see, e.g., Kazantsev,
1961; Krasnoselskikh et al, 2002]. The nonlinear critical whistler Mach number Mwh,nl is
larger by a factor of

√
2 than the whistler Mach number Mwh. It depends weakly on the

plasma-β which has a decreasing effect on it, slightly reducing the whistler range.
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For instance, with realistic mass ratio mi/me = 1840 and ΘBn = 87◦ the whistler crit-
ical Mach number is quite small, Mwh ≃ 1.14. Otherwise no standing whistlers can thus
be expected. It has also been speculated that above the above critical whistler Mach num-
ber the shock ramp is replaced by a nonlinear whistler wave train with wavelength of the
order of λe. Approximating such a train as a train of whistler solitons one realises that
the amplitude of the solitons increases with Mach number. Hence, the critical whistler
Mach number in this case must become dependent on the whistler amplitude [Krasnosel-
skikh et al, 2002]. This leads to the slightly larger nonlinear whistler critical Mach number
Mwh,nl on the right in the above equation. At such realistic low Mach numbers the shocks
are subcritical, however, and we are back to the problems discussed in Chapter 4.

Between the two Mach numbers Mwh ≤M ≤Mwh,nl the nonlinear whistler soliton
train can exist attached to the ramp. However, when the nonlinear whistler Mach number
is exceeded this is not possible anymore, and the whistler wave should turn over due to
a so-called gradient catastrophe leading to non-stationarity of the shock front, which we
will discuss later. In the simulations of Biskamp & Welter [1972] the simulation range was
in favour of the excitation of whistlers which have also been seen and by these authors
had been attributed to a nonlinear instability between the two ion beams and the electric
field of a standing whistler wave an interpretation which is overturned by the new simula-
tion results. Scholer & Burgess [2007] performed PIC simulations with physically realistic
mass ratio. For all shocks with ΘBn ≤83◦ the whistler critical Mach number is well above
the critical Mach number such that the shock is supercritical. This is in order to check the
excitation of whistlers in the different regimes of M . In the left part of Figure 5.16 the
Mach number is below the critical whistler Mach number, and in the shock foot region a
group of phase locked whistler waves is excited with increasing amplitudes towards the
shock ramp. This is nicely seen on the left in both the magnetic stack plot as also in the
time profile in the second panel on the left from top. The whistlers slow the incoming flow
Vix down before it reaches the ramp. In the phase space plot the incoming and reflected
beams are seen as is the scattering and trapping of the resonant ions in the whistler waves.
The right part of the figure shows an identical simulation with Mach number above the crit-
ical whistler Mach number but below the nonlinear whistler Mach number. The stack plot
shows two well developed reformation cycles with all signs of normal reformation. The
magnetic field profile chosen in the second panel is at time tωci = 7.6 in the second refor-
mation cycle when the foot loop is well developed. The magnetic field signature shows the
distortion due to the foot which is caused by a large amplitude non-phase-standing whistler
wave that evolves nonlinearly. However, the reformation is not due to this whistler but due
to the accumulation of gyrating ions at the foot edge as known from previous simulations.

Near the ramp the ions become trapped in a large-amplitude whistler loop, as is seen in
the phase space plot. The loop coincides with a minimum in the Bz-component of the mag-
netic field. The whistler, on the other hand, does practically not affect reformation, even
though it structures the overshoot region. Reformation time is defined thus, as we know
already, by the gyration time of ions in the foot, being of the order of a few ion-cyclotron
periods. When the shock becomes more oblique, the whistler effect increases again at fixed
Mach number as the Mach number enters the domain below critical whistler Mach num-
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Figure 5.16: One-dimensional full particle PIC simulations with realistic mass ratio for the same Mach number
but different angle ΘBn = 70◦ and 80◦ [after Scholer & Burgess, 2007]. Left top: Mach number M < Mwh. The
shock foot region is filled with waves of two polarisations, one of the expected standing whistler waves which
interfere with the other kind of waves. No substantial shock reformation is observed in this case. Right top: Here
the Mach number is in the range Mach number Mwh < M < Mwh,nl. Two reformation cycles are visible during
the simulation run in the magnetic field, and no whistler waves occur because the Mach number exceeds the
first whistler Mach number. However there is also no nonlinearly steepened whistler in the shock front which is
simply taken over by the foot after one reformation cycle. Bottom three panels: On the left shown the standing
whistler oscillations in the magnetic field on the left, the decrease in the flow velocity when entering the foot
due to the whistler scattering of the ions, and the particle phase space in v(ix) with the reflected beam and the
scattered foot ions with little vortex formation such that the reformation is inhibited. On the right seen is the
more irregular structure of the transition, the component By in the magnetic field and the accelerated foot ions in
the absence of whistlers.

ber Mwh, and the shock transition becomes much more structured and reformation less
important.

In order to see what kind of waves are excited during the whistler cycles, a separation of
the magnetic wave spectrum By into positive B+

y and negative B−
y helicity components has

been performed for a MA = 9, ΘBn = 70◦ simulation run. Figure 5.17 shows the result. The
negative helicity waves B−

y propagate toward the shock, i.e. to the right. After correcting
for the convection velocity which is also to the right, these waves turn out to be left-hand
polarised. The lower panel shows positive helicity B+

Y waves propagating to the left, so
they are upstream propagating waves and are also left-hand polarised. The positive helicity
waves have longer wavelength than negative helicity waves. They propagate close to the
shock speed upstream. They are thus almost standing in the shock frame. These are the
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Figure 5.17: One-dimensional full particle PIC simulations with realistic mass ratio for Mach number MA = 9
and ΘBn = 70◦ in the non-reformation whistler regime [after Scholer & Burgess, 2007]. Top: Negative helicity
waves B−

y propagating to the right are left-hand polarised short wavelength waves moving downstream toward the
shock and being mostly absorbed in the shock transition. Bottom: Positive helicity waves B+

y . These waves move
upstream and thus are also left-hand circularly polarised waves. They move at shock velocity which identifies
them as the phase-locked standing whistler precursors in the shock-upstream region with decaying upstream
amplitude and long wavelength. Some interference is seen on these waves. Their left-hand polarisation identifies
them as ion-beam excited whistlers and not as electron temperature anisotropy exited whistlers.

upstream left-hand polarised (ion beam and not electron temperature anisotropy driven)
whistlers.

The downstream propagating negative helicity waves are no whistlers. They are caused
in quite a different way which is related to the electromagnetic modified two-stream insta-
bility which we will discuss in the next section on electron waves.

Ramp Transition Waves

Stability of the ramp is a question that is not independent of the stability of the foot as
both are closely connected by the reformation process of the quasi-perpendicular shock
front. Since the suggestion of Sagdeev [1966] it is widely believed that the whistler waves
excited in the foot are the main responsible for the stability of the foot and formation of
the ramp by steeping. In fact, they might accumulate their, store energy in both magnetic
and electric field, trap particles and excite different waves.
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Figure 5.18: Instabilities in the Ramp Transition [copied from Wu et al, 1984].

A very early and to large extent out of time list is given in Figure 5.18 of the theoretical
expectations for possible instabilities in the shock ramp region [Wu et al, 1984]. As in the
case of the foot region, the instabilities in the ramp which might be of real importance have
turned out to not fit very well into the scheme of this listing. In both cases, the case of the
foot and the case of the ramp, this disagreement reflects the weakness of theoretical spec-
ulation which is not supported by direct observations on the one hand and clear parametric
searches in numerical experiments on the other.

Waves excited or existing in the ramp cannot be considered separate from the stability
of the shock ramp. They are mostly related to electron instabilities and will to some extent
been considered there in the next section. On the other hand they are also related to the
non-stationarity of a shock ramp. We will therefore return to them also in the respective
section on the time dependence of evolution of shock ramps and their stability. It is, how-
ever, worth mentioning that recently very large electric fields have been detected during



188 5. QUASI-PERPENDICULAR SUPERCRITICAL SHOCKS

Figure 5.19: Several successive reduced parallel electron distribution functions Fe(v∥) during the crossing of
the supercritical bow shock of the Earth by ISEE 2 on December 13, 1977. The cuts through the distribution
show the transition from the Maxwellian-plus-halo upstream flow distribution through the shock ramp distribu-
tion to the close to the shock downstream distribution. The shock ramp distribution is intermediate in evolving
into a flat-top distribution of the kind of the downstream distribution but contains in its upstream directed part a
well expressed shock-reflected electron beam of velocity of a few 1000 km s−1 which is sufficiently fast to desta-
bilise the shock front and excite electron plasma waves [after Gurnett, 1985, courtesy American Geophysical
Union].

passages of the Polar satellite across the quasi-perpendicular bow shock when the space-
craft was traversing the shock ramp.

These observations showed that in the shock ramp electric fields on scales !λe =
c/ωpe exist with amplitudes of the order of several 100 mV m−1. These are amongst the
strongest localised electric fields measured in space [Bale & Mozer, 2007]. Clearly, these
localised fields are related to the electron dynamics in the shock and in particular in the
shock overshoot/ramp region. Excitation of intense electron waves in the shock ramp has
been expected for long time already since the observation of the (reduced) electron distri-
bution across the shock from a drifting to a flat-topped distribution [Feldman et al, 1983].
Figure 5.19, taken from Gurnett [1985], shows this transition. The interesting point is
that right in the ramp/overshoot region the reduced electron distribution function shows
the presence of an electron beam in addition to an already quite well developed flat top
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on the distribution. Such a beam will almost inevitably serve as the cause of instabil-
ity.

5.3.3 The Quasi-perpendicular Shock Downstream Region

We have already mentioned earlier that a shock without a downstream region does not
exist. Detached shocks that evolve in front of blunt obstacles like a magnetosphere, in par-
ticular, possess extended downstream regions which separate the obstacle from the undis-
turbed upstream region. These regions are the domains of compressional waves – of the
family of magnetosonic waves – with upstream directed phase and group velocities larger
than the downstream flow velocity that in a characteristic flow time across the downstream
distance from the shock to the obstacle can make it upstream to reach the shock, which
forms the spatial envelope of these waves thereby confining them to downstream of the
shock transition.

This is the fluid picture of the evolution of the region downstream of the shock. In
this subsection we are not going into an extended discussion of the downstream region
of a quasi-perpendicular shock but restrict only to a few remarks. The reason is that for
a curved collisionless supercritical shock it is very difficult to distinguish between the
processes triggered by the quasi-perpendicular and quasi-parallel parts separately. In order
to do this one needs to have plane shocks which are found possibly at the giant distant
planets (cf. Chapter 10 on Planetary Bow Shocks) and at interplanetary travelling shocks.
The latter, unfortunately, are mostly subcritical as they are convected by the stream and
therefore their downstream regions differ from those of supercritical shocks. Because of
this reason we delay a more substantial discussion of downstream regions to the next
chapter after having presented the main properties of quasi-parallel shocks.

Collisionless shocks cannot be described solely in the fluid picture, however. Therefore
the downstream region has quite a different behaviour from that inferred from the hydro-
dynamic description. This is particularly true for quasi-parallel shocks which (see the next
chapter). Downstream of a quasi-perpendicular or perpendicular super-critical shock the
conditions are as well very different from those which the fluid picture prescribes which
of the plasma properties basically predicts an increase in the fluid pressure anisotropy due
to compression of the magnetic field and plasma under conservation of the fluid mag-
netic moment (the ratio T⊥/B), the deviation of the flow around the obstacle, draping of
the magnetic field, and a pile-up region of the magnetic field close to the obstacle where
pressure balance requires dilution of the plasma.

The main reasons for a deviation from this average and laminar behaviour of the down-
stream region are that in the supercritical case the fluid picture does not contain the ion
(and electron) reflection processes and their consequences for shock foot formation, ramp
physics and formation of the shock overshoot. Since collisional dissipation is out of ques-
tion, the reflection mechanisms replace the necessary dissipation. It is easy to estimate, for
instance for the quasi-perpendicular Earth’s bow shock, how much energy must be dissi-
pated in order to adjust for the differences in the flow properties between upstream and
downstream. For an upstream solar wind of nominal density N = 5×106 m−3 and veloc-
ity V1 = 500 km/s at 1 AU, Mach number M = 5 and moderate shock strength (compres-
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sion ratio) of B2/B1 = 3, the energy density in the flow behind the shock (Mach number
M = 1) is just half the energy density in the solar wind. Thus 50% of inflow energy must
be dissipated by the shock. Since at most 10% of the ions are reflected(corresponding to
10% of incoming energy only), the remaining 40% are absorbed and dissipated in other
ways.

A first simple effect that affects the region behind the shock ramp is that the reflected
ions are accelerated by the motional electric field in the shock foot along the shock surface
in the direction perpendicular to the upstream magnetic field to energies that are much
higher than the kinetic energy of the incoming ions, thereby absorbing a substantial part
of inflow energy. Acceleration of the 10% reflected ions by a factor 2 gives already 40%
of energy dissipation. Hence this is the main dissipation mechanism.

We have already described how this acceleration affects the nearly periodic reforma-
tion of a quasi-perpendicular shock when these ions carry a drift current and gyrate at high
speeds and large ion gyroradii in the upstream magnetic field. However, after a few such
gyrations they have gained sufficient energy to break through the reflecting shock potential
and overcome the shock barrier to enter the downstream flow region. Downstream of the
quasi-perpendicular shock they appear as an energetic gyrating ion component with much
larger perpendicular than parallel energy.

In fact these gyrating energetic ions have been observed [Sckopke et al, 1983]. They
are a source of free energy and excite a number of instabilities like electromagnetic ion-
cyclotron waves which can grow to large amplitudes downstream of the shock and con-
tribute to the magnetic fluctuation that are observed downstream. Even mirror modes
just behind the shock have been reported [Czaykowska et al, 1998]. The rms amplitudes
brms =

√
⟨|b|2⟩ ∼ B2 of these waves downstream of the shock are comparable to the aver-

age downstream field B2. Therefore these waves contribute to the energy balance. More-
over, since they are convected downstream and damp away, they contribute to heating of
the downstream plasma and shock energy dissipation.

The larger amplitude waves do not damp but decay into other shorter amplitude waves
or by ponderomotive force interaction may stabilise and form large amplitude localised
magnetic structures, density pulses or also narrow current sheets. The physics of these
structures is still barely understood. Sometimes one speaks about downstream turbulence
which, however, is not qualified and also unjustified as turbulence can hardly develop
in the downstream region because it has not sufficient time for reaching a well mixed
state. This would require a very large extended region and relatively quiet boundary con-
ditions with continuous inflow at an approximately constant energy level. It would also
require stationarity of the shock which is definitely not given, as we will see later when
discussing the problem of stationarity. Shock reformation is already kind of a rather non-
stationary process that makes the development of downstream turbulence rather doubt-
ful.

The narrow current sheets which the presence of such wave structures implies have
transverse scales comparable to the ion inertial length. They must close in themselves.
They thus form current vortices on scales of several ion gyroradii. Even though they are
very thin, their dynamics is different from the dynamics of narrow current sheets that
undergo reconnection, drift kink modes and tearing instabilities like the current sheets
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in the tail of the Earth’s magnetosphere. The reason is that these vortices are convected
with the flow and there is very little velocity difference between them to trigger reconnec-
tion.

In addition, adjacent current sheet vortices have antiparallel currents and experience
repulsing Lorentz forces such that they avoid close contact. However, if the currents be-
come strong enough, i.e. if the amplitudes of the magnetic field fluctuations become large
enough, they can decay due to generation of current instabilities which again are mostly
in the drift modes and lower hybrid modes, accelerate electrons along the magnetic field
and heat the plasma by dissipating their energy. Electron heating and the appearance of
lower hybrid modes in connection to the observation of these current vortices thus rather
indicates their decay than reconnection.

To these downstream excited waves a couple of other waves can be added. These are
waves that are generated in the upstream shock foot having phase and group velocities less
than the flow velocity and thus are swept down into the shock, where they accumulate and
contribute to local dissipation in case their group velocities compensate for the reduced
downstream flow across the shock. Otherwise they pass the shock and contribute to the
downstream fluctuations.

Among those waves are the various low frequency electrostatic waves that are excited
in the foot and will be described below. They propagate in the ion acoustic and lower
hybrid mode frequency ranges and appear downstream as broadband low frequency noise
where they have been observed for long time [Rodriguez & Gurnett, 1975]. The electro-
static modes in the lower-hybrid range have electric field components along the magnetic
field and thus accelerate electrons into beams, a process that serves the transport of energy
from the ion flow to the electron component and is responsible for electron heating, for-
mation of electron beamlets and generation of the recently detected downstream solitary
structures in the electron plasma wave component [Pickett et al, 2004].

In the next chapter on quasi-parallel shocks we compare the downstream wave spec-
tra for both quasi-perpendicular and quasi-parallel shocks in Figure 6.50. However, even
this short reconciliation of the fluctuating state of the downstream region behind a quasi-
perpendicular shock shows that the downstream medium is in a rather complex plasma
state investigation of which is interesting in itself though poorly understood yet.

5.4 Electron Dynamics

When talking about the dynamics of electrons hybrid simulations cannot be used anymore.
Instead, one must return to the more involved full particle PIC simulation codes or to
Vlasov codes, which directly solve the Vlasov equation in the same way as a fluid equation,
this time, however, for the “phase space fluids” of ions and electrons. In both cases short
time scales of the order of the electron gyro-period ω−1

ce or even the electron plasma period
ω−1

pe must be resolved, and resolution of spatial scales of the order of the electron inertial
scale λe and Debye scale λD is required. It is thus no surprise that reliable simulations
of this kind became available only within the last decade with the improved computing
capacities.
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5.4.1 Shock Foot Electron Instabilities

Papadopoulos [1988] proposed that in the foot region of a perpendicular highly supercrit-
ical shock the velocity differences between reflected ions and electrons from the upstream
plasma inflow should be responsible for the excitation of the Buneman two-stream instabil-
ity thus heating the electrons, generating anomalous conductivity and causing dissipation
of flow energy which contributes to shock formation.

Buneman Two-Stream Heating in Strictly Perpendicular Shocks

Shimada & Hoshino [2000] and Schmitz et al [2002] building on this idea performed full
particle PIC simulations in strictly perpendicular shocks discovering that the Buneman
two-stream instability can indeed work in the foot region of the shock and can heat and
accelerate the electrons. Shimada & Hoshino [2000] initiated their one-dimensional simu-
lations for a small mass ratio of mi/me = 20, βi = βe = 0.15, and Alfvénic Mach numbers
3.4 ≤MA ≤10.5.

Figure 5.20 shows some of their simulation results. It is interesting to inspect the right
part of the figure which shows the (shaded) ramp and foot regions on the left in expanded
view. The electron phase space shows the development of electron holes which are gener-
ated by the Buneman two stream instability in this strictly perpendicular shock simulation.
The signature of the electrostatic field Ey in the lowest panel shows the bipolar electric
field structure the holes cause. The average field is zero, but in the hole it switches to large
negative values, returns to large positive values and damps back to zero when passing
along the direction normal to the hole. This is exactly the theoretical behaviour expected
for both, solitons and electron holes of the form of BGK modes. As known from simu-
lations (see Chapter 3) such BGK-hole structures will trap electrons and heat them, they
do, on the other hand, also accelerate passing electrons to large velocities. Both is seen
here also in the simulations in the vicinity of the shock: Three such holes are completely
resolved in the right high resolution part of the figure, with decreasing amplitude when
located closer to the shock ramp. All of them contain a small number of trapped electrons
over a wide range of speeds which on the gross scale on the left fakes the high temperature
of the electrons they achieve in the hole. This is just the effect of heating by the two-stream
instability. In addition the electron velocity shows two accelerated populations, one with
positive velocity about 2–3 times the initial electron speed, the other reflected compo-
nent with velocity almost as large as the positive component but in the opposite direction
suggesting that the electron current in the holes is almost compensated by the electron
distribution itself.

Obviously the further strong heating of electrons in the ramp is caused by many smaller
amplitude overlapping holes as is suggested by the structures in the inflowing and reflected
ion distributions which do also strongly interact with the electric field of the holes. This
is seen in the incoming ion component in the first hole as a dip in the velocity. The hole
retards the incoming flow. It is also seen in the reflected ion component as strong distortion
of their backward directed velocity when encountering a hole. The smaller speed ions are
obviously retarded in their backward flow and are partially trapped in the negative electric
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Figure 5.20: One-dimensional full particle PIC simulations with mass ratio 20 for Mach number MA = 10.5
and ΘBn = 90◦ resolving the electron scales [after Shimada & Hoshino, 2000]. Left: Simulation overview for
electron and ion phase spaces, magnetic field and electric field. Ion reflection from the ramp and foot formation
is seen in the second panel from top. The electrons are heated in the foot region. the heating coincides with large
amplitudes in the electric field in the lowest panel. Right: Expanded view of the shaded foot and ramp regions on
the left. The electron heating location turns out to be a site of electron hole formation. Three Buneman two-stream
instability holes are nicely formed on this scale with trapped electrons. The broadening of the distribution and
thus heating is due to the holes. Retardation of the ions in interaction with the holes is seen in the second panel
which is due to the retarding electric potential in the large amplitude electric field oscillations (lowest panel).
Interestingly enough, ion reflection takes place in the very overshoot! The ion distribution is highly structured in
the entire region which is obviously due to interaction with many smaller scale electron holes.

field part of the hole. Very similar strong scattering of the incoming ion component is
seen in the ramp region. This suggests that a large number of electric field structures are
located in the ramp which scatter the incoming ions. These must be related to the highly
fluctuating electric field component in the ramp seen on the right in the lowest panel.

Two further observations which are related to the ion component are of considerable
interest: The first is that the retardation of the incoming ion flow and the scattering of
the reflected ions in the foot region cause a signal on the magnetic field component. The
second is that the reflection of the main incoming ion beam, i.e. the incoming plasma
takes place at the location of the magnetic overshoot and not in the shock ramp. Therefore,
physically spoken, the shock ramp is also part of the foot, while it is the narrow overshoot
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Figure 5.21: Left: The electron distribution in the shock arising from the action of the Buneman electron hole
interaction at large Mach numbers MA > 5. The interaction not only causes heating but also an energetic tail
on the electron distribution function. This tail has the shape of a power law Fε ∝ ε−α , with power α ≈ 1.7.
Note that this power gives a very flat distribution close to marginal flatness α = 3

2 below that an infinitely
extended distribution function has no energy moment. Right: Evolution of the average electron temperature, ion
temperature and ratio of electron temperature to initial kinetic energy in the simulations as function of Alfvénic
Mach number [after Shimada & Hoshino, 2000]. All quantities are in relative units of computation.

region where the reflection occurs in a strictly perpendicular supercritical shock with cold
ion inflow. The actual ramp region is much narrower than for instance shown in the figure.
Its actual width is only of the order of ∆ ∼ (1–2)c/ωpe.

Electron Heating and Acceleration

Shimada & Hoshino [2000] followed the evolution of the electron vortices (holes) and
showed that a hole once evolved distorts the ion and electron velocities in such a way
that nonlinearly the velocity difference can increase and cause the generation of secondary
vortices, which leads to excessive electron heating [see also Shimada & Hoshino, 2005].
The result is the generation of an extended electron tail on the electron distribution. This
is seen from the left part of Figure 5.21 in a log-lin representation of the electron number
versus normalised electron energy. When plotting the data on a log-log scale (not shown)
one realises that the newly produced tail of the electron distribution has a power law slope
F(ε) ∝ ε−α , notably with power α ≈ 1.7. (Note that this power is close to the marginally
flattest power α = 3

2 below that an infinitely extended power law energy distribution has no
energy moment more and thus ceases to be a distribution. In fact, any real nonrelativistic
power law will not be infinitely extended but will be truncated due to the finite extent of
the volume and loss of energetic particles.)
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The dependence of electron heating and ion cooling on Mach number for the inves-
tigated range of Alfvénic Mach numbers is plotted on the right. The effect does not
occur for small Mach numbers, too small for the Buneman two-stream instability to be
excited. However, once excited, the heating increases strongly with MA. Over the range
5 < MA < 20 the increase in electron temperature (electron energy stored mainly in the tail
of the distribution) is a factor of 40–50, which demonstrates the strong non-collisional but
anomalous transfer of kinetic flow energy into electron energy via the two-stream instabil-
ity. However, one should keep in mind that this result holds merely for a one-dimensional
simulation of strictly perpendicular shocks.

At this place we should look again at observations during crossings of real collisionless
shocks in space. Recently, during passages of the Polar satellite of the quasi-perpendicular
Bow Shock of the Earth, very strong localised electric fields have been detected. These
fields exist on scales !λe = c/ωpe, less than the electron skin-depth, and reach enormous
values of !100 mV m−1 parallel and !600 mV m−1 perpendicular to the magnetic field.
They must naturally be related to the electron dynamics and should play a substantial role
in the formation and dissipation processes of the quasi-perpendicular shock. They should
also be of utmost importance in accelerating electrons (and possibly also ions) at shocks.
Their nature still remains unclear, however, it is reasonable to assume that they are gen-
erated by some electron-current instability via either the Buneman-two-stream instability,
the modified two-stream instability which we discuss below, or the ion-acoustic instability,
depending on the current strength. In any case they will turn out to belong to the family
of Bernstein-Green-Kruskal modes which are encountered frequently in collisionless plas-
mas.

5.4.2 Modified-Two Stream Instability

The Buneman two-stream instability works on scales ≤λe = c/ωpe. This condition is less
easily satisfied in quasi-perpendicular shocks. However, here other instabilities can evolve
which are relatives of the Buneman two-stream instability.

The condition that there is no current flowing in the shock normal direction dur-
ing foot formation and reflection of ions at the shock requires that the electron inflow
from upstream is decelerated when entering the foot region. This causes a difference in
the ion and electron inflow velocities. In a quasi-perpendicular shock the wave vector
k = (k∥,k⊥) is allowed to have a component k∥ along the magnetic field. The velocity dif-
ference between ions and electrons can then excite the modified two-stream (MTS) insta-
bility, a modification of the Buneman instability acting in the direction perpendicular to the
magnetic field. This instability is electromagnetic coupling the Buneman two-stream insta-
bility to the whistler mode. The waves generated propagate on the whistler mode branch
with frequency ωmtsi ∼ ωlh ≪ ωce,ωpe, close to the lower-hybrid frequency, but far below
both the electron cyclotron and electron plasma frequencies, respectively. These waves
are capable to modify the shock profile when being swept downstream towards the shock
ramp. Their obliqueness generates a magnetic field aligned wave electric field component
which accelerates, traps and eventually pre-heats the electrons in the shock foot along the
magnetic field.



196 5. QUASI-PERPENDICULAR SUPERCRITICAL SHOCKS

Relation to the Buneman Instability

Scholer & Matsukiyo [2004] investigated the transition from Buneman to modified two-
stream (MTS) instabilities as function of mass ratio mi/me and for various βi, βe in the
regime where no upstream standing whistlers exist, i.e. above the critical whistler Mach
number MA > Mwh. This investigation is restricted to shocks, however, with k-vectors
being strictly perpendicular to the shock along the shock normal and for one-dimension
only. This excludes any waves which could propagate along the inclined magnetic field.
Nevertheless, this investigation is interesting in several respects. First it showed that for
mass ratios mi/me ! 400 no modified two-stream instabilities occur since their growth
rates are small. The electron dynamics and the shock behaviour in this range are deter-
mined by the Buneman two-stream instability unless the electron temperature is large
enough to inhibit its growth in which case ion-acoustic instability should (or could) set
on (but has not been observed or has not been searched for). For larger mass ratios (and
particularly for the realistic mass ratio) the Buneman two stream instability ceases to be
excited. Instead, the modified two-stream instability (MTSI) takes over which is strong
enough to completely determine the behaviour of the electrons. A summary of their results
is schematically given in Figure 5.22.

The evolution of the MTS-waves for realistic mass ratio simulations is shown in Fig-
ure 5.23 for three instants of time. The wave spectrum has been determined in the shaded
area. Large amplitude waves of left-hand polarisation propagate toward the shock during
this reformation cycle. These waves are related to the electron dynamics. They are excited
by the modified two-stream instability in the foot (top panel) in interaction between the
retarded electrons and the fast ions. The simulations also show the evolution of large ampli-
tude electron holes and ion holes (right lower panel). Such structures have been observed
in the electric field in the quasi-perpendicular shock region [Bale et al, 2002; Pickett et al,
2004; Balikhin et al, 2005; Hull et al, 2006; Hobara et al, 2008] with differing interpre-
tations. From the simulations it is concluded that both kinds of holes/solitary structures
are excited near a quasi-perpendicular shock on similar scales while being related to the
combined electron and ion dynamics.

Modified Two-Stream Instability and Quasi-perpendicular Shock
Reformation

They cause reformation of the shock, but in a different way than it is caused for low mass
ratio by the Buneman-instability. There the reformation was the result of accumulation of
ions at the upstream edge of the foot, while here it is caused by participation of the foot
ions in the MTSI all over the foot and particularly close to the shock ramp and presumably
also at the ramp itself. Phase mixing of the ions leads to bulk thermalisation and formation
of a hot retarded ion component in the foot region which has similar properties like the
downstream population and, when sufficiently compressed takes over the role of the shock
ramp. This can be seen from the lower right part of Figure 5.23 which is a snapshot at time
tωci = 3.7 showing the magnetic profile, the density profile with its strong distortions, and
the evolution of the ion distribution which evolves into large thermalised vortices towards
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Figure 5.22: Schematic of the dependence of the shock structure on the combinations of βi,βe for quasi-
perpendicular supercritical but non-whistler shocks. For large βi the shock is stable even though ions are reflected.
At small βi, large βe the shock reforms due to accumulation of ions at the edge of the foot forming n reforma-
tion cycle. For small β the MTSI evolves in the foot, strong heating and complicated dynamics evolves due to
nonlinear interaction, heating and hole-vortex formation [after Scholer & Matsukiyo, 2004].

the front of the shock (note that here the shading indicates also the spatial domain where
the wave spectra have been taken).

The generation of MTS-waves by the modified two-stream instability has been investi-
gated in depth theoretically and with the help of specially tailored one-dimensional numer-
ical simulation studies by Matsukiyo & Scholer [2003], and in two-dimensional simula-
tions by Matsukiyo & Scholer [2006a, b] which we are going to discuss in detail.

Modified Two-Stream Generation Mechanism: Tailored Simulations. Figure 5.24
in its left-hand parts shows the set-up of the two-dimensional simulation and the resulting
time histories of fields and particles. The incoming and reflected ion velocities are shown
for time zero in the (x,y)-plane where the co-ordinate y is about parallel to the magnetic
field. The phase space at time zero contains the three distributions of inflow and reflected
ions and hot incoming electrons. The slight displacement between the latter and the incom-
ing ions accounts for zero normal current flow in presence of reflected ions. Clearly this
configuration is unstable causing instabilities between the ion beams and electrons (in
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Figure 5.23: Top: Electron phase space evolution showing the distortion of the electrons until thermalisation
during the modified two-stream instability. The evolution of narrow electron holes can be seen of increasing
amplitude (phase space width) the closer one comes to the shock ramp. Lower left: Magnetic and electric wave
components of MTSI waves present in the grey shaded area in space during part of the time shown and are
moving toward the shock ramp in the left-hand mode as discussed earlier. These waves steepen when reaching
the shock front. Distortion of the ion distribution is the result as shown in Lower right. Large amplitude ion holes
are formed as well [after Scholer & Matsukiyo, 2004].

addition to the slowly growing ion-ion instabilities discussed earlier). The basic physics of
the instability can be readily identified from the time histories of the fields and particles
in the middle of Figure 5.25. The first exponential growth phase of the Ex-component for
times ωpet < 500 is due to the Electron-Cyclotron-Drift instability (ECDI) which we have
omitted in our theoretical analysis in Chapter 3 [cf., also, Muschietti & Lembège, 2006].
This instability is driven by the ion beam when it interacts with obliquely propagating
electron-Bernstein waves (electron-cyclotron waves). In fact, this instability, in the present
case is nothing else but the Buneman instability (BI) which for the given set-up is initially
unstable (as is seen from the bulk velocity difference between the ion and electron phase
space distributions on the left of the figure) due to the interaction of the ion beam mode
with the lowest order electron-cyclotron mode. Initially there is some growth also in the



5.4. Electron Dynamics 199

Figure 5.24: Left: The phase space distribution set-up for the simulation. The original magnetic field is in z-
direction. The upper panel shows the incoming and reflected ion beams. The lower panel shows the two cold
ion distributions, incoming and reflected, and the hot electron distribution, shifted slightly in order to satisfy the
zero-current condition in shock-normal direction. Centre: Time histories of the energy densities of the simulation
quantities: electric and magnetic wave fields, electrons and the two ion components. Right: Wave power spectra
in k-space at early times tωpe < 404.8 showing the excited power in the Buneman mode in the upper panel. The
lower panel shows the dispersion relation. The two straight lines correspond to the damped beam modes of the
reflected (negative slope) and direct (positive slope) ion beams. The enhanced power in the two dark spots is due
to the ECD-instability, which is the Buneman mode which excited under these early conditions in the simulation
as the interaction between the reflected ion beam mode and the first and second Bernstein harmonic waves [after
Matsukiyo & Scholer, 2006a, courtesy American Geophysical Union].

Figure 5.25: Top: The dispersion relation for the time interval 607.2 < tωpe < 1011.9 showing the ECDI
(Buneman mode), the original MTI-1 and the secondary MTSI-2 which is generated by wave-wave interaction.
The corresponding reaction in kx numbers is indicated for the waves which participate in the three-wave process.
Bottom: The power spectral density in the (kx,ky)-plane. The ellipse indicates the wave numbers that contribute
to the wave-wave interaction of the MTSI-1 and ECDI [after Matsukiyo & Scholer, 2006a, courtesy American
Geophysical Union].
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magnetic field which is strongest in Bz and much weaker in By and Bx. However, until the
MTSI sets on the magnetic field energy does not grow substantially. This changes with
onset of the MTSI when all components increase with By, Bz dominating and being of
equal intensity, showing that due to the magnetic wave field of the MTSI the instantaneous
magnetic field develops a transverse component.

The MTSI does not grow in this initial state because its growth rate is small for these
conditions. During the saturation phase the ECDI still dominates in the flat regime until
the MTSI takes over causing further growth of the already large amplitude electric field
fluctuations. This stage after ωpet > 103 is characterised by a growth phase also in Ey
(which is due to the electron acoustic instability EAI which can be excited in presence of
both a cold and a hot electron component) and, surprisingly, the normal component Bx.

This latter component might be caused by the Weibel instability (WI) when a substan-
tial anisotropy is generated. Such an anisotropy exists for the ions, in fact, in our case
as they propagate solely in ± x-direction at grossly different speeds. The growth rate of
the instability, neglecting the magnetic field, i.e. setting ωce = 0, is γWI = (Vi/λi)(1 +

1/k2λ2
e )−

1
2 [Weibel, 1959], where λe,i = c/ωpe,i are the ion and electron inertial lengths,

respectively. When the magnetic field is not neglected but the ions are taken as non-
magnetised, as is the case in the shock foot, then
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At short wavelengths the growth rate of this instability can be quite large. Its maximum is
assumed for k2 → ∞ when it becomes the order of (γ WI/ωci)max ∼ Vi/VA ≃ MA. At the
expected wave-number kλi ∼ 1 is just a factor

√
2 smaller than its maximum value and

decreases rapidly towards longer wavelengths.
One may thus expect that large Mach number shocks generate magnetic fields by the

Weibel instability, in which case the field becomes non-coplanar, and small-scale station-
ary magnetic structures appear in the shock foot and ramp. Still, this is a little speculative.
However, if the Weibel instability exists it will generate many small-scale magnetic struc-
tures in the shock. This is, in itself, sufficiently interesting to be noted. The simulations
show the presence of Bx ̸= 0, suggesting that the magnetic field becomes three-dimensional
since the Weibel instability has zero frequency and thus produces a steady normal field
component. At very high Mach numbers the Weibel instability will help reflecting a much
larger fraction of ions thereby contributing to sustaining the shock and increasing the (vis-
cous) dissipation rate. This is of substantial interest in astrophysical applications.

The right outermost part of the figure shows two power spectra of the electric field in
(kx,ky)-space at times tωpe = 253 (top) and tωpe < 404.8 (bottom). In the top panel the
power of the waves concentrates at (kxλe,kyλe) = (6.8,0). These waves propagate nearly
perpendicular to the ambient magnetic field.

The lower panel shows the dispersion relation ω(kx) for these waves in a grey scale
representation. The two straight dark lines with negative and positive slopes belong to the
damped ion beam modes for the reflected (negative slope) and incoming (positive slope)
ion beams.
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There are two dark specks on the reflected beam mode where the intensity of the elec-
tric field (which is shown here only) is enhanced. These specks are separated by about the
electron cyclotron frequency in frequency. They belong to the crossings of the reflected
ion beam mode and the two lowest harmonics of the electron Bernstein modes which is
the ECD-instability which in this case is also the Buneman instability (BI). This mode
has been investigated by Muschietti & Lembège [2006] in one-dimensional PIC simula-
tions and has been shown to be present in the foot region. Since we now know that it is
the Buneman mode, it is no surprise to find it in the early stage here in two dimensions,
when the conditions are favourable for the Buneman mode and the initial situation is still
close to one-dimensional. It is, however, important to note that the Buneman two-stream
instability is excited by the large difference in bulk speeds between electrons and reflected
ions. In the later stages, as the existence of the electromagnetic left-hand polarised negative
helicity waves in Figure 5.23 confirms, the ECDI/Buneman mode is replaced by the MTS-
instability which generates oblique, nearly perpendicularly propagating large amplitude
electromagnetic waves which also form hole structures and heat the plasma.

Figure 5.25 shows the next time slot in the presentation of the dispersion relation (left).
At this time the waves have reached large amplitudes, large enough to cause various inter-
actions among the waves which react on the wave and particle distributions and, in addi-
tion, cause nonlinearity of the plasma state at wave saturation. The ECDI forms as a broad
spot in the (ω ,k)-domain. The MTSI is the short nearly straight line at low frequencies and
small positive kx (indicated as MTSI-1 in the figure). In the wave spectrogram these waves
move towards the shock ramp. This means their slope is positive in the dispersiogram!

Secondary Modified Two-Stream Instability: Wave-Wave Interaction. In addi-
tion to these modes another negatively moving low frequency wave appears. This is also an
MTSI, but it is a secondary one, which Matsukiyo & Scholer [2006a] have shown to arises
in a three wave process when the ECDI-BI and the MTSI-1 interact causing a wave with
kx = kBI +kMTSI−1 = kMTSI−2. The right part of the figure shows the enhanced wave power
for this process extracted from the data on the way of a bi-spectral analysis and represented
in the k-plane. The ellipse encircles the wavenumbers which are involved into the three-
wave interaction, the original ECD-wave, and the resulting MTS-2-wave. Clearly, a whole
range of waves participates in the interaction because the ECD-spectrum has broadened
when saturating, and many combinations of ECD and MTS-1 waves satisfy the nonlinear
three-wave interaction condition.

The top-left panel of Figure 5.26 shows the evolution of the electron velocity vy during
this interval and averaged over a range of x-values along the normal. This velocity is about
perpendicular to the magnetic field; its dynamic range of variation is impressive. The panel
at the lower left shows the electron phase space distribution. Two electron beams are seen
to propagate at counter streaming velocities. These beams can already be identified in the
upper panel. Due to the interaction with the unstable waves the region between the beams
is partially filled. These distributions have been taken in the interval 17.6 < y/λe < 19 as
indicated in the top panel.

Another distribution a little further in the interval 39.1 < y/λe < 40,5, at the rear
end of the top panel, is shown in the lower right panel. Here the distribution has evolved
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Figure 5.26: Top: Electron phase space plot (left) at 19.4 < x/λe < 21, and (right) dispersion relation ω(ky)
for the period 910.7 < tωpe < 1315.5 as obtained from Ey. This dispersion relation shows the occurrence of
EA-waves with strictly linear dispersion and frequency below ωea ! ωpe while propagating in both directions.
These are generated in the presence of the two-electron component structure seen in the distribution function
below. They are responsible for the subtle fine-structuring of the electron distribution in the phase space as is
seen in the upper left panel representation of vy versus y which exhibits trapping and scattering of electrons on
very small scales. Bottom: Two electron distribution functions at 17.6 < y/λe < 19 and 39.1 < y/λe < 40.5 at
t = 1000, as indicated in the upper left panel by the vertical lines, showing the large electron hole distribution that
is generated by the MTSI and some smaller substructures [after Matsukiyo & Scholer, 2006a, courtesy American
Geophysical Union].

into a totally different combination of two electron populations, one top-flat and hot, the
other one narrow, i.e. cold, but of same height indicating the retardation of one beam and
heating of the other. Altogether the electron plasma has been heated to high temperature.
Returning to the upper left panel the complicated structure of the distribution is nicely
seen with several sub-beams evolving and also with electron trapping in some vortices
being visible for instance in the upper part around y ≃ 22λe.

Coming now to the upper right panel, which shows the dispersion relation in the
y-direction, one recognises two low-frequency linear wave modes propagating in posi-
tive and negative y-directions. These waves are electron-acoustic (EA) modes which are
excited in the presence of the two electron distributions, the hot top-flat distribution and
the cold beam distribution. They have strictly linear dispersion and frequencies below the
electron plasma frequency ωea ! ωpe. Because they interact strongly with the electron dis-
tribution, they are responsible for the fine-structuring in the electron distribution function
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Figure 5.27: Top: Incoming (left) and reflected (right) ion densities at the late time tωpe = 2023.9 shown in
the (x,y)-plane. This time, in terms of the ion cyclotron period, corresponds to tωci = 0.55, i.e. about half an ion-
cyclotron period. At later times the ion magnetisation would come into play as well. Bottom: The corresponding
electric field Ex and magnetic fieldBz profiles. One observes that the ECD-waves (Bernstein modes) have decayed
by feeding their energy into electron heating. The two MTS-modes are still visible as the wavy variations in the
incoming and reflected ion beams. The original MTS-1 wave modulates the incoming beam, which is seen in
its downward propagation towards the shock. The secondary MTS-2 mode modulates, in addition, the reflected
ion beam causing the interference pattern seen in the reflected beam density. The electric field is modulated by
the MTS-2 wave, while the magnetic field contains signatures of both, MTS-1 and MTS-2 [after Matsukiyo &
Scholer, 2006a, courtesy American Geophysical Union].

seen in the top-left panel of Figure 5.26 where they cause electron trapping and scattering
which results in electron heating and electron acceleration.

We close this section by presenting ion densities of the reflected and incoming beams
and the corresponding modulations of the electric Ex and magnetic variation fields Bz,
respectively, in Figure 5.27 in two-dimensional grey-scale representation in the (x,y)-
plane. One observes that the ECD-waves (Bernstein and Buneman-modes) have decayed.
They have been feeding their energy into electron heating, creating electron holes, trapping
electrons and shaking them, as we have discussed above. The two MTS-modes are still vis-
ible. They dominate the ion density structure being visible as the wavy variations in the
incoming and reflected ion beams. The original MTS-1 wave only modulates the incom-
ing beam. This is recognised from its long-wavelength downward propagation towards the
shock. The secondary shorter scale MTS-2 mode modulates, in addition, the reflected ion
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beam causing the interference pattern seen in the reflected ion-beam density. The electric
field is merely modulated by the short wavelength MTS-2 wave.

Weibel Instability Caused Effects. On the other hand, the magnetic field contains
signatures of both, MTS-1 and MTS-2 thus exhibiting a more irregular structure than
the electric field. Here, probably, also the small-scale structures of the Weibel instabil-
ity do contribute. We have noted its effect already above, but it would be rather difficult
to extract them from the figure as they should appear as stationary vortices, which are
convected downstream towards the shock front with the speed of the average bulk flow.
Their dynamics remains to be unresolved, i.e. it is not clear what will happen to them
when encountering the shock front. One possibility would be that they accumulate there
and generate a non-coplanar magnetic component. Nevertheless, the possibility for the
Weibel instability to evolve in supercritical quasi-perpendicular shocks is of interest as
Weibel vortices could, if confirmed by observations, cause an irregular fine structuring of
the magnetic field in the shock ramp transition, which would have consequences for the
particle dynamics, trapping, scattering, reflecting and acceleration of particles from the
shock front. It could, moreover, also lead to small scale reconnection in the shock front,
which so far has not been believed to exist in the shock, including the various side-effects
of reconnection. Weibel vortices could also pass into the downstream region where they
might contribute to the downstream magnetic turbulence. There they would occur as mag-
netic nulls or holes for which the shock would be the source.

5.5 The Problem of Stationarity

In this last section of the present chapter we will be dealing with the time-dependence of
quasi-perpendicular shocks. Since in the previous sections we have frequently dealt with
time variations, there is little new about time-dependencies of shocks. Nevertheless, in
the past few years there has been much ado about the so-called “problem” of shock non-
stationarity which has grown into an own field of shock research. We have already spoken
on this before.

What does it mean that shocks can be or even are non-stationary? In principle, station-
arity means time independence and, hence, is a question of the time scale under considera-
tion. For instance, any cascade looked at from far is stationary. Such are shocks. As for an
example take Earth’s bow shock which stands in front of Earth for eons, or astrophysical
shocks which for the human eye are practically invariable. On the time scale of their exis-
tence they are stationary, while on much shorter time scales they undergo global and local
variations. Non-stationarity, at its best, thus just means nothing else but dealing with such
variations. However, at a physically much deeper level would be the question for the equi-
librium state of shocks. Clearly, as already explicated, shocks are not in thermodynamic
equilibrium. They need to be driven. Thus the time scale of the global “stationarity” of
shocks is the life time of the driver.

One kind of non-stationarity is shock reformation. This is a periodic or better quasi-
periodic process in which the shock ramp for the time of foot formation remains about
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stationary, i.e. the shock ramp is well defined and moves ahead only very slowly. In fact,
during the following reformation the shock is everything else but stationary: from one ref-
ormation cycle to the next the ramp flaps, it flattens and broadens while the new shock
foot grows and steepens. And towards the end of the reformation cycle the shock ramp
suddenly jumps ahead from its old position to the edge position of the shock foot. Could
one follow this evolution over very many reformation cycles, one would find that there
is no real periodicity but that the process of reformation, i.e. the time sequence of final
forward jumps of the shock ramp would form a quasi-periodic or even chaotic time series.
Unfortunately, computer capacities do not yet allow to simulate more than a few refor-
mation cycles such that this conjecture cannot be proved yet. But it is simple logic that
reformation cannot be strictly cyclic; there are too many processes involved into it, too
many instabilities cooperate, and the particle dynamics is too complicated for a strictly
periodic process to be maintained over longer times than one or two ion-gyroperiods. In
addition, once the shock is considered two-dimensional – or even three-dimensional – the
additional degrees of freedom introduced by the higher dimensions multiply and the prob-
ability for the shock of becoming a stationary or even cyclic entity decreases rapidly. This
is particularly true for high-Mach number shocks even under non-relativistic conditions.
Hence, we may expect that a realistic high-Mach number, i.e. supercritical shock will nec-
essarily be locally non-stationary.

Principally, stationarity is a question of scales. On the macroscopic scale, the scale
of the macroscopic obstacle and the macroscopic flow, a shock will be stationary as long
as the flow and the obstacle are stationary. For instance, such stationary shocks are the
planetary bow shocks that stand in front of the planetary magnetospheres or ionospheres.
On the scales of the magnetospheric diameters their variation is of the same order as the
variation of the solar wind or – if the magnetospheres themselves behave dynamically –
the time and spatial scales of their variations are of the same order as the time and spatial
scales of the magnetospheric variations, for instance the diurnal precession of the Earth’s
magnetic axis which causes a strictly periodic flapping of the magnetosphere and thus a
strictly periodic variation of the position and shape of the Earth’s bow shock.

On spatial scales of the order of the ion gyroradius and temporal scales of the order of
the ion gyroperiod there is little reason to believe in stationarity of a collisionless supercrit-
ical shock wave. The whole problem of stationarity reduces to the investigation of instabil-
ities and their different spatial and temporal scales and ranges, their evolution, saturation,
being the sources of wave-wave interactions and nonlinear wave-particle interactions and
so on. These we have already discussed in the former sections as far as the current state of
the investigations do allow. What, thus, remains is to ask how a shock surface can become
modulated in higher dimensions and what reasons can be given for such modulations.

5.5.1 Theoretical Reasons for Shocks Being “Non-stationary”

That collisionless shock waves might exhibit non-stationary behaviour was suggested early
on from the first laboratory experiments on collisionless shocks [Auer et al, 1962; Paul
et al, 1967]. Morse et al [1972] were the first to definitively conclude from their one-
dimensional shock full particle PIC simulations that collisionless shocks seem to be non-



206 5. QUASI-PERPENDICULAR SUPERCRITICAL SHOCKS

stationary on the scale of the ion gyroperiod. Afterwards, time variations in the behaviour
and evolution of collisionless shocks have been recovered permanently in shock simula-
tions [e.g., Lembège & Dawson, 1987a, b].

This is no surprise as we have mentioned several times already. The principal reason
is that shocks, and in particular supercritical shocks which are not balanced by collisional
dissipation, are in thermal non-equilibrium and are thermodynamically not in balance.
Hence, locally they are longing for any opportunity to escape this physically unpleasant
situation in order to achieve balance and thermal equilibration. However, as simple as this
reason might look, as difficult is it to find out what under certain given conditions will
actually happen and which way a shock will locally direct itself for a try to escape non-
equilibrium and to achieve equilibrium. Even though when it is permanently driven by an
unchangeable flow and a stationary obstacle it will chose any kind of irregularity, fluctua-
tion or detuning to drive some kind of instability, cause dissipation and, when driving will
become too hard in any sense, it will overturn and break; and in this way it will maximise
dissipation if it is not possible to achieve it in any smoother way.

Non-stationary behaviour of quasi-perpendicular shocks has been anticipated theoret-
ically, following Sagdeev [1966], by Kennel et al [1985] who noted the existence of the
critical whistler Mach number Mwh, which we have discussed above in comparison to
numerical simulations. Galeev et al [1988] tried to give a theoretical account for reasons
of the anticipated non-stationary character of supercritical shocks. They investigated the
role of whistlers in the nonlinear domain at the ramp, finding that whistlers for flow speeds
sufficiently above the Alfvén speed do not possess soliton solutions and thus do not sustain
the steady state of a shock. This means very simply that neither dissipation nor dispersion
can sustain the nonlinear steeping of the waves, and therefore the waves should cause
breaking of the flow and lead to non-stationary behaviour of the ramp and crest, a process
called by them ‘gradient catastrophe’. These authors also dealt with quasi-electrostatic
waves of frequencies close to the lower-hybrid frequency ωlh to which they attributed
responsibility for wave breaking.

Simulations by Quest [1986], Lembège & Savoini [1992], Savoini & Lembège [1994]
and Hada et al [2003] for low mass-ratios have attempted to illuminate some aspects
of this non-stationary behaviour. Lowe & Burgess [2003] and Burgess [2006a, b] have
investigated two-dimensional rippling of the shock surface in hybrid simulations and its
consequences. Full particle simulations up to realistic mass ratios have been performed
by Scholer & Matsukiyo [2004], Matsukiyo & Scholer [2006a, b] and Scholer & Burgess
[2007]. We will return to these attempts. Here we first follow the analytical and simula-
tional attempts of Krasnoselskikh et al [2002] to advertise the general non-stationarity of
quasi-perpendicular shocks. We should, however, note that there is no principle reason for
a shock to behave like we wish, i.e. to behave stationary. It might, if necessary, break and
overturn or mike not; the only requirement being that it follows the laws of physics.

Nonlinear Whistler Mediated Non-stationarity

Krasnoselskikh et al [2002] rely on a method developed by Whitham [1974] to describe
the nonlinear breaking of simple waves by adding to the simple wave evolution equation
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a nonlocal term that takes care of accumulating short wavelength waves. The Whitham
equation reads

∂v
∂ t
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If this additional term is purely dispersive, it reproduces the Korteweg-de Vries equation, if
it is dissipative it reproduces Burgers’ equation. In general, stationary solutions ∂v/∂ t → 0
peak for K(x) ∼ |x|−α for x → 0, and α > 0. Krasnoselskikh et al [2002] use the whistler
dispersion relation
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describing low frequency whistlers at oblique propagation which, when inserted into the
above integral for K(x) asymptotically for |x| → 0 yields K(x) ∼ π−1

√
mi/me|cosθ |[C+

ln |x| + . . . ]. Here C = 0.577 . . . is Euler’s constant. Since |x|α ln |x| → 0 for all positive
α > 0 and |x| → 0, nonlinear low-frequency whistler waves will necessarily break by
the above condition. Thus, when whistlers are involved into shock steeping, and when
α > 0, they will necessarily break as their dispersion does not balance the nonlinear steep-
ing. This happens when the Mach number exceeds the nonlinear whistler Mach number
M > Mwh,nl. Both, whistler dispersion and dissipation by reflected ions cannot stop the
whistlers from growing and steeping anymore, then.

In order to prevent breaking, another mechanism of dissipation is required. Still based
on the whistler assumption, Krasnoselskikh et al [2002] argue that the shock ramp would
radiate small wavelength whistler trains upstream as a new dissipation mechanism. This
works, however, only as long as the Mach number remains to be smaller than another
critical Mach number M < Mwh,g that is based on the whistler group velocity, ∂ω/∂k,

Mwh,g =

(
27mi

64me

)1
2
|cosΘBn| ! 19.8, (5.25)

since for larger M the whistler-wave energy will be confined to the shock and cannot
propagate upstream. The right-hand estimate holds for an electron-proton plasma and
cosΘBn ∼ 0.707, i.e. at the largest shock-normal angle ΘBn = 45◦ of quasi-perpendicular
shocks.

In other words, since the nonlinear whistler Mach number is always larger than the
whistler-group Mach number, whistler energy will leave the shock upstream only in a
narrow Mach number range Mwh < M < Mwh,g < Mwh,nl. This range corresponds to
15 < M /|cosΘBn| < 19.8 < 21.3. One-dimensional full particle PIC simulations with
realistic mass ratio mi/me = 1840 have been performed by Scholer & Matsukiyo [2004]
and Scholer & Burgess [2007] and confirm that whistlers affect the stationary or non-
stationary behaviour of nearly perpendicular shocks.

At larger M > 19.8|cosΘBn| the whistler energy is again confined to the shock and
will be swept downstream towards the shock when transported by the passing though con-
tinuously retarded flow. In the region of the foot and ramp where the energy accumulates it
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will cause different instabilities some of which propagate downstream. Such processes can
be wave-wave interactions driven by the high whistler energy, as had already been envis-
aged by Sagdeev [1966], or nonlinear wave-particle interactions. In addition to causing
anomalous resistivity and anomalous dissipation, these processes should lead to emission
of plasma waves from the shock, preferably into the direction downstream of the shock, as
only there M ! 1, and the wave group and phase velocities can exceed the speed of the
flow.

This whole discussion refers only to whistler waves and follows the traditional route.
We have, however, seen in the previous sections that the foot of the shock is capable of
generating waves of another kind, electromagnetic Buneman modes, modified-two-stream
waves, and possibly even Weibel modes. These waves are highly productive in generation
of electron heating; they cause magnetic disturbances that move towards the shock or
also upstream. The role in dissipation and dispersion these waves play has not yet been
clarified and is subject to further investigation. It is, however, clear that their excitation
and presence in the shock foot produces electron heating, retarding of ions and ion heating
as well and will thus provide an efficient dissipation mechanism. Whether this can prevent
shock breaking and overturning at very large Mach numbers is not known yet.

Shock Variability Due to Two-Stream and Modified Two-Stream Waves

Variability of the quasi-perpendicular shock has been demonstrated from numerical full
particle PIC simulations in one and two dimensions to come about quite naturally for a
wide range of – sufficiently large – Mach numbers. While in the low Mach number range
whistlers are involved in the variability, reformation and non-stationarity, the simulations
have clearly demonstrated that at higher Mach numbers the responsible waves are the
Buneman two-stream mode and the modified two-stream instability. This has been checked
[cf., Matsukiyo & Scholer, 2006a, b] by shock-independent simulations where the typical
electron and ion phase space distributions have been used which occur in the vicinity of
supercritical shocks during particle reflection events. So far the importance of these waves
over whistlers has been investigated only for the shock-foot region. The shock ramp and
overshoot are more difficult to model because of the presence of density and field gradients,
their electrical non-neutrality, and the fuzziness of the particle phase-space distribution
functions.

Differences were also found between strictly perpendicular and quasi-perpendicular
shocks. The former are much stronger subject to the Buneman two-stream instability that
completely rules the reformation process in one and two dimensions in this case, caus-
ing phase-space holes to evolve and being responsible for quasi-periodic changes in the
positions, heights and widths of the shock front and foot regions, respectively. We have
already put forward arguments that an investigation of the long-term behaviour of this
quasi-periodic variation should reveal that this process is irregular in a statistical sense.
Even under apparently periodic reformation conditions the shock will presumably not
behave stationary on the short time and spatial scales. This, however, can be checked only
with the help of long-term simulations which so far are inhibited if done with sufficiently
many macro-particles, realistic mass ratios and in more than one-dimension.
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Figure 5.28: The completely different reformation behaviour of shocks in one-dimensional PIC simulations
with realistic mass ratio of 1840 for strictly perpendicular and oblique quasi-perpendicular shocks at exactly same
parameter settings and scales. Shown is the magnetic field Bz and the ion phase space at two subsequent simula-
tion times for each of the respective simulations. Since the evolution is different in both cases the x-coordinate is
given as a relative scale not in x but for the same interval lengths in ∆x for the instance when reformation takes
place in both cases [compiled from Matsukiyo & Scholer, 2006a, courtesy American Geophysical Union]. Top:
Reformation at ΘBn = 90◦ at two times showing the evolution of the foot in the magnetic field and the taking-
over of the ramp by the foot while a new foot evolves. This process is governed by the Buneman two-stream
instability. Large holes evolve on the ion distribution. Note the correlation of the ion holes with depressions in
the magnetic field. In the second panel the old ramp is still visible as the boundary of the large ion hole. Farther
downstream many holes are seen, each of them corresponding to a magnetic depression, and the regions between
characterised by magnetic overshoots. Bottom: The corresponding evolution at ΘBn = 87◦. High variability of
the shock profile is observed which is identified as being due to the large amplitude MTS-waves travelling into
the shock. The foot region is extended and very noisy both in the magnetic field and ion distributions, the latter
being highly structured. The foot is extended much longer than in the perpendicular case. The two bottom panels
might also show signatures of wave breaking in the ion velocities when groups of ions appear which overturn the
main flow in forward downstream direction.

Figure 5.28 provides an impression of the variability of shock reformation in the two
cases of a strictly perpendicular, highly supercritical shock, and the case of an oblique
supercritical shock at ΘBn = 87◦, when whistler excitation is absent. The settings of the
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simulations are otherwise identical, but the evolution of the two simulations is completely
unrelated. This is because the perpendicular shock does not allow, in these one-dimensional
simulations, for the modified two-stream instability to grow. So only the Buneman two-
stream instability grows. It reforms the foot in the way we have already described, forming
large holes and letting the shock ramp jump ahead in time-steps of the order of roughly
an ion gyro-period. The shock foot acts decelerating on the flow, and already during ref-
ormation begins to reflect ions and to form a new foot. Most interestingly is that the holes
survive quite a while downstream while being all the time related to magnetic depres-
sions. At their boundaries large magnetic walls form which can be interpreted as magnetic
compressions (or otherwise signatures of current vortices).

The oblique case looks different. It is highly variable both in time and in space. The
magnetic profile is more irregular, and the ion-phase space exhibits much more structure
than in the perpendicular case. This has been identified to be due to the combined action
of the Buneman two-stream and the modified two-stream instabilities with the two-stream
instability being important only during the initial state of the reformation process, while
the modified two-stream instability dominates the later nonlinear evolution. Both, foot and
ramp, are extended and vary strongly. It is quite obvious, that in this case one can speak of a
stationary shock front only when referring to the long-term behaviour of the shock, much
longer than the irregular reformation cycle lasts. At the scale of reformation and below
there is no stationarity but variability and evolution, which can be attributed to the growth
and interaction times of the MTSI and the various secondary processes caused by it.

To complete this section, we note in passing that the low-mass ratio two-dimensional
full particle PIC simulations with small particle numbers performed by Lembège & Savoini
[1992, 2002] and Savoini & Lembège [1994, 2001] also showed non-stationary behaviour
of the quasi-perpendicular – or perpendicular – shock leading to so-called “rippling” of
shocks, which we will briefly describe in the next paragraph.

5.5.2 Formation of Ripples

One-dimensional theory and one-dimensional simulations implicitly treat the shock as an
infinitely extended plane surface. In addition they allow only for instabilities to evolve in
the direction of the shock normal at an angle relatively close to 90◦ such that any waves
along the shock surface are completely excluded and waves parallel to the magnetic field
have very small wave numbers k∥ = kx cosΘBn ≪ kx corresponding to very long parallel
wavelengths. To be more realistic, two-dimensional PIC simulations have been performed
to investigate the effect of the additional freedom given by the second spatial dimension
which allows instabilities to evolve in other than the shock normal direction. The cost of
these simulations is being restricted to low mass ratios only. In the simulation of Lembège
& Savoini [1992, 2002] and Savoini & Lembège [1994, 2001] the mass ratio has been taken
as mi/me = 42 which implies from comparison to the high-mass ratios in one-dimensional
simulations that the modified two-stream instability will presumably be excluded. The
structure of the shock front in these simulations has been shown in Figure 5.8, the left-hand
side of which shows the cyclic reformation of the shock – which at these low mass ratios
is clearly expected to occur – at a period comparable to the ion-gyro period of the reflected
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Figure 5.29: Left: Spatial distribution of the Bn = Bx-component of the magnetic field in the hybrid simulations
of Lowe & Burgess [2003] with Mach number MA = 5.7, and for ΘBn = 88◦. The Bx-component is not zero; it
reaches values twice the upstream magnetic field B1 and shows quite structured behaviour along the shock surface
which indicates that the surface is oscillating back and forth and that waves are running along the surface. These
waves are interpreted as surface waves. Centre: The power in the presumable surface waves as determined from
the simulations. Obviously the power concentrates around the ramp. Right: Apparent dispersion relation ω(k) of
the fluctuations [after Lowe & Burgess, 2003].

ions in the foot of the shock. The right-hand side shows a pseudo-three-dimensional profile
of the shock in the two spacial dimensions, in the top part at the time when the foot is fully
developed, in the bottom part when the ramp has just reformed, i.e. when the foot has taken
over to become the ramp. What interests us here is that the shock ramp surface is by no
means a smooth plane in the direction tangential to the shock. It exhibits large variations
both in space and time which are correlated but not directly in phase with the presence
of reflected ions in the foot. The overshoot, steepness and width of the ramp and ramp
position oscillate at a not strictly periodical time-scale. In addition, the structure of the
ramp also exhibits shorter scale fluctuations.

Further hybrid simulations [Lowe & Burgess, 2003; Burgess & Scholer, 2007] in two
dimensions at ΘBn = 88◦ for and MA = 5.7 satisfying Rankine-Hugoniot conditions with
n ·B = Bn constant, attribute fluctuations in Bn to these so-called ripples [Lembège &
Savoini, 2002; Lowe & Burgess, 2003; Burgess, 2006a, b] as given in Figure 5.29 for the
Bn = Bx (left), power B2

x (centre), and the ‘dispersion relation’ ω(k) of the fluctuations in
Bx. These fluctuations are of the same value as the main component of the magnetic field Bz
reaching maximum values of twice the upstream magnetic field B1. They are concentrated
in the ramp, foot and overshoot. The dispersion relation is about linear and low frequency
but exceeds the ion-cyclotron frequency for shorter wavelengths. There is no mode known
which corresponds to these waves, so they are attributed to surface waves flowing in the
shock transition. Maximum wavelengths are a few ion inertial lengths.

The lesson learned is, however, quite simple: the shock exhibits structure along its
surface which can presumably be attributed to waves running along the shock front and
modulating it temporarily and spatially. The caveat of these simulations is however, their
hybrid character which does not account for the full dynamics of the particles and there-
fore it cannot be concluded about the nature of the waves. Burgess & Scholer [2007] have
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Figure 5.30: Two-dimensional structure of the surface waves [Burgess & Scholer, 2007]. Top: Magnetic field
average across the shock. Bottom: Grey scale plot of the surface waves. The three white lines show the presumable
location of the nominal shock and two distances from it downstream [after Burgess, 2006b, courtesy American
Geophysical Union].

extended these investigations to infer about the driver of these waves. They find that it is
the reflected ion component in the shock foot which flows along the shock surface and at
large Mach numbers becomes unstable. Figure 5.30 shows a grey scale plot of the two-
dimensional structure of the surface wave oscillation. Its growth is proportional to the
Mach number, i.e. it must therefore be proportional to the number of reflected ions, their
velocity and to the upstream convection electric field that accelerates the ions. Presum-
ably it is some variant of Kelvin-Helmholtz instability along the shock surface, which is
driven by the velocity shear introduced by the reflected ion flow along the shock surface.
It causes undulations (or flow vortices) at the shock which, in the magnetic field, appear
as ripples.

It should be clear, however, that long-term full particle simulations must be performed
at real mass ratio before any reliable conclusion can be drawn about the existence of sur-
face waves. We have seen that part of these waves is nothing but the exchange between the
foot and the ramp during the reformation process. This applies to the long wave part. In
addition it is indeed possible that the strong and fast flow of reflected ions along the shock
surface could excite a Kelvin-Helmholtz-like instability. This depends on the fraction of
ions which the shock is able to reflect, and this is a question of Mach number depen-
dence. If the fraction of reflected ions is small the velocity shear will be too small to drive
a Kelvin-Helmholtz instability. Giving a quantitative argument is, unfortunately, impossi-
ble. However, it is not clear whether these oscillations are the sole action of the modulation
of the shock surface in two or three dimensions. The only conclusion we can safely draw
is that the shock surface, even under ideal non-curved and quiet upstream conditions, will
at high Mach numbers not remain to be a quiet smooth and stable shock surface but will
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exhibit fluctuations in position, structure, overshoot amplitude and width on the scales of
the ion inertial length and the ion cyclotron period.

5.6 Summary and Conclusions

Among the collisionless shocks, quasi-perpendicular supercritical shocks are the best in-
vestigated. They are also the shocks which for other purposes like particle acceleration to
very high energies have naturally been favoured and find wide application in astrophysics
where one of the central problems consists in the explanation of the presence of energetic
particles (Cosmic Rays). Theory has predicted that quasi-perpendicular shocks reflect ions
by some basically unspecified mechanism that for simplicity is assumed to be specular,
implying elastic scattering from the shock front. This might be provided for the low energy
part of the upstream distribution by the transverse shock potential. These reflected ions
form feet which are located upstream but adjacent to the shock ramps. Quasi-perpendicular
shocks possess either whistler precursors are trails. Theory also predicts that whistlers
could be phase-locked and stand in front of the shock ramp only for a limited range of
Alfvénic Mach numbers.

We have reviewed here the theoretically expected shock structure, the relevant scales,
the most relevant particle simulations for perpendicular and quasi-perpendicular supercrit-
ical shocks, the shock-reformation process and its physics as far as it could be elucidated
from one-dimensional and to a certain part also from two-dimensional simulations. The
most relevant instabilities generated in the shock foot have been identified as the whistler
instability for nearly perpendicular supercritical but low-Mach number shocks, leading to
foot formation but not being decisive for feet, as it has turned out that feet in this Mach
number and shock-normal angle ranges are produced by accumulation of gyrating ions at
the upward edge of the foot.

More important than whistlers have turned out the Buneman and modified two-stream
modes, the former dominating shocks at perpendicular angles, the latter growing slowly
but dominating at more oblique angles and at later simulation times with the effect of
completely restructuring both the shock feet and ramps. Both instabilities generate phase
space holes which during reformation survive and are added to the downstream plasma
and, in addition, being responsible for low magnetic field values.

Most interestingly, the plasma state just downstream of the shock is, at least to large
extent, nothing else but the collection of the old shock ramps which have been left over
from former reformation cycles and move relative to the shock frame in the direction
downstream of the shock. This is best seen in the simulations when analysing the ion phase
space where each of the old ramps can still be identified as an ion clump, the remainder of
the former ramp reflection position.

The modified-two-stream instability in addition generates waves which flow into the
shock ramp where they contribute to the dynamics of the ramp. Wave-wave interaction
and wave particle interaction lead to the generation of secondary waves and to particle
heating. Finally, simulations show that the shock front in more than one dimension is not
a plane surface but exhibits a strong variability in time and space. This can be explained
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as surface waves on the shock front which might be driven by the reflected ion current
flow along the surface similar to a Kelvin-Helmholtz instability. This question is still open
to investigation. So far the evolution of the shock ramp, its stability and time variation as
well as the physics of the region just downstream of the ramp is not yet well explored.
It is, however, clear from the available intelligence that any serious investigation must be
based on full particle simulations and experimenting with appropriate sets of distribution
functions suggested by the simulations in order to investigate the instabilities and inter-
actions between the waves and particles as well as between waves and waves in order to
understand the physics. This has to a certain degree already been achieved for the foot
region. In the shock ramp and in the strongly disturbed region behind the ramp it is more
difficult as the conditions there are less clean and the definition of the responsible distri-
butions is more difficult. Moreover, plasma and field gradients must be taken into account
in this region, and the electric charge separation field that is partially responsible for ion
reflection cannot be neglected as well. With the further increase of computing capacity and
the refinement of the models one expects that within the next decade also the physics of
the shock ramp will become more transparent.

An interesting problem is the stability of shocks. Above the critical Mach number
they reflect ions and generate ion viscosity that helps dissipating the excess energy. This
dissipation goes via the above mentioned instabilities and less on the way of ion viscosity
in the classical sense of fluid theory. For even larger Mach numbers these processes will
not suffice to stabilise a quasi-perpendicular shock. What will then happen? It has been
suggested that strongly nonlinear processes driven by whistlers will set on and lead to
non-stationarity of the shock ramp. This might be the case. However, only simulations at
high Mach numbers and full mass ratios in large enough systems can answer this question.

We state that the problem of stationarity or cyclic behaviour of the shock is not the
problem of the shock; rather it is the problem of our understanding. For the shock nothing
else counts than dissipating the excess inflow energy and momentum. If this turns out to
be impossible by either anomalous dissipation, shock reflection, foot formation, precursors
and early flow retarding, then the shock will not care but will break and turn over as this
will be the only way for reducing the scale to microscopic dimensions producing violent
heating and energy dissipation.

At the time of writing it remains unclear whether breaking takes place. Magnetic field
lines cannot break-off; they kink but remain to be simply connected. Hence, any breaking
that is going on takes place in the particle component requiring non-adiabaticity. It will
be connected with vortex formation. The appearance of phase space vortices at high Mach
numbers resembles a tendency towards shock breaking. In the light of this discussion the
lower two panels in Figure 5.28 can also be interpreted as breaking and overturning of
the quasi-perpendicular (ΘBn = 87◦) realistic mass-ratio supercritical shock. In particular
during the phase before reformation (third panel from top) the magnetic field behaves
irregular, and both the incoming and reflected beams form many partial vortices prior to
the reflection point (at ∆x ∼ 140λe). Behind the reflection point the ion velocity shows
formation of bursts of ions which run away in forward direction, which is just what is
expected in breaking. A sketch of the dynamical processes is given in Figure 5.31.
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Figure 5.31: Schematic of the profile of a highly supercritical shock with waves just before shock reformation
and signatures of beginning wave breaking. The sketch has been completed with a copy of the ion phase space
from the simulations of Matsukiyo & Scholer [2006b] showing the structure of the ions in the ramp with the
signatures of overtaking ions and backstreaming ions as well as ion vortices, all an indication of onset of breaking.

5.7 Update – 2012

Nonstationarity viz. shock reformation has been investigated at the example of Earth’s
bow shock wave with the help of CLUSTER spacecraft measurements by Mazelle et al
[2010] showing that the ramp-gradient scale changes with time and can become as narrow
as an electron inertial length, which is a most interesting observation as this is the shortest
possible transverse length scale for a collisionless magnetised shock.

Related to this observation may be another observation by Bale et al [2008] who used
CLUSTER measurement across the quasi-perpendicular super-critical bow shock wave at
low plasma β to determine the cross-shock electric potential finding that the potential is
typically in the range of 500 < Φ < 2500 V which amounts to large variations in the ion
energy change in the range 20 < ∆Eion/Eion < 240%. This would be indication of the high
variability of the shock.

The cross-shock potential is also related to electron heating as described in this chap-
ter. However, direct multi-spacecraft CLUSTER measurements analysed by Schwartz et al
[2011] that this electron heating is a more complex and obviously multi-scale process
which is related to the spatial and temporal structure of the shock layer electromagnetic
field. These authors determined the electron temperature gradient across the quasi-perpen-
dicular Earth’s bow shock from the electron distribution measured in situ. According to
these observations, roughly ∼50% of the electron heating must be attributed to the nar-
row few λe thick shock ramp layer. This heating comes from an inflation the electron
phase space and indicates irreversibility which is attributed to wave particle interaction. In
view of this the conclusion that wave turbulence in a narrow transition region practically
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independent on ion dynamics is responsible for the electron heating. This is, however,
consistent with the assertion that violent instabilities work in this narrow region like the
Buneman mode, the modified two-stream instability caused by the shock-electric poten-
tial. Possibly, as the authors suggest, oblique electron whistlers are also involved. Sund-
kvist et al [2009]; Sundkvist et al [2012], based on CLUSTER multi-spacecraft observations
from crossings of Earth’s bow shock, calculated the Poynting flux of such oblique whistler
waves in two quasi-perpendicular (ΘBn ∼ 85◦) relatively high-Mach (MA = 5.5 and 11)
number shocks finding – in the shock-normal frames – that the Poynting flux is directed
obliquely upstream, away from the shock, as predicted by quasi-perpendicular supercrit-
ical shock theory. Their assumption is that the parallel electric field vanishes. Thus the
whistlers generated at the shock are oblique and dispersive with k-vector approaching 90◦
with respect to the ambient magnetic field at the shock ramp. Downstream of the shock,
the wave spectrum becomes incoherent, indicating that the waves in the whistler frequency
range are turbulent. We note that recently [Wilson et al, 2012] electromagnetic whistler
precursor waves have also been inferred from Wind data around some supercritical inter-
planetary shocks.

Shinohara & Fujimoto [2010] have preformed first three-dimensional PIC simulations
of quasi-perpendicular shocks at a realistic mass ratio µ = 1840 finding very strong wave
activity in the shock foot region which is permitted by the inclusion of the third dimension.
These waves cause a stronger then known upstream electron acceleration and the gener-
ation of non-thermal electrons. PIC simulations at smaller mass ratio and in two dimen-
sions [Savoini et al, 2010] had already shown indications of reflected electrons before and
attributed them to a magnetic mirror effect in the foot-shock ramp field.

Also of interest is the observation of a variability of electron counts at 500 eV elec-
tron energy observed downstream of the super-critical quasi-perpendicular bow shock by
CLUSTER [Matsui et al, 2011]. It suggests a quasi-periodic modulation of electron flux
at this energy with period ∼3 s, suggested to be related to mirror mode waves excited by
the presumably large downstream temperature anisotropy that is generated by the quasi-
perpendicular shock transition.

Near the Saturnian bow shock, Masters et al [2011] found substantial solar wind elec-
tron heating from Cassini data during 2005 and 2007, attributing the heating to the action
of the comparably strong bow shock at this outer strongly magnetised planet. The heat-
ing observed is correlated to the ram flow energy of the incident solar wind, e.e. to the
upstream Mach number. It amounts to between 3% and 7% of the incident ram energy.
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