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Basic theory of collisionless reconnection

3.1 Fundamentals of collisionless reconnection
J. F. Drake and M. A. Shay

There are a number of well-documented deficiencies of the present resistive MHD
models of magnetic reconnection (Section 2.1) that have motivated the exploration
of reconnection models based on either a two-fluid or a kinetic description: the long
energy release time, the absence of a well-defined mechanism for breaking the frozen-
in condition, the onset problem, and the particle heating problem. As discussed in
Section 2.1, the Sweet–Parker model of reconnection yields an inflow velocity of
plasma into the dissipation region given by

vin∼(δ/Δ)vA, (3.1)

where vA is the Alfvén speed just upstream of the dissipation region and the width of
the current layer, δ∼η1/2, is small compared with its length Δ. In the Sweet–Parker
model Δ is given by the macroscopic system size L. As a consequence, the rate of
reconnection given in Eq. (3.1) is small. In contrast, in Petschek’s model (Section 2.1),
the outflow region from the X-line opens up as a fan, leaving a relatively short dissipa-
tion region Δ in Eq. (3.1), and therefore boosting the reconnection rate dramatically.
However, computations revealed that the open Petschek outflow geometry cannot
be sustained in a model with a simple uniform resistivity (Biskamp, 1986). A model
resistivity that increases sharply in regions with high current density, such as might
be expected from current-driven turbulence, facilitates a Petschek-like reconnection
configuration (Sato and Hayashi, 1979). However, the establishment and role of such
anomalous resistivity during reconnection is not yet well understood (Papadopoulos,
1977; Galeev and Sagdeev, 1984; Drake et al., 2003; see also Section 3.5) in spite of
the wide use of anomalous resistivity models in MHD computations. New insight into
processes driving the macroscale Sweet–Parker current layer has been recently devel-
oped. This current layer reflects an underlying singularity in the post-reconnection
MHD state (Waelbroeck, 1989; Jemella et al., 2003, 2004). Mechanisms that suppress
this tendency toward singularity must compete with the ideal MHD processes that
create the singularity.

Changing the topology of magnetic field lines, which is necessary for releasing
energy during magnetic reconnection, requires some form of dissipation to break the
frozen-in condition. The dissipation mechanisms, which have been identified largely
on the basis of computer simulations, will be discussed in greater detail in Sections 3.2

87

Reconnection of Magnetic Fields : Magnetohydrodynamics and Collisionless Theory and Observations, edited by J. Birn, and E. R.
         Priest, Cambridge University Press, 2007. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/uiowa/detail.action?docID=281731.
Created from uiowa on 2021-11-19 21:58:08.

C
op

yr
ig

ht
 ©

 2
00

7.
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



88 Basic theory of collisionless reconnection

and 3.5. Section 3.2 focuses on mechanisms that operate even in the absence of modes
that vary in the main current direction, while Section 3.5 discusses potential effects of
such modes. In planetary magnetospheres such as that of the Earth, where the plasma
density is only a few particles per cubic centimeter or less, the collisional mean free
path is large enough that classical collisions are negligible. In the absence of collisions
the finite mass of electrons limits their response to a parallel electric field and allows
magnetic field lines to reconnect. In a generalized fluid model these finite mass effects
take the form of electron inertia and a nondiagonal pressure tensor (Section 3.2). In
the intense current layers that define the dissipation region, instabilities generated
by the relative streaming of electrons and ions may drive turbulence sufficient to
produce anomalous resistivity (Section 3.5). In the solar corona, where the plasma is
much less tenuous, collisions may play a role in facilitating reconnection, especially
during the early stages of reconnection. However, the fast release of magnetic energy
observed in the corona produces inductive electric fields that typically exceed the
Dreicer runaway field (Miller et al., 1997). For typical reconnection electric fields
corresponding to reconnection inflow velocities of 0.1vA, with vA the Alfvén speed,
the runaway criterion becomes

vA > 10vte
νei

Ωe
, (3.2)

where vte and Ωe denote the electron thermal velocity and cyclotron frequency,
respectively, and νei is the electron–ion collision rate. When the runaway condition
is satisfied, the local dynamics becomes effectively collisionless. Thus, understanding
collisionless reconnection remains critical to modeling the dynamics of both solar
and magnetospheric systems.

An essentially universal feature of magnetized plasma systems is the storage-release
cycle (Chapter 1). Magnetic energy slowly builds up due to input from external
drivers, remains essentially quiescent, possibly for long periods (hundreds to thou-
sands of Alfvén times), and then abruptly releases through topological changes in the
magnetic configuration facilitated by reconnection. In all systems in which magnetic
reconnection can be studied in detail, including disruptions in laboratory fusion
experiments, substorms in the Earth’s magnetosphere, and solar and stellar flares, a
similar cycle is observed yet the underlying reasons for this universal behavior remain
unclear. Is there a common mechanism underlying the sudden onsets of magnetic
reconnection in this variety of systems or is the commmonality of the observations
merely accidental? Is the absence of progress on the reconnection onset problem
because the MHD modeling of such systems is missing key physics?

There is strong evidence that a significant fraction of the magnetic energy released
during magnetic reconnection is channeled into energetic electrons and ions. Solar
observations in particular have suggested that at least 50% of the energy released
during flares is in the form of energetic electrons (Lin and Hudson, 1971; Miller
et al., 1997). Energetic electrons and ions have been measured in the Earth’s magne-
tosphere (Terasawa and Nishida, 1976; Baker and Stone, 1976) and in disruptions
in laboratory fusion experiments (Savrukhin, 2001). Since MHD is a single fluid
model, it cannot describe the energy branching ratio between electrons and ions nor
can it describe the production of energetic particles, causing high-energy tails of the

Reconnection of Magnetic Fields : Magnetohydrodynamics and Collisionless Theory and Observations, edited by J. Birn, and E. R. Priest,
         Cambridge University Press, 2007. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/uiowa/detail.action?docID=281731.
Created from uiowa on 2021-11-19 21:58:08.

C
op

yr
ig

ht
 ©

 2
00

7.
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



3.1 Fundamentals of collisionless reconnection 89

particle distributions (Section 3.6) that have been observed, for instance, in recent
magnetotail satellite data (Øieroset et al., 2002). Such heating processes can only
be treated with kinetic models. The focus of this section is to introduce some of
the non-MHD concepts that have emerged as dominant players in the dynamics of
reconnection, including relevant spatial scales, to provide the basis for more detailed
discussions in subsequent sections.

3.1.1 Basic kinetic processes and scales
The dynamics of magnetic reconnection is controlled by the dissipation

region, the narrow boundary layer where dissipative processes allow the magnetic
field to change topology. Understanding and modeling this layer has been challenging
because collisions are typically weak and collisionless kinetic processes dominate. The
intense currents driven by local electric fields can drive turbulence and nonlinear
structures such as electron holes, solitary waves, and double-layers. In spite of these
challenges significant progress has been made in identifying the dissipative mecha-
nisms that break the frozen-in condition and the processes that control the structure
of this layer (Section 3.2).

As outlined in Section 2.1, the aspect ratio of the dissipation region, the ratio of
its width δ to its length Δ, controls the rate of reconnection based on the inflow–
outflow condition in Eq. (3.1). In the MHD model δ is controlled by resistivity while
Δ is linked to the macroscopic system scale length L, independent of the dissipation
processes. A fundamental question is what physical processes control these scale
lengths in a kinetic model. Specifically, what dissipative process controls the width
of the dissipation region and what is the physics that determines the length of the
dissipation region. If the length of the dissipation region remains macroscopic as in
the MHD model, it is unlikely that even large values of the kinetic dissipation will be
sufficient to raise the rate of reconnection to levels that can explain the observations.

An important yet perhaps unexpected result of the efforts to understand kinetic
reconnection was the discovery that the motions of the electrons and ions, because
of their very different masses, decouple at the small spatial scales defining the dissi-
pation region (Sonnerup and Ledley, 1979; Mandt et al., 1994; Horiuchi and Sato,
1994). This behavior can be understood from the electron equation of motion,

me
dve

dt
= −eE−eve ×B− 1

n
∇·Pe −meνei(ve −v), (3.3)

where v is the bulk ion velocity, Pe is the electron pressure tensor (in the electron
rest frame), and d/dt ≡ ∂/∂t+ve ·∇ is the time derivative in the electron rest frame.
This equation appears like an Ohm’s law if ve is replaced with ve = v− j/ne and
terms of order me/mi are neglected,1

me

ne2

[
∂j
∂t

+∇·
(
jv+vj− jj

ne

)]
= E+v×B− j×B

ne
+

1
ne

∇·Pe −ηj. (3.4)

1 The jj term on the left-hand side of (3.4) can be combined with the electron pressure term to yield
the electron pressure tensor in the plasma rest frame, PCM

e , which leads to

me

ne2

[
∂j
∂t

+∇· (jv+vj)
]

= E+v×B− 1
ne

j×B+
1
ne

∇·PCM
e −ηj.

This is the form discussed by Vasyliūnas (1975).
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90 Basic theory of collisionless reconnection

The generalized Ohm’s law (3.4) contains three terms that are not present in
the resistive MHD limit, the electron inertia term on the left of (3.4), and the
terms proportional to j×B (Hall term) and ∇·Pe. The Hall term brings whistler
dynamics into the system while the electron pressure term brings in kinetic Alfvén
wave dynamics and unmagnetized electron dynamics when the pressure tensor is
nongyrotropic.

At large spatial scales Eq. (3.4) reduces to E+v×B = 0, the ideal MHD “Ohm’s”
law. From this relation it is easily shown that the magnetic field is frozen-in to the
ion fluid (Section 2.2). The ideal MHD equations are scale invariant, meaning that
they do not define a spatial scale. The other terms in Ohm’s law are associated with
specific spatial scales and are important when those spatial scales are reached. The
electron inertial term is associated with the electron skin depth de ≡ c/ωpe, which
can be derived by comparing the convective portion of the inertia term with the
j×B term. At the spatial scales where electron inertia is important typically ve � v

so that the ∇· (jj/ne) portion of the inertia dominates. The scale where the j×B
(Hall) term becomes important is calculated by comparing it with the v×B term,

|v×B|∼vAB <
|j×B|

ne
∼ 1

μ0ne
B2

Δ
(3.5)

or

Δ < di ≡ c/ωpi. (3.6)

If Δ is smaller than the ion inertial length di, j/ne exceeds v so that ve exceeds v,
which implies that electrons and ions no longer move together, unlike in the MHD
regime, where ve∼v. The isotropic pressure term brings in the effective ion Larmor
scale ρs = (Te/mi)1/2/Ωi (based on the ion–sound speed, vs = (Te/mi)1/2 for the limit
where Te � Ti). Since this scale does not follow from Ohm’s law alone, we discuss
this scale later.

The decoupling of electron and ion motion at small spatial scales implies that the
Alfvén wave no longer controls the collective behavior of the plasma motion below
these scales. In particular, the Alfvén wave no longer drives the acceleration of the
plasma away from the X-line, allowing the bent, newly reconnected field lines to
release their stored magnetic energy. Close to the X-line this role is taken over by
either the whistler or kinetic Alfvén wave.

The issue of what breaks the frozen-in condition is of fundamental importance
for the understanding of collisionless reconnection. The details of this mechanism
will be discussed in Section 3.2. Very close to the X-line the convective portion of
the inertial term can be neglected because the local velocity is nearly zero (from
symmetry considerations) so only the nongyrotropic pressure can balance the recon-
nection electric field (Vasyliūnas, 1975). This result is true both with and without a
guide magnetic field (the field component in the direction of the main current), which
implies that the current layer driven by the reconnection electric field must scale
with the electron Larmor radius even when the guide field becomes very large (Hesse
et al., 2002, 2004). Away from the X-line the convective portion of the inertia can be
important, especially for the case with a guide field, where large parallel electric fields
map the magnetic separatrices, extending outward far from the X-line (Pritchett and
Coroniti, 2004; Drake et al., 2005b).
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3.1 Fundamentals of collisionless reconnection 91

A final question is how strongly the rate of reconnection depends on the dissipation
mechanism. An important result of the GEM Reconnection Challenge (Birn et al.,
2001) and some earlier papers (Shay and Drake, 1998; Hesse et al., 1999) is that the
rate of late-time reconnection is insensitive to dissipation when whistler and kinetic
Alfvén waves drive the outflow from the X-line. For simplicity, we break the more
detailed discussion of these various issues into the case of antiparallel and guide-field
(component) reconnection.

Reconnection with antiparallel magnetic fields
The case of antiparallel reconnection has been extensively explored because

of its relevance to collisionless reconnection in the Earth’s magnetotail and because
the current layers that develop in the vicinity of the X-line are relatively broad in
comparison with the case of a guide field and therefore computationally less chal-
lenging to model. In Fig. 3.1 is a schematic of the basic structure of the X-line region,
including the field structure and electron and ion flows. At distances greater than di

upstream from the X-line the electrons and ions flow together. At a distance around
di upstream the electron and ion motion decouples and the ions are diverted into the
outflow direction, forming an outflow jet and current layer of width around di. Inside
of this region the ions are essentially demagnetized and respond mostly to electric
rather than magnetic fields. The electrons remain frozen-in to the magnetic field and
continue to move toward the X-line. The electrons decouple from the magnetic field
when they approach within de of the X-line and are accelerated in the outflow direc-
tion in an outflow channel of width de. The peak outflow velocity of the electrons

B-field

c/ωpi c/ωpe

Current
Ion flow

Electron flow
Ion dissipation region
Electron dissipation region

Fig. 3.1. Schematic of the multiscale structure of the dissipation region during
antiparallel reconnection. Electron (ion) dissipation region in white (gray) with
scale size c/ωpe (c/ωpi). Electron (ion) flows in long (short) dashed lines. In-plane
currents marked with solid dark lines and associated out-of-plane magnetic
quadrupole field in gray.
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92 Basic theory of collisionless reconnection

reaches the electron Alfvén speed vAe = B/
√

μ0men and then drops sharply to match
the ion outflow speed vA. The different trajectories of the electrons and ions in the
reconnection plane produce closed current loops that generate a self-consistent out-
of-plane magnetic field By. This field is the signature of the standing whistler wave
that drives the electron outflow from the X-line.

For consistency with the remainder of this chapter, and the predominant applica-
tions to the Earth’s magnetotail (Chapter 4), we adopt a cartesian coordinate system,
where x is the coordinate in the direction of the main magnetic field, which reverses
sign across the current sheet, y is the direction of the main current (the ignorable
coordinate in 2D models), and z is the direction perpendicular to the current sheet.
We note that these coordinates may differ from those in the original papers cited.

Shown in Fig. 3.2 are data from a 2D simulation of antiparallel reconnection with
a particle-in-cell (PIC) code (Zeiler et al., 2002). The data are consistent with the
schematic shown in Fig. 3.1. A key discovery that is manifest in all models that
include the Hall term in Ohm’s law is that the dissipation region (broadly defined
to include all of the regions where either the ions or electrons decouple from the
magnetic field) remains spatially localized in the outflow direction – that is, unlike
the Sweet–Parker model, the dissipation region is determined by the kinetic scales
(Δ∼10di) rather than the macroscale L. It is this scaling for Δ that facilitates fast
reconnection (vin∼0.1vAx) from Eq. (3.1) even in large systems (Shay et al., 1999,
2004; Huba and Rudakov, 2004). The reason for the different scaling of the Hall
versus the MHD reconnection is linked to the dispersive character of the whistler
wave (Rogers et al., 2001). The insensitivity of the rate of reconnection to dissipation
is also linked to the dispersive property (Birn et al., 2001). Thus, how reconnection
couples to the whistler wave is a crucial scientific issue.

Coupling to whistler waves The coupling of dispersive waves to reconnec-
tion is complicated by the 2D structure of the dissipation region and there has to
date been no rigorous analytical model to describe the essential physics. A good
qualitative understanding can be gleaned from a simple 1D picture as illustrated
in Fig. 3.3, showing the magnetic field of a standing wave that is periodic in the
z direction along a uniform magnetic field in the y and z directions. As suggested
by the magnetic field line segments shaded dark, a segment of the field line can be
treated as a newly reconnected field line formed as a result of reconnection and the
resulting flow in the x direction treated as a proxy for the outflow generated during
reconnection. In the case of the MHD model the solution of this standing Alfvén
wave is

B̃x = B̃0 sin(kz) cos(kvpt), (3.7)

ṽx = vp
B̃0

Bz
cos(kz) sin(kvpt), (3.8)

vp = vAz, (3.9)

with vp the wave phase speed. The amplitude of the x component of the velocity,
B̃0/

√
μ0min, is simply the upstream Alfvén velocity, the usual outflow condi-

tion for magnetic reconnection. A similar calculation carried out with By = 0 at
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3.1 Fundamentals of collisionless reconnection 93
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Fig. 3.2. Data from a PIC simulation of antiparallel reconnection with mi/me =
100, Ti/Te = 12.0, and c = 20.0 showing: (a) the current Jz and in-plane magnetic
field lines; (b) the self-generated out-of-plane field Bz; (c) the ion outflow velocity
vx; (d) the electron outflow velocity vxe; and (e) the Hall electric field Ey. Notice-
able are the distinct spatial scales of the electron and ion motions, the substantial
value of Bz which is the signature of the standing whistler, and the strong Hall
electric field, Ey, which maps the magnetic separatrix. The overall reconnection
geometry reflects the open outflow model of Petschek rather than the elongated
current layers of Sweet–Parker.

scales below di yields the fields for the whistler wave and the electron outflow
velocity,

B̃y = B̃0 sin(kz) cos(kvpt), (3.10)

vp = kdevAez, (3.11)

where B̃x and ṽx are the same as in Eqs. (3.7) and (3.8) with the whistler phase speed
replacing that of the Alfvén wave. The whistler wave generates a magnetic field B̃y

as the electron flow ṽye drags the field B̃x out of the reconnection plane (Terasawa,
1983; Hassam, 1984). Associated with B̃y is the electron outflow ṽx, which drives the
electrons away from the X-line. Thus, the whistler wave replaces the Alfvén wave in
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94 Basic theory of collisionless reconnection

Vin

Vout

x

z

Fig. 3.3. Schematic showing how a newly reconnected field line can be represented
as a segment of a simple 1D wave. The horizontal velocity vx generated as the wave
evolves corresponds to the outflow velocity from the reconnection site. The ratio
of the peak horizontal velocity vx to the horizontal magnetic field perturbation Bx

is a constant in the case of the Alfvén wave but depends on the wave vector kz

in the case of whistler and kinetic Alfvén waves and is related to the dispersive
property of these waves.

driving reconnection (Mandt et al., 1994) and the characteristic outflow speed is the
whistler phase speed based on the upstream magnetic field B̃0.

Importantly, for a given value of B̃0 the outflow velocity increases with k (see Eqs.
(3.8) and (3.11)) or inversely with the width of the dissipation region δ. This is very
different from reconnection driven by the Alfvén wave. A consequence is that the
total flux of electrons from the dissipation region nṽx is insensitive to δ and therefore
the mechanism that breaks the frozen-in condition. The implication of this result is
that the rate of reconnection should also not depend on the mechanism that breaks
the frozen-in condition. Computer simulations of reconnection support this hypoth-
esis (Shay and Drake, 1998; Hesse et al., 1999; Birn et al., 2001). In Fig. 3.4 we show
results from the GEM Reconnection Challenge project (Birn et al., 2001), in which
the reconnected flux is shown as a function of time for a series of simulations with an
MHD model, a Hall MHD model (including the j×B and ∇·Pe terms in Ohm’s law),
a hybrid model (massless, fluid electrons and particle ions), and a PIC model. All
of the models but MHD include the dynamics of whistlers and the runs were carried
out with identical Harris equilibria with finite initial field perturbations. The rate of
reconnection is the slope of the curve of reconnected flux. All models but MHD have
indistinguishable rates of reconnection, which greatly exceed the MHD rate (obtained
with uniform resistivity corresponding to a Lundquist number of 200). Since the
mechanism that breaks the frozen-in condition in the various models differs (finite
electron mass in the case of the PIC simulation and a hyper-resistivity in the other
non-MHD models) these simulations confirm the insensitivity of the rate of reconnec-
tion to the dissipation mechanism if dispersive whistlers are included in the dynamics.

The GEM challenge did not address the question how the thin current sheet and
the initial island were formed. Therefore, another collaborative study was performed
to address this question (Birn et al., 2005). This study grew out of a workshop
on Magnetic Reconnection Theory, held in 2004 at the Isaac Newton Institute,
Cambridge, UK, and was therefore dubbed the Newton Challenge. The simulations
started from a current sheet that was four times thicker, in relation to the ion inertia
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3.1 Fundamentals of collisionless reconnection 95
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Fig. 3.4. Reconnected magnetic flux as function of time for various simulations of
the GEM Reconnection Challenge project (Birn et al., 2001), including an MHD
model, a PIC model, a hybrid model, and a Hall MHD model, using the same initial
conditions and parameters. The slope of the curves is the reconnection rate and is
essentially the same for all models that include the Hall term (whistler dynamics).

length, than that in the GEM challenge, and current sheet thinning and the onset
of fast reconnection was initiated by temporally limited, spatially varying inflow of
magnetic flux. The simulations showed again fast reconnection, independent of the
dissipation mechanism, when the Hall/whistler dynamics was included, consistent
with the GEM study. Further evidence comes from PIC simulations where it has also
been shown that the rate of reconnection is insensitive to the value of the electron
mass (Shay and Drake, 1998; Hesse et al., 1999; Pritchett, 2001b; Ricci et al., 2002).

Thus, the dispersive property of the whistler, which controls the outflow of elec-
trons from the dissipation region in antiparallel reconnection, renders reconnection
insensitive to the mechanism that breaks the frozen-in condition. This result has the
desirable consequence that the details of a kinetic model might not be required to
model reconnection in large systems.

Structure of the electron dissipation region In the case of reconnection with
no initial guide field the electron dissipation region is the narrow region around the
reversal region where the electrons become demagnetized and decouple from the
magnetic field. The width δe of this demagnetized electron region can be obtained
using the conservation of canonical momentum, py = mevy − eB′

xz2/2c, and energy,
where B′

x = dBx/dz. For a typical particle with the thermal velocity vte,

δe =

√
2vte

Ω′
ex

, (3.12)

which is a hybrid of the electron Larmor radius based on the asymptotic magnetic
field and the magnetic scale length LB = Bx/B′

x (Laval et al., 1966). This expres-
sion, however, does not pin down the characteristic scale of the dissipation region
because both the magnetic scale length and possibly the thermal velocity have to
be determined self-consistently. For example, even if the inflowing electrons are very
cold, the dissipation region is still expected to have a finite scale. The self-consistent
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96 Basic theory of collisionless reconnection

scaling can be determined by requiring that the electrons bouncing in the unmag-
netized region balance the magnetic pressure and at the same time requiring that
the current carried by the electrons within the dissipation region generate the jump
in magnetic field across the layer. These two conditions, B2

x/2μ0 = menv2
b/2 and

δevb = devAex, yield the width of the current layer δe and the electron bounce velocity
vb in the dissipation region,

δe = de, (3.13)

vb = vAex, (3.14)

where the electron Alfvén velocity vAex should be evaluated just upstream of the
electron current layer. This width is consistent with the data shown in Fig. 3.2. Note
that the width of the electron current layer is independent of the magnetic field jump
across the layer. If the electron thermal velocity of the inflowing plasma exceeds
the electron Alfvén speed, the layer will be broader than in Eq. (3.13) so de is the
minimum value of the width of the electron dissipation region. Simulations reveal
that the minimum width is actually around 2de (Zeiler et al., 2002).

How the electrons trapped in the unmagnetized region reach velocities as high as
the electron Alfvén speed is not obvious. The inflow velocity associated with recon-
nection is a small fraction of vAex and is therefore not the driver. This inner electron
region develops a substantial electric field Ez due to excess electrons at the turning
points of their bounce motion in the unmagnetized region. This field points outward
from the neutral line and accelerates the electrons into the unmagnetized region,
producing the counterstreaming electron beams that make up distribution function
at the X-line (Zeiler et al., 2002; Swisdak et al., 2005). Thermal spreading blurs the
fine-scale structure of this layer when the electron thermal velocity approaches the
electron Alfvén speed.

With the width of the dissipation region given in Eq. (3.13), an estimate of the elec-
tron outflow velocity from the electron dissipation region can be obtained. Equations
(3.8) and (3.11) yield k∼1/de so that

ṽex∼vAex. (3.15)

The scaling of the electron outflow velocity with the electron Alfvén speed was
demonstrated in 2D hybrid simulations by varying the electron mass (Shay et al.,
2001). Outflow velocities consistent with this scaling have also been measured in full
particle simulations (Hoshino et al., 2001a).

Reconnection with a guide field
The introduction of an ambient magnetic field in the out-of-plane direction

(the guide field), along the current direction, substantially changes the structure of
the dissipation region even at rather low values of the guide field. With this additional
magnetic field the out-of-plane inductive electric field that drives reconnection has
a component parallel to the magnetic field and the resulting parallel acceleration of
electrons produces strong out-of-plane currents, in contrast to the cross-field currents
that dominate the antiparallel reconnection dynamics. The in-plane components of
the parallel electron flows along newly reconnected field lines drive a pronounced
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3.1 Fundamentals of collisionless reconnection 97

density asymmetry across the reconnection layer that couples reconnection to a
kinetic Alfvén wave (Aydemir, 1992; Kleva et al., 1995; Cafaro et al., 1998). Thus,
it is the kinetic Alfvén wave that drives the electron outflow from the X-line rather
than the whistler. The guide field also suppresses the unmagnetized bounce motion
of electrons that defines the width of the electron current layer in the antiparallel
reconnection case. The result is that the electron current layer narrows substantially
and surprisingly has a width that scales with the electron Larmor radius (Hesse et al.,
2002, 2004). A consequence is that the nongyrotropic behavior of electrons survives
even when the guide field is large (see Section 3.2).

Coupling to kinetic Alfvén waves In Fig. 3.5 we show the out-of-plane
current density jy, the electron density ne, and the parallel electric field from a simu-
lation with an ambient guide field equal to the reversed field. Clearly seen in the
plot of the density is the depletion of the density along two of the separatrices and
enhancements along the remaining separatrices (Tanaka, 1996; Pritchett and Coro-
niti, 2004; Drake et al., 2005). This density asymmetry is the signature of the kinetic
Alfvén wave. A diagram showing the essential physics appears in Fig. 3.6 (Kleva
et al., 1995). A parallel electric field on newly reconnected field lines drives a parallel
electron flow across the current layer, depleting the electron density on one side of
the current layer and enhancing it on the other. The resulting electric field causes the
ions to polarization drift across the current layer to charge neutralize the electrons.
A surprise is the magnitude of the electron density depletion, which yields cavity
densities as low as a few percent of the ambient background. The separatrix with the
enhanced density in Fig. 3.5 carries most of the current and the result is a distinct
twist of the current layer that is in contrast with the distinctly symmetric layer in
the case of zero guide field. The perturbations of the kinetic Alfvén wave can be
calculated as in the case of no guide field,

B̃y =
√

μ0nT
B̃0

By
sin(kz) sin(kvpt), (3.16)

vp = kde
Bz

B
cse, (3.17)

ñT = −ByB̃y, (3.18)

where cse =
√

T/me is the electron sound speed. As in the case of the whistler and
Alfvén waves the outflow velocity ṽx is given in Eq. (3.8) but with the phase speed
given in Eq. (3.17). In the case of a strong guide field the flow speeds are below the
magnetosonic speed so the density and out-of-plane magnetic field perturbations are
in pressure balance as given in Eq. (3.18). As in the case of the whistler wave, the
kinetic Alfvén wave speed increases as the layer width decreases for a fixed value of
the upstream magnetic field B̃0. While there have been no reported scaling studies
of the electron outflow velocity in the case of guide-field reconnection, the phase
speed of the wave in Eq. (3.17) suggests that the outflow speed should scale with the
electron sound speed.
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98 Basic theory of collisionless reconnection
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Fig. 3.5. Data from a PIC simulation of reconnection with a guide field (initially
uniform) equal in magnitude to the reversed field. Other parameters are mi/me =
100, Ti/Te = 12.0, and c = 20.0. Shown are: (a) the current density jy; (b) the
electron density; (c) the electron parallel velocity v‖e; (d) the parallel electric field
E‖; and (e) the Hall electric field Ez. Noticeable are the canting and narrowing
of the current layer at the X-line compared with the antiparallel case in Fig. 3.2,
the density cavities that map two of the four separatrices connected to the X-line,
the localization and structuring of the parallel electric field in the low-density
cavities, the large parallel electron velocities that are a conseqence of acceleration
by the parallel electric field in the low-density cavities, and the strong transverse
Hall electric fields that maintain charge neutrality in the density cavities. The
density asymmetry across the dissipation region reflects the coupling to the kinetic
Alfvén wave. The development of the secondary magnetic island is typical during
reconnection with a guide field.

Based on the simple 1D wave model, the values of the guide field and plasma
β where the dispersive whistler and kinetic Alfvén waves dominate the dynamics
of the inner dissipation region or where there are no dispersive waves have been
identified (Rogers et al., 2001). A detailed computational exploration remains to be
completed.

An important remaining question is how large the guide field has to be in order to
magnetize the electrons in the dissipation region and therefore impact the dynamics
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3.1 Fundamentals of collisionless reconnection 99

Vin

Vout

B-field
v⊥ ion

v|| electron

Low density
High density

Fig. 3.6. Schematic of the structure of the dissipation region during reconnection
with a guide field. Compression of parallel electron flows on newly reconnected field
lines leads to a density asymmetry across the dissipation region in contrast to the
symmetric system with no guide field. Ions polarization drift across the magnetic
field to charge neutralize the electrons.

from that in an ideal system with no guide field. The dynamics of the antiparallel
system should significantly change if the ambient guide field is sufficient to magnetize
electrons injected into the reversal region. The inflow velocity of electrons is around
0.1vAex – that is, around 0.1 of the outflow velocity of the electrons. The effective
Larmor radius ρg of electrons with this velocity in the guide field is ρg = 0.1vAex/Ωey,
where Ωey = eBy/me is the cyclotron frequency in the guide field. The condition
ρg < de yields

By > 0.1Bx (3.19)

as the condition for which the guide field can no longer be neglected in antiparallel
reconnection (Swisdak et al., 2005). Thus, only very small guide fields are required to
alter the electron dynamics. We emphasize that much larger guide fields are required
to alter the dynamics of ions.

Structure of the parallel electric field and the electron dissipation region In
the absence of a guide field the electron dissipation region has a width that is compa-
rable to the electron skin depth. A guide field can prevent the bounce motion of
electrons across the current layer that controls the dynamics in the antiparallel field
case, resulting in even narrower current layers. The electron dissipation region in the
case of a guide field is controlled by the parallel electron current and therefore the
parallel electric field. This parallel field is given approximately by

E‖ = −∂Ay/∂t−∇‖Φ, (3.20)
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100 Basic theory of collisionless reconnection

where Ay is the y component of the vector potential that defines the in-plane
magnetic field ∇Ay × ŷ, and ∇‖Φ is the parallel component of the electrostatic field.
The latter is generated due to the parallel bunching of electrons. At a location where
the in-plane magnetic field reverses, the parallel electrostatic field vanishes (∇‖Φ = 0)
and reconnection generates a finite parallel electric field. The structure of Φ controls
the spatial localization of E‖. If the charge perturbation associated with electron
parallel bunching can be balanced by the cross-field motion of either the electrons
or ions, the parallel electric field can remain nonzero. Otherwise the electrostatic
field cancels the inductive field and the electrons short out the parallel reconnection
electric field (Drake and Lee, 1977). The electrons satisfy a kinetic equation based
on drift orbits given by

∂f̃

∂t
+v‖∇‖f̃ +

f0

BΩe

d
dt

∇2
⊥Φ+

e

me
E‖

∂f0

∂v‖
= 0, (3.21)

where f(x, v⊥, v‖) = f0 + f̃ is the distribution function and the third term arises from
the polarization drift. Because the electron layer is typically much smaller than an
ion Larmor radius, the ion response to the potential must include the full ion orbital
dynamics. Only the motion perpendicular to the magnetic field must be included.
The ion density perturbation, ñi, is given by

ñi = [Γ0(b)−1]
eΦ
Ti

n0, (3.22)

Γ0(b) = I0(b)e−b, b = −ρ2
i ∂

2/∂z2, (3.23)

where ρi =
√

Ti/mi/Ωi is the ion Larmor radius and I0 is the modified Bessel function.
Equating this density perturbation with that of the electrons by solving Eq. (3.21),
we find an equation for the potential as follows:

∇‖HΦ = − Ti

Te +Ti
E‖(0)+

T0

n0e

∫
dv‖∇‖h̃, (3.24)

(
∂

∂t
+v‖∇‖

)
h̃ =

e

Te
f0Ė‖, (3.25)

where

∇‖h̃ ≡ ∇‖f̃ +
ef0

Te

(
E‖ +ρ2

e∇‖
∂2Φ
∂z2

)
, (3.26)

H = Γ0
T0

Ti
−1+ρ2

e0
∂2

∂z2 , (3.27)

T0 =
TeTi

Te +Ti
, ρ2

e0 = T0ρ
2
e/Te, (3.28)

and ρe0 is the effective electron Larmor radius based on the hybrid temperature T0.
The operator H in Eq. (3.27) controls the response of the potential Φ to the parallel
inductive electric field. The spatial structure of the parallel electric field therefore
is controlled by this operator and the basic scales involved can be deduced from
its zeros. Taking ∂/∂z∼1/δ the zeros of H yield two distinct scales δ: the effective
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3.1 Fundamentals of collisionless reconnection 101

electron Larmor radius ρe0 based on the hybrid temperature T0; and the effective ion
Larmor radius ρs =

√
Te/mi. Earlier models of reconnection with a guide field had

suggested that the transverse scale of E‖ was the ion scale ρs, which is inconsistent
with recent simulations (Hesse et al., 2002, 2004; Swisdak et al., 2005) that suggest
that the parallel electric field is much more localized with a transverse scale given
by the electron Larmor radius.

The structure of E‖ can be deduced from Eqs. (3.24) and (3.25). For simplicity
we consider simple linear tearing perturbations for which ∇‖ = ikxzB′

x/By. At z = 0
the h̃ term in Eq. (3.25) balances the inductive drive term but for z >∼ ρe0, h̃ → 0
and ρ2

e0∂
2/∂z2 
 1. Since Γ0∼0 at scales below the ion Larmor radius, we find that

∇‖Φ∼eq − (Ti/(Ti +Te))Ȧy/c or

E‖ = E‖(0)
Te

Ti +Te
. (3.29)

For Ti � Te the parallel electric field has dropped to a small fraction of its value
at z = 0. E‖ remains approximately constant at this level until z >∼ ρs when Γ0 ∼1
and ∇‖φ∼eqE‖(0) so that E‖∼eq0. Earlier theories in which E‖ remained constant
out to ρs were valid only in the limit of zero ion temperature. In most space physics
applications Ti � Te so the tranverse scale of E‖ is effectively ρe0.

This analysis of the transverse structure of E‖ does not provide information about
the structure of E‖ along the magnetic field. For example, after reconnection has
approached quasi-steady conditions in a large system, what is the spatial extent of
the region where E‖ = 0? Is this region localized to the X-line or does it extend
large distances along the magnetic separatrices? The spatial extent of this region
impacts the number of electrons that can be accelerated by the parallel electric
field during magnetic reconnection and therefore the fraction of energy transferred
from the magnetic field into electrons, a broadly important issue in essentially all
reconnection applications.

The spatial extent of E‖ is controlled by the dynamics of the standing kinetic
Alfvén wave that is driven in the vicinity of the X-line. The deep density cavities
produced along two of the four separatrices emanating from the X-line shown in
Fig. 3.5 are regions where the reconnection electric field can maintain a finite E‖
that extends a significant distance from the X-line (Pritchett and Coroniti, 2004).
This is because the very low density of these cavities makes it more difficult for
electrons to bunch and short out the parallel electric field. The spatial extent of
E‖ is therefore linked to the spatial extent of the density cavities. The cavities are
formed as electrons approach the separatrix and are accelerated toward the X-line
by the parallel electric field. The high parallel mobility of these low-mass particles
allows the electric field to nearly evacuate the separatrix. The limit on the length
of these density cavities has been linked to the upper limit on the in-plane current
that results from the flow of electrons toward the X-line – that is, longer cavities
require more current for their formation (Drake et al., 2005). The in-plane current
produces a self-consistent field B̃y whose pressure must be balanced by depressions
in the local pressure and in-plane magnetic field. The result is an upper limit on the
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102 Basic theory of collisionless reconnection

length Lc of the cavities and a corresponding upper limit on the electron velocity v‖
that results from parallel acceleration in these cavities,

Lc = 5di(1+βx)Bx/By, (3.30)

v‖ = α
(1+α2/4c2)1/2

1+α2/2c2 , (3.31)

α ≡ vAex(1+βx)1/2, βx = n(Te +Ti)/B2
x. (3.32)

The energetic beams that are produced in these acceleration cavities are injected
into the X-line so that the total current driven at the X-line during reconnection
with a guide field is not just a result of local acceleration but is a more complex
nonlocal process. The high-velocity beams produced in these acceleration cavities
can also generate fluctuations over a broad range of frequencies (Cattell et al., 2005).
The impact of these fluctuations on the electron beams and reconnection remains
an ongoing research topic. Can, for example, the electron-ion drag induced by these
fluctuations compete with the nongyrotropic pressure in balancing the reconnection
electric field at the X-line during steady reconnection?

3.1.2 Scaling of kinetic reconnection to macroscale systems
A second important result of the kinetic modeling concerns the scaling of the

dissipation region with the system size. As discussed earlier, the reconnection rate
is strongly dependent on the aspect ratio of the dissipation region, δ/Δ as defined
in Eq. (3.1). In the Sweet–Parker model the dissipation region has a length that
scales with the macroscopic system length L (Section (2.1)) and the small aspect
ratio, δ/Δ leads to slow reconnection. In contrast, in Petschek’s model, slow shocks
bound the plasma flowing away from the X-line and are responsible for the outflow
acceleration. Since in this model most of the outflowing plasma does not need to pass
through the dissipation region, the length of the dissipation region Δ can be small
compared with the system size, and according to Eq. (3.1) this allows for an enormous
increase in the reconnection rate. Flux conservation through the slow shocks yields
vin∼vout tanθ∼vAxθ, where θ is the angle that the slow shocks make with the x axis.
Comparing this relation with Eq. (3.1), we find that the opening angle of the outflow
is directly related to the aspect ratio of the dissipation region.

While this open geometry does not appear in uniform-resistivity MHD models
(Biskamp, 1986), it does appear in all of the models that couple to dispersive waves in
the dissipation region (Shay et al., 1999; Rogers et al., 2001; Shay et al., 2004). Why
does wave dispersion allow the outflow region to open up as proposed by Petschek?
The opening process is shown in Fig. 3.7 in a time sequence of the out-of-plane current
from a numerical simulation of the transition from Sweet–Parker to Hall reconnec-
tion. The out-of-plane current is directly linked to the ion acceleration away from the
X-line (via j×B force) and provides a good visualization tool for the reconnection
geometry. In this simulation a system with steady Sweet–Parker reconnection was
taken as an initial condition. The resistivity was reduced so that the width of the
Sweet–Parker dissipation region fell below di. The transition was then triggered as
the outflow jet opened sharply and the corresponding rate of reconnection increased.
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Fig. 3.7. Transition from Sweet–Parker to Hall reconnection. From a double
current sheet simulation with system size 409.6c/ωpi × 204.8c/ωpi. Initially the
system has a resistivity, or inverse Lundquist number, of η = 0.015 (based on a
normalization using the length scale c/ωpi and the time scale 1/Ωci). At t = 1098,
the resistivity is lowered to 0.007. In (a)–(d) the total current along y as time
progresses and in (e) the reconnection electric field versus time. The time of each
figure in (a)–(d) is denoted by a dashed vertical line in (e). Figure provided by
Paul Cassak.

Again, a rigorous theory of the connection between the X-line and the Petschek
outflow solution has not been carried out but the essential physics of this transition
can be understood from arguments similar to those used to analyze the outflow from
the 1D waves. Instead of a simple 1D system depending only on z, we consider an
initial condition with slow variation in the x direction corresponding to an open
outflow geometry. Taking x to be the distance downstream of the X-line, Bz ∼x,
B̃0 ∼x and the width of the outflow region δ ∼x so that k ∼x−1. Through the
incompressibility condition ∇·v = 0 the x variation of the outflow velocity ṽx with
distance from the X-line controls the contraction or expansion of the outflow jet
in the z direction. If ṽx increases with x, then ∂ṽz/∂z < 0 and the outflow jet will
constrict, reducing the rate of reconnection. On the other hand, if ṽx decreases with
x, the outflow jet will expand into the Petschek open outflow configuration. Along
the symmetry line z = 0 the outflow velocity scales like vp sin(kvpt) so the variation
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104 Basic theory of collisionless reconnection

of the phase speed vp with distance x controls the structure of the outflow jet. In
the MHD case vp∼x so that

∂ṽz/∂z < 0 (3.33)

and the outflow jet contracts in the z direction as was seen in earlier MHD simula-
tions (Uzdensky and Kulsrud, 2000). In the case of whistler driven outflow vp is a
constant and ṽx decreases with x so that

∂ṽze/∂z > 0. (3.34)

In this case the outflow jet expands in the z direction as shown in Fig. 3.7 and leads
to the open outflow configuration of Petschek and fast reconnection.

Thus, in the case of the whistler the increase of the width of the outflow jet and
the increase of the magnetic field with distance downstream counterbalance so that
the whistler phase speed is nearly constant, allowing the outflow jet to remain open.
This behavior is, of course, linked to the dispersive property of the whistler.

The simulations performed showing this open outflow geometry via Hall physics are
quite small compared to the actual physical systems which exhibit reconnection such
as the solar corona and the Earth’s magnetosphere. It is therefore important to show
that the length of the dissipation region Δ is independent of system size L. Even a
weak dependence can cause an extreme slowdown of reconnection when extrapolated
to real systems. For the antiparallel case, a study using hybrid simulations of the
double tearing mode yielded reconnection inflow velocities of 0.1vA with no depen-
dence on system size (Shay et al., 1999). Recently, this result has been confirmed
with two-fluid simulations of a system with open boundary conditions (Huba and
Rudakov, 2004). The independence of the rate of reconnection from system size can
be visualized in Figs. 3.7c and d. In these figures, the angle θ that the open current
wedge makes with the x axis is established locally around the X-line and then propa-
gates outwards. By the time of Fig. 3.7d, this wedge of current has propagated about
1/2 of the total system size, with no appreciable change in the angle θ. The angle θ,
therefore, is set up locally at the X-line, independent of system size.

Reconnection rates on the order of 0.1vA yield time scales for global energy release
and magnetic reconfiguration that are consistent with those seen in solar flares
and magnetospheric substorms. In a typical X-class flare, reconnection drives a
global energy release, in the form of hard and soft X-ray emissions that last around
100 seconds. With rough estimates of the magnetic field and density in the solar
corona (B ≈ 100G and n ≈ 1010 cm−3), the reconnection inflow velocity is around
2 ·107 cm/s. A typical magnetic flux tube involved in a flare has an area of 1018 cm2

and a length of 109 cm, giving a time of 50 s to reconnect much of the magnetic
field in the flux tube, which is consistent with the duration of typical flares (Miller
et al., 1997). During a substorm, a significant fraction of magnetotail lobe flux is
reconnected causing a massive dipolarization of the magnetotail. Typical values of
lobe properties (B ≈ 15nT and n ≈ 0.05cm−3) yield a reconnection inflow speed of
150 km/s. In around 10 minutes, a typical time scale for the expansion phase of a
substorm, about 15 RE of magnetic flux in the lobes can reconnect.

The results that the reconnection rate is insensitive to system size and electron
dissipation are not without controversy. The above results have been questioned
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3.1 Fundamentals of collisionless reconnection 105

in studies of forced reconnection and double tearing mode reconnection, where it
has been found that either the reconnection rate or the time scales of reconnection
have a dependence on electron dissipation and system size (di/L and ρs/L) (Grasso
et al., 1999; Wang et al., 2001; Porcelli et al., 2002; Fitzpatrick, 2004; Bhattacharjee
et al., 2005). An example will be discussed in Section 3.4. Some of the disparities
may arise from differences in the definition of the reconnection time – whether or
not to include the initiation phase when the island width w∼di, ρs – or from the
difficulty in identifying weak dependencies, such as a 1/6-th power electron mass
dependence discussed in Section 3.4. It is also not clear to what extent simulations
with contrasting results cover identical regimes of the evolution. More studies with
w � di, ρs will be necessary to settle this question.

3.1.3 Transitions from slow to fast reconnection
The structure and rate of reconnection in the collisional MHD model differ

drastically from that of the Hall reconnection model. An important question is how
systems with finite resistivity undergoing reconnection transition between the two
states. Do the rates of reconnection change continuously between the two regimes
or is there a sharp transition? Is the transition related to the observed onset of
reconnection, e.g., in the onset of solar flares or of sawtooth events in laboratory
tokamak experiments? In the environment of the Earth’s magnetosphere this issue
is probably of less importance because of the absence of resistivity.

For a given plasma resistivity, rather general arguments suggest that there are
two stable solutions (fast and slow) to the reconnection problem for a given value
of the plasma resistivity (Cassak et al., 2005). The Sweet–Parker solution, governing
slow reconnection, is valid provided the half-width of the current layer δ exceeds the
relevant kinetic scale lengths,

δ

L
=

√
η

μ0vAL
>

di

L
,
ρs

L
, (3.35)

where the magnetic field is to be evaluated immediately upstream of the current
layer. For the antiparallel reconnection case, this reduces to

ηsf

μ0
∼ vAd2

i

L
, (3.36)

so Sweet–Parker reconnection is valid for η > ηsf . For example, in the solar corona,
n ∼ 1016 m−3, L ∼ 107 m and B ∼ 10−2 T (Miller et al., 1997), so ηsf ∼10−6 ohm/m
in MKS units, corresponding to a temperature of 102 eV∼106 K.

The converse condition, that resistivity be sufficiently small to not impact the
whistler or kinetic Alfvén dynamics that drive kinetic reconnection, yields a distinct
condition. As in the Sweet–Parker analysis, we balance resistive diffusion with convec-
tion at the electron inertial scale de,

ηfs

μ0d2
e
∼ vin,e

de
∼0.1

vAe

de
,
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106 Basic theory of collisionless reconnection

or
ηfs

μ0
∼0.1vAdi, (3.37)

with vA evaluated upstream of the electron current layer. The fast reconnection
solution is valid if η < ηfs. The value of ηfs is independent of system size and is enor-
mous for most physical systems. Equation (3.37) suggests that once fast reconnection
onsets, resistive effects are unlikely to influence the dynamics.

In typical systems of interest the ratio of ηsf to ηfs is very small,

ηsf

ηfs
∼10

di

L

 1, (3.38)

because di 
 L for most systems of physical interest. For example, the ratio in
Eq. (3.38) is 10−6 for the data from the solar corona presented earlier. Thus, tran-
sitions from fast to slow reconnection occur at much higher resistivities than the
reverse, so for a large range of resistivity ηsf < η < ηfs there are two stable solutions
to the reconnection problem.

These theoretical predictions were tested with numerical simulations using a two-
fluid code (Cassak et al., 2005). The electron to ion mass ratio was me/mi = 1/25.
For a 409.6di ×204.8di computational domain, the critical resistivities are η′

sf ∼0.01
and η′

fs ∼ 0.03, where η′ = η/μ0vAdi is the normalized resistivity. Larger systems
would produce greater separations of ηsf and ηfs. Shown in Fig. 3.8 are plots of the
out-of-plane plasma current from two quasi-steady reconnection simulations of the
two-fluid equations. The upper (lower) simulation has a normalized reconnection rate
E′ = E/(vAB) = 0.055 (0.014), corresponding to the fast (slow) reconnection solution.
At the time shown both of these simulations have identical parameters: η′ = 0.015.
The separate solutions were obtained through differing initial conditions: the slow
solution being initialized with resistive initial conditions (adding the Hall terms after

x/di

x/di

z/
d i

z/
d i
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–20
–30
–40
–50
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–100 –50 0 10050
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–0.6
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0.2

Fig. 3.8. Current density jy for fast (upper panel) and slow (lower panel) recon-
nection solutions for a resistivity η′ = 0.015. The parameters of the two runs are
identical and each solution remains stable until all of the available flux has recon-
nected.
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3.1 Fundamentals of collisionless reconnection 107

a transient initial period); and the fast solution being initialized as collisionless (no
resistivity but subsequently including it). The range of resistivity over which there
are dual reconnection solutions is apparent in Fig. 3.9, where the reconnection rates
and current layer widths are shown versus plasma resistivity. The solid (open) circles
correspond to the resistive (collisionless) initial conditions. The range of dual solu-
tions matches well the theoretical estimates. The important result is that the slow
solution disappears when the width of the Sweet–Parker current layer falls below di

and at this point the rate of reconnection abruptly increases. Since the Sweet–Parker
reconnection rate decreases with the system size L but the fast rate is independent of
L, the jump in the rate of reconnection will be enormous for large-scale systems such
as the solar corona. From the condition for the disappearance of the Sweet–Parker
solution in Eq. (3.35), a reduction of the local resistivity or an increase in the local
Alfvén velocity can trigger the transition. The upstream Alfvén velocity typically
increases with time as large magnetic fields convect into the X-line during recon-
nection so this model yields a clear mechanism for the transition from slow to fast
reconnection. Possible applications of such an onset model are the solar corona and
disruptions in tokamak fusion experiments. Because of the absence of collisional resis-
tivity in the Earth’s magnetosphere, this model cannot explain onset in this system.

b)
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E
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Fig. 3.9. (a) Normalized reconnection rate, E′ = E/BvA and (b) current sheet
width, δ, as a function of normalized resistivity, η′ = η/μ0vAdi, for runs analogous
to those in Fig. 3.8.
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108 Basic theory of collisionless reconnection

3.2 Diffusion region physics
M. Hesse

As discussed in Sections 2.1 and 3.1, in standard resistive MHD models the structure
of the reconnection site is characterized by a resistive diffusion region, where dissipa-
tion is governed by the Ohmic term ηj2, embedded in a wide, essentially dissipation-
free, region governed by ideal MHD. In the collisonless regime the structure and
the dissipation mechanism become more complicated, as illustrated schematically in
Fig. 3.1. This is most easily demonstrated by the generalized Ohm’s law, derived
from the equation of motion of the electron fluid (3.3)

E = −ve ×B− 1
ne

∇·Pe − me

e

(
∂ve

∂t
+ve ·∇ve

)
, (3.39)

where now the ion–electron collision term is neglected. Again, the pressure tensor is
defined in the rest frame of the electrons. Joule dissipation is generally defined by
j ·E′, where E′ = E+v×B is the electric field in the plasma rest frame. Since the first
term on the right-hand side (RHS) of (3.39) can also be expressed approximately by
−v×B+ j×B/ne (assuming one singly charged ion species, for simplicity), and the
Hall term, j×B, does not contribute to the dissipation, it is obvious that the dissipa-
tion mechanism must rely on either thermal, i.e., pressure-based (second term on the
RHS of Eq. 3.39), or inertial effects (last term on the RHS of Eq. 3.39). Of these, the
pressure-based dissipation might rely on current-aligned pressure gradients, or, in
regions of sufficiently small magnetic field, on nongyrotropies of the distribution func-
tion (Vasyliūnas, 1975; Lyons and Pridmore-Brown, 1990; Hesse and Winske, 1993).

We should note that equations equivalent to (3.39) hold self-consistently for all
plasma species, so that, in principle, dissipation could also be derived from the ion
pressure and inertia terms. However, these terms are approximately balanced by the
Lorentz force j×B, so that the net dissipation is given by very small differences
between large ion terms, which are in fact related to electron effects. Therefore it is
much better to discuss the dissipation directly on the basis of the electron terms.

Owing to its very small size and to a lack of sufficiently fast plasma measure-
ments, the properties of the electron diffusion region have not been clearly identified
in spacecraft observations. Thus the physics of the dissipation region remained a
mystery until very recently when highly sophisticated computer simulations of colli-
sionless plasmas permitted the study of electron effects. In this section we present
an overview of our present understanding of how particles become demagnetized in
the diffusion region of the reconnection process. The emphasis of the discussion will
be on electrons; however, many results apply equally to ions, after a suitable change
of charge and mass. The section focuses primarily on the thermal- or bulk-inertia-
based dissipation processes that have been validated in a large number of numerical
models.

The structure of this section follows the historical evolution of theoretical research
of the diffusion region. Following an introduction of the base model for most simula-
tions in Section 3.2.1, we discuss antiparallel magnetic reconnection in Section 3.2.2.
Section 3.2.3 presents an analysis of our present knowledge of guide-field magnetic
reconnection, which is arguably the more generic of the two cases. Both sections
include summaries of translationally invariant and fully three-dimensional models.
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3.2 Diffusion region physics 109

3.2.1 The model and initial configuration
Most of the results presented in this overview are based on the applica-

tion of particle-in-cell codes. The system studied by many researchers is similar to
that selected in the GEM reconnection challenge (Birn et al., 2001). This system is
described in the following.

In most of our analysis we employ dimensionless quantities. For this purpose, we
normalize densities by a typical density n0 in the current sheet, and the magnetic
field by the asymptotic value of the reconnection magnetic field B0. Ions are assumed
to be protons (mass mp) throughout, and length scales are normalized by the ion
inertial length c/ωpi, where the ion plasma frequency ωpi =

√
e2n0/ε0mp is evaluated

for the reference density. Velocities are measured in units of the ion Alfvén velocity
vA = B0/

√
μ0mpn0, based on the reference magnitudes of magnetic field and density.

The electric field is measured in units of E0 = vAB0, the pressure in units of p0 =
B2

0/μ0, and the current density is normalized to j0 = ωpiB0/cμ0.
The magnetic field represents a modified Harris sheet (Harris, 1962) of the

following form:

Bx = tanh(2z)+a0π/Lz cos(2πx/Lx) sin(πz/Lz), (3.40)

Bz = −a02π/Lz sin(2πx/Lx) cos(πz/Lz). (3.41)

The perturbation amplitude a0 = 0.1 leads to an initial value of the normal magnetic
field of about 3% of B0. The system size matches that of the GEM reconnection chal-
lenge by Lx = 25.6 and Lz = 12.8. In addition, we here employ a constant magnetic
field component directed along the main current flow,

By = By0, (3.42)

where By0 is the initial value of the guide field magnitude. The choice of ion–electron
mass ratio varies for different studies; it ranges from mi/me = 25 in the original
GEM challenge problem to mi/me = 1836 in some recent implicit particle-in-cell
calculations (Ricci et al., 2002).

The system evolution is modeled by particle-in-cell codes similar to the one used
by Hesse et al. (1999). Particle orbits are calculated in the electromagnetic fields,
and the electromagnetic fields are integrated on a two- or three-dimensional grid.

3.2.2 Antiparallel reconnection
Previous analyses of time-dependent magnetic reconnection (Hewett et al.,

1988; Horiuchi and Sato, 1994, 1997; Pritchett, 1994; Hesse et al., 1995; Tanaka,
1995b,a; Cai and Lee, 1997; Hesse and Winske, 1998; Kuznetsova et al., 1998; Shay
and Drake, 1998; Hesse et al., 1999; Shay et al., 1999; Hoshino et al., 2001a,b) have
begun to shed light on the electron behavior in different parameter regimes, primarily
in the regions of low magnetic field. It was found that, for antiparallel magnetic
reconnection, deviations from gyrotropy in the electron distribution function can give
rise to reconnection electric fields via nongyrotropic electron pressure terms
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110 Basic theory of collisionless reconnection

Ey = − 1
nee

(
∂Pxy

∂x
+

∂Pyz

∂z

)
. (3.43)

This process can be understood as an inertial effect of thermal electrons which bounce
in the field reversal region. It is therefore equivalent to a thermal inertia effect, i.e., a
mechanism by which particle thermal motion rather than bulk fluid inertia balances
the reconnection electric field. This bounce motion was first described by Horiuchi
and Sato (1994). Hesse and Winske (1998) performed a particle-in-cell simulation of
collisionless reconnection in the GEM geometry. Their analysis showed indeed the
presence of electron pressure nongyrotropies near the X-point. The magnitude of
these tensor components proved to be sufficient to provide the reconnection electric
field via the expression (3.39).

These studies were taken a step further by Hesse et al. (1999), who investigated
the effect of different electron masses on the collisionless dissipation process in the
reconnection region. The target of the investigation was to study whether different
physics in the diffusion region might lead to different dissipation, thereby influencing
and potentially changing the larger scale behavior of the system under investigation.
In order to test the dependence of the reconnection process on the assumed electron
mass, Hesse et al. (1999) performed a set of simulations with varying ion/electron
mass ratio, ranging from mi/me = 9 to mi/me = 100. Figure 3.10 shows the magnetic
field evolution for the run with mi/me = 25 with the current density in gray scale. The
figure shows that magnetic reconnection, initiated by the initial perturbation, causes
large changes of the magnetic field and current density distribution. Figure 3.10
demonstrates two features: The current sheet thickness in the reconnection region is,
at all times, somewhat larger than the electron skin depth, and the current density
exhibits a saddle-point at the location of the reconnection region. The latter feature
becomes most prominent at later times. Similar features were also found in hybrid
and particle simulations of a similar system.

The relevant off-diagonal components of the pressure tensor are shown in Fig. 3.11,
for a PIC simulation using an ion–electron mass ratio of mi/me = 256 (M. Hesse,
unpublished). This figure demonstrates that electron pressure nongyrotropies are
found even for large mass ratios. Similar results were also found by Pritchett (2001b).

It is apparent from the discussion above that the processes responsible for these
electron pressures rely on the inertia of individual electrons, which contributes to
all of the fluid terms on the RHS of Eq. (3.39). Heavier electrons should spend
more time in the region of low magnetic field, leading to more acceleration and thus
stronger reconnection electric fields. Intuitively, one might expect that the electron
mass should have a significant impact on the evolution of the system. Figure 3.12
proves that this expectation is essentially incorrect. Figure 3.12 shows, for each
of the runs described above, the time evolution of the reconnected magnetic flux,
defined by

Frec =
∫

X−O
Bzdx, (3.44)

where the integral is taken between the major X- and O-points, if there are more
than one of each. Each graph consists of an initial slow growth, typically for the
first seven to eight ion cyclotron times, followed by a rapid time evolution. After
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Fig. 3.10. Evolution of the magnetic field and current density (shown in gray scale)
in the x, z plane for a simulation with mi/me = 25, in the absence of a magnetic
guide field. After Hesse et al. (1999).
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112 Basic theory of collisionless reconnection
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Fig. 3.11. Electron pressure tensor components at the central reconnection site
(indicated by the cross-shaped symbol). The tensor components are taken from a
calculation with mi/me = 256. (M. Hesse, unpublished). See also color plate.
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Fig. 3.12. Evolution of the reconnected magnetic flux for different ion–electron
mass ratios. After Hesse et al. (1999).

that time, the evolution slows down considerably. This is due to a depletion of the
magnetic flux in the source regions adjacent to the current sheet which reduces the
energy available to power the reconnection process, and a build-up of plasma and
magnetic pressure in the magnetic island, which reduces the “pulling” of plasma
away from the reconnection region.
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3.2 Diffusion region physics 113

A comparison between the different graphs reveals a surprising result: With the
exception of a small difference in the duration of the slow evolution, all graphs look
essentially alike. This result showed that the electron mass appears to be of little
importance to the large-scale evolution, as has been suggested on the basis of hybrid
simulations with electron inertia (Shay and Drake, 1998; Shay et al., 1999). In fact, a
comparison of other parameters such as velocities and current densities shows striking
similarities also (Hesse et al., 1999).

Figure 3.12 shows that the large-scale evolution is apparently controlled by the
inertia of the ions and might therefore occur on similar time scales independent of the
local electron physics. Hesse et al. (1999) used this result to derive an approximate
scaling equation for the electric field in the diffusion region. They began with the
realization that the electron orbit excursion in a field reversal, and thus the scale of
the electron diffusion region, is given by Eq. (3.12) (Biskamp and Schindler, 1971)

δe =
[
2vte

Ω′
ex

]1/2

=
[
2meTe

e2B′2
x

]1/4

, (3.45)

where Ω′
ex = eB′

x/me and B′
x denotes the derivative of Bx with respect to the z

direction normal to the current sheet. The corresponding bounce orbit is sketched in
Fig. 3.13. This result, combined with the corresponding scale length in the x direction
can be used for an estimate of the electric field from (3.43):

Ey = − 1
nee

(
∂Pxye

∂x
+

∂Pyze

∂z

)
≈ 1

nee

(
Pxye

δe
+

Pyze

δe

)
. (3.46)

Here the values of the pressure tensors are to be taken at the edges of the current
sheet, where electrons begin to become magnetized. In these regions, the pressure
tensor components can be approximated by (Kuznetsova et al., 1998)

Pxye ≈ pe

2Ωez

∂vex

∂x
(3.47)

and

Pyze ≈ − pe

2Ωex

∂vez

∂z
. (3.48)

Here the cyclotron frequencies Ωe = eB/me are evaluated in the z and x components
of the magnetic field, at the diffusion region boundary in the x and z directions,

λ

Fig. 3.13. Schematic of the electron meandering orbits in a magnetic field reversal.
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114 Basic theory of collisionless reconnection

respectively. The two velocity derivates are related via an approximate, incompress-
ible, equation of continuity. By relating, e.g., Bx = B′

xδe, a small amount of algebra
leads to

Ey ≈ 1
e

∂vex

∂x

√
2meTe (3.49)

for the electric field in the electron diffusion region. This electric field is essentially
constant throughout the electron demagnetization region (Hesse et al., 1999).

Since our simulations indicate that the reconnection electric field appears to be
independent of the electron mass, (3.49) indicates that the gradient of the electron
flow velocity needs to scale like the inverse square root of the electron mass, assuming
no substantial changes in the electron temperature. Similarly, by combining (3.49)
and (3.45) one finds that the peak electron outflow velocity scales with the inverse
fourth root of the electron mass. For an Alfvénic ion outflow velocity, the peak
electron outflow will therefore be of the order of ve∼6.5vA.

The importance of this bounce motion-based dissipation mechanism was verified
in a number of further investigations. Comprising one element of the GEM challenge
studies, Pritchett (2001b) found electron pressure tensor components of the necessary
magnitudes in translationally invariant particle-in-cell models. Similar results were
also found by Hesse et al. (2001a) and Kuznetsova et al. (2001). Pressure tensor-
based dissipation was also seen in implicit particle-in-cell simulation with realistic
ion–electron mass ratios (Ricci et al., 2002).

The next step consisted of extending the modeled domain to three spatial dimen-
sions. Pritchett (2001a) performed a set of three-dimensional simulations of open and
closed magnetic field configurations. Although Pritchett did not investigate electron
anisotropies explicitly, he noted that the structure of the reconnection diffusion region
is essentially identical to the one found in translationally invariant models. Tanaka
(2001) found similar results: reconnection regions that start as two-dimensional struc-
tures remain so even in a fully three-dimensional simulation. In addition, Hesse
et al. (2001b) found that reconnection, when forming out of noise, tends to self-
organize into quasi-two-dimensional channels. The prominent dissipation mecha-
nism appeared to be electron nongyrotropy, unchanged from translationally invariant
models. Finally, Zeiler et al. (2002) found in a high mass ratio simulation that lower-
hybrid drift modes do not destroy the quasi-two-dimensional nature of the electron
current layer.

Thus, the diffusion region in antiparallel reconnection appears fairly well under-
stood. Nevertheless, there are other modes and instabilities that may change the
reconnecting system substantially, without necessarily changing the bounce motion-
based dissipation process. These modes and their effects are discussed in Section 3.5.

3.2.3 Guide field reconnection
In principle it is to be expected that the presence of a guide magnetic field,

aligned with the current direction, may destroy the bounce motion of the electrons
(and ions) in the inner dissipation region. Electron orbits become strongly modified
once the thermal electron Larmor radius rL = vte/Ωe is smaller than or equal to the
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3.2 Diffusion region physics 115

bounce width in the reconnecting magnetic field component, given by (3.45). After
a small amount of algebra, one finds that this condition is equivalent to

By ≥ B′
xδe. (3.50)

Equation (3.50) states that electron bounce orbits in the field reversal region become
affected by the presence of a finite guide magnetic field once the magnitude of the
latter is as big as that of the reconnecting magnetic field at the location of the
farthest excursion of an electron bounce motion.

The question of how kinetic dissipation operates if the guide field exceeds the
condition (3.50) remains a subject of much debate today. Similar to the antipar-
allel reconnection case, a set of theory and modeling analyses have been performed,
however, without a final conclusion. While some early calculations (e.g, Hesse et al.,
1999, 2002; Pritchett, 2001b) indicate that thermal inertial effects may again be the
main contributor to the dissipation process, there are many indications that processes
that involve variations in the current direction may play a role, too (e.g., Pritchett
and Coroniti, 2004; Swisdak et al., 2003). In this section, we provide some detail
on the present understanding of the mechanism supporting electron thermal dissipa-
tion. However, we will also discuss the present understanding of alternate dissipation
processes.

In a situation where By exceeds the threshold (3.50), electron nongyrotropies
need to be based on perturbations of the dominant Larmor motion about the guide
magnetic field. In the wake of earlier results pertaining to electron thermal dissi-
pation (Hesse et al., 1999, 2002; Pritchett, 2001b), Hesse et al. (2004) generated a
high-resolution numerical calculation of the GEM challenge system for mi/me = 256,
and a guide magnetic field of 80% of the reconnection magnetic field component.
An overview of the evolution of this system, shown in Fig. 3.14, demonstrates the
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Fig. 3.14. Evolution of the magnetic field and current density for a guide field of
80% and an ion–electron mass ratio of mi/me = 256. After Hesse et al. (2004). See
also color plate.
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116 Basic theory of collisionless reconnection

similarity of the reconnecting system to that found in calculations without guide field
components. The initial, X-type perturbation leads to a reconfiguration. The most
prominent difference to antiparallel merging is the inclination of the reconnecting
current sheet with respect to the x axis. The figure also indicates the presence of a
very thin current sheet in the central reconnection region, which is likely associated
with electron demagnetization.

The panels of Fig. 3.15 show a blow-up of the inner reconnection region, taken at
t = 16. The top panel shows magnetic field lines and the total current density in the
x, z plane, as well as electron flow velocities. The center panel shows that strong elec-
tron flows are associated with strong gradients of the magnetic guide field component
By. The plot demonstrates the presence of a quadrupole-like magnetic perturba-
tion, albeit strongly distorted and on top of the underlying guide field magnitude of

B, vp and jy, t = 16.06
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Fig. 3.15. Detailed analysis of the reconnection region in the guide field case.
Shown are: Magnetic field and electron flow velocity in the x, z plane with the y
component of the current density (top panel); out-of-plane magnetic field By and
electron flow velocity vey (center and bottom panels, respectively). After Hesse
et al. (2004). See also color plate.
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3.2 Diffusion region physics 117

By0 = 0.8. Finally, the lower panel of Fig. 3.15 displays the electron flow speed in the
y direction. While flow velocity magnitudes are similar to those found in simulations
of antiparallel merging, the layer is strongly concentrated on a scale substantially
smaller than the ion inertial length. We point out that the relative drift between ions
and electrons in the present calculation is, for the temperatures encountered in the
simulation, close to but not larger than the marginally Buneman-unstable threshold.

The relevant pressure tensor components, Pxye and Pyze, are shown in the top two
panels of Fig. 3.16. The top panels indicate that, despite the magnetizing effect of
the guide magnetic field, strong gradients exist particularly in Pyze, which provide
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Fig. 3.16. Electron pressure tensor components, derived directly from the particle
information (top panels), or from the approximation (3.52) (bottom panels). While
the xy components match very well, the yz components show a noticeable difference
near z = 0 and x = 13.15. After Hesse et al. (2004). See also color plate.
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118 Basic theory of collisionless reconnection

a sufficiently large reconnection electric field by virtue of (3.46), with an adjacent
additional contribution from the electron inertia term (Hesse et al., 2004).

The bottom two panels display the results of the approximation (Hesse et al., 2002)

Pxye ≈ −Pzze

Ωe

∂vey

∂z
+(Pyye −Pzze)

Bx

By
, (3.51)

Pyze ≈ Pxxe

Ωe

∂vey

∂x
+(Pyye −Pxxe)

Bz

By
. (3.52)

The panels of Fig. 3.16 show a reasonable agreement between the direct simulation
output and the approximation based on (3.51) and (3.52). However, a closer inspec-
tion of Fig. 3.16 reveals an important difference: While the particle data-derived
value of Pyze features a clear gradient in the z direction at the reconnection location,
at approximately x = 13.15, this is not the case in the approximation. This deficiency
leads to a substantially reduced value of the reconnection electric field, if calculated
based on (3.52). While Pxye appears to be remarkably well represented by its (3.51),
we thus find that (3.52) does not represent the entire, dominant components of the
pressure tensor component Pyze.

Investigating this discrepancy further, Hesse et al. (2004) found that heat flux
tensor effects had to be added into (3.52), with the result

Pyze ≈ Pxxe

Ωe

∂vey

∂x
+(Pyye −Pxxe)

Bz

By
+

1
Ωe

(
∂Qxxye

∂x
+

∂Qxyze

∂z

)
, (3.53)

where Qxxy and Qxyz are components of the heat flux tensor defined below in (3.55).
The second heat flux-related term in (3.53) is dominant in the immediate vicinity

of the reconnection region. Therefore, (3.53) can be simplified

Pyze ≈ Pxxe

Ωe

∂vey

∂x
+(Pyye −Pxxe)

Bz

By
+

1
Ωe

∂Qxyze

∂z
. (3.54)

The result of this approximation, depicted in Fig. 3.17, shows an excellent match
with the direct determination of Pyze from the particle data. Thus, an appropriate
approximation of the pressure nongyrotropy in the immediate vicinity of the neutral
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Fig. 3.17. Approximation of the pressure tensor component Pyze that includes heat
flux contributions. This approximation shows an excellent match with Fig. 3.16.
After Hesse et al. (2004). See also color plate.
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3.2 Diffusion region physics 119

point of the magnetic field in the x, z plane cannot be found without inclusion of a
heat flux tensor component.

Derivation of a scaling law of the reconnection process therefore requires an
analytic expression of an evolution equation for the entire heat flux tensor. Hesse
et al. (2004) developed this expression for collisionless systems. The heat flux tensor
is defined in the electron center-of-mass system as

Q = ms

∫
d3u(u−v)(u−v)(u−v)fs. (3.55)

Here, fs and ms denote the distribution function and mass of plasma species s, u
the phase space velocity, and v the bulk flow speed. An evolution equation for Q
is obtained by multiplying the Vlasov equation by uuu and integrating over phase
space. The result needs to be transformed into the center-of-mass frame of species
s in order to derive an evolution equation for Q. After a considerable amount of
algebra, one finds for the components of the heat flux tensor (index e omitted for
simplicity)

∂
∂tQijk

+
∑
l

∂
∂xl

(Γijkl +Pklvivj +Pilvjvk +Pjlvivk +Qijkvl)

+
∑
l

Qlij
∂

∂xl
vk +

∑
l

Qljk
∂

∂xl
vi +

∑
l

Qlik
∂

∂xl
vj

+ es

ms

∑
r>s

⎡
⎣ [QijsBr −QijrBs]εrsk

+[QiksBr −QikrBs]εrsj

+[QjksBr −QjkrBs]εrsi

⎤
⎦ = 0.

(3.56)

Here es denotes the charge of species s, and εijk is the usual, totally antisymmetric
tensor. Equation (3.56) relates the time evolution of Qijk to lower order moments
such as pressure and velocities, as well as to the fourth order tensor Γijkl. The last
term in (3.56) represents the effects of particle cyclotron motion on the heat flux
tensor. Clearly, (3.56) is invariant under change of order of indices, leading to a
totally symmetric heat flux tensor.

Further progress toward a simple scaling relation requires simplifying assumptions.
Neglecting time dependence and the 4-tensor, an expression for Qxyz can be obtained
from the x, y,x component of (3.56)∑

l

∂
∂xl

(2Pxlvxvy +Pylvxvx +Qxyxvl)

+
∑
l

Qlxy
∂

∂xl
vx +

∑
l

Qlyx
∂

∂xl
vx +

∑
l

Qlxx
∂

∂xl
vy

− e
me

(2QxyyBz −2QxyzBy +QxxxBz −QxxzBx) = 0.

(3.57)

Neglecting magnetic field components other than By, the convection term∑
l

∂
∂xl

(Qxyxvl), and assuming Qrst¡Prsvt (a reasonable assumption for a nearly

gyrotropic plasma) near the reconnection region, reduces (3.57) to the simple
expression

Qxyz ≈ − 1
Ωy

[
∂

∂x

(
Pxxvxvy +0.5Pxyv2

x

)
+

∂

∂z

(
Pxzvxvy +0.5Pyzv

2
x

)]
. (3.58)
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120 Basic theory of collisionless reconnection

The leading order terms in (3.58) are

Qxyz ≈ − 1
Ωy

∂

∂x
(Pxxvxvy) ≈ −Pxxvy

Ωy

∂vx

∂x
(3.59)

for the relevant component of the electron heat flux tensor. This approximation was
found to be adequate in the electron current sheet.

The reconnection region now has two transitions, the first, where the convection
electric field becomes equal to the inertial electric field, at a scale L1, and a second,
L2, where the inertial electric field is matched to the pressure tensor-derived electric
field. L1 is readily determined by the expansion (e.g., Vasyliūnas, 1975)

|Einertial|∼
me

e
vez

∂vey

∂z
∼ 1

L2
1

B0vez

μ0

me

e2ne

= B0vez
c2

ω2
pe

1
L2

1
= |Econvection| c2

ω2
pe

1
L2

1
. (3.60)

The pressure electric field is derived from the first term of (3.45). With the addition
of (3.61), the pressure tensor y, z component (3.57) becomes

Pyze ≈ Pxxe

Ωey

∂vey

∂x
+(Pyye −Pxxe)

Bz

By
− 1

Ωey

∂

∂z

(
Pxxevey

Ωey

∂vex

∂x

)
, (3.61)

where the last term dominates the reconnection electric field near the zero of
the magnetic field in the x, z plane. Ignoring lower order terms, and assuming a
divergence-free electron velocity, the pressure electric field can be scaled

|Epressure|∼
1

nee

1
Ωey

∂2

∂z2

(
Pxxyvey

Ωey

∂vex

∂x

)

∼ 1
nee

1
Ωey

∂2

∂z2

(
Pxxevey

Ωey

∂vez

∂z

)

∼|Einertial|
1
L2

2

Pxxe

Ω2
ey

1
neme

= |Einertial|
r2
L

L2
2
. (3.62)

Equation (3.62) states that the transition from inertia-based to pressure-based dissi-
pation occurs at a scale length equal to the electron Larmor radius in the guide
magnetic field component.

Thus we find that there may be two scale lengths associated with collisionless
magnetic reconnection in the presence of moderate guide fields. The first, well-known
scale is reached when the inertial electric field equates the magnitude of the convec-
tion electric field. This scale length is the collisionless skin depth. For values of the
electron β = μ0pe⊥/B2 of less than unity, the second transition occurs at a scale
length of an electron Larmor radius in the guide magnetic field. The very small
scales associated with the electron Larmor radius permit the heat flux to take on an
unprecedented role in the electron dissipation process.

Physically, electron scattering can occur if the Larmor radius in the guide field
is comparable to the gradient scale length in the reconnecting electric field. The
situation is sketched in Fig. 3.18. Electron scattering occurs due to the interac-
tion of field-aligned and gyromotions with the ambient reconnecting electric field
components.
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3.3 Onset of magnetic reconnection 121

Fig. 3.18. Schematic of the interaction of the electron Larmor motion about the
guide field with the reconnection magnetic field component.

It should be noted that the electron-based electric field expression

Ey ≈ 1
ene

1
Ωey

∂

∂z

(
Pxxevey

Ωey

∂vex

∂x

)
∼ 1

e

∂vex

∂x
Te

1
Ω2

ey

∂2vey

∂z2 (3.63)

may equally well be expressed through the ions, which exhibit similar dynamics,
albeit on the larger scale of an ion Larmor radius. The result is the same as (3.63),
but with an index change, and a sign change.

While this analysis presents a consistent solution to the reconnection dissipation
problem in the presence of a guide field, the question remains whether the addi-
tional freedom of a fully three-dimensional evolution might enable other dissipative
processes such as discussed in Section 3.5. While Silin and Büchner (2003b) find
that lower-hybrid drift, kink, and sausage modes appear suppressed in the presence
of a guide field, and Scholer et al. (2003) saw the formation of essentially two-
dimensional reconnection channels, a candidate process is based on the formation
of electrostatic, solitary structures associated with the nonlinear evolution of the
Buneman instability (Drake et al., 2003). Drake et al. argue that correlations of
electron density fluctuations that are associated with these electron holes provide
a mechanism for anomalous resistivity. The modeled electrostatic solitons are well
matched by observations of the magnetopause current layer (Cattell et al., 2002a),
which reveal the presence of electrostatic solitary waves that propagate rapidly along
the current direction. Although the overall morphology and reconnection rates of
Drake et al.’s (2003) three-dimensional simulations are very similar to translationally
invariant calculations, and Pritchett and Coroniti (2004) advocate inertial processes,
the Buneman mode-based dissipation process deserves further studies to clarify its
viability in guide-field magnetic reconnection.

3.3 Onset of magnetic reconnection
P. L. Pritchett

As discussed in Chapter 1 and in Section 3.1, many scenarios of the occurrence of
reconnection involve a sudden transition from a quiescent, slowly evolving state to a
rapid energy release. A critical problem hence is not only to explain fast reconnec-
tion rates, responsible for the energy release, but also to identify the mechanism for
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122 Basic theory of collisionless reconnection

this transition, that is, the mechanism for the onset of reconnection, or the onset of
fast reconnection. This holds particularly for the onset of reconnection in the terres-
trial magnetotail, which appears to be closely related to the onset of magnetospheric
substorms (Section 1.2). To lowest order, the magnetotail current sheet configuration
resembles the classical Harris (1962) neutral sheet. It was proposed very early in
the space era (Coppi et al., 1966) that collisionless reconnection could occur in the
Earth’s magnetotail as a result of an electron tearing mode driven by the electron
Landau interaction. It was hypothesized that this tearing instability could serve as
the triggering mechanism that powers the sudden onset of magnetic reconnection
associated with the expansion phase of substorms in the terrestrial magnetotail.

This simple one-dimensional picture of the magnetotail must fail, however, inas-
much as the field lines must connect to the intrinsic dipolar magnetic field of the
planet. For the Earth there is a small northward component of the magnetic field in
the region of the current sheet whose magnitude is typically a few nanoteslas, which is
about 10% of the asymptotic (lobe) field strength (e.g., Fairfield and Ness, 1970). As
we shall discuss, the presence of this normal magnetic field component has profound
implications for the possibility of magnetic reconnection in a planetary magnetotail;
the investigation of these consequences is generally referred to as the onset problem
for magnetic reconnection. On the most fundamental level, the resulting cyclotron
motion of electrons in even a very weak normal field removes the electron Landau
resonance (Galeev and Zelenyi, 1976), thus ruling out the possibility of an electron
tearing mode.

More general consequences of a two-dimensional (2D) isotropic equilibrium config-
uration were deduced by Schindler (1972) and Birn et al. (1975). Let z = a(x) > 0 be
the location of the magnetopause (assumed to be a field line). There are then two
possible situations depending on the sign of da/dx (assuming that x increases in the
tailward direction): (1) da/dx > 0 (i.e., the tail diverges as one moves away from the
planet) is a necessary (but not sufficient) condition for instability of the tail. (2) If
da/dx < 0 (i.e., the tail converges), then the tail is stable. With B0z(x, z = 0) > 0,
then da/dx > 0 requires that B0z change sign somewhere. If B0z has the same sign
everywhere, then the tail equilibrium is stable. For the Earth, it is known that B0z

does indeed change sign as one moves into the lobes (e.g., Fairfield, 1979). Thus the
flaring of the Earth’s lobe field could allow for the possibility of some kind of tearing
instability.

The outline of this section is as follows. In Section 3.3.1 we discuss the conse-
quences of the finite normal magnetic field for what is known as the pure ion tearing
instability. In Section 3.3.2 we review the stabilizing effects of electron dynamics
in the presence of the normal field on the tearing instability. In Section 3.3.3 we
consider the implications of the third dimension (out-of-plane coordinate) on the
tearing instability. In Section 3.3.4 we describe some recent results on externally
driven reconnection. Section 3.3.5 contains a summary and outlook.

3.3.1 The pure ion tearing instability
The tearing hypothesis for the magnetotail was resurrected by Schindler

(1974) who suggested that ion Landau damping could drive a pure ion tearing insta-
bility in which the electron dynamics was presumed to be unimportant due to the
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3.3 Onset of magnetic reconnection 123

small value of the electron temperature (Te/Ti 
 1). He noted that the characteristic
scaling of the ion tearing growth rate in the absence of the normal field, valid for
ρi0/λ 
 1, would be of the form (Laval et al., 1966)

γ/Ωi0∼(ρi0/λ)5/2, (3.64)

where λ is the half-thickness of the current sheet and ρi0 (Ωi0) is the ion gyro-
radius (cyclotron frequency) in the asymptotic field B0. During quiet times, the
ratio ρi0/λ∼ 0.03. Thus the scaling (3.64) would give γ/Ωi0 ∼ 2 × 10−4 or 1/γ ∼
1h, which is too long to be relevant to substorm onset times. It was expected,
however, that as the current sheet thinned during the growth phase, the growth time
for the tearing instability would decrease substantially. This is particularly signif-
icant, since it was expected that the condition γ/Ωi0 > Bn/B0 would need to be
satisfied in order that the free-streaming particle motion which drives the tearing
instability would not be destroyed by the gyromotion in the normal field Bn. The
scaling (3.64) suggests that for ρi0/λ ≈ 1, this condition easily would be satisfied for
Bn/B0∼0.1.

Subsequent investigations, however, showed that the basic reconnection growth
rate increases much less rapidly as ρi0/λ → 1 than suggested by the scaling (3.64).
Pritchett et al. (1991) and Brittnacher et al. (1995) considered the case of pure ion
tearing (alternatively, electron–ion tearing with a mass ratio mi/me = 1) for the case
of very thin current sheets with ρi0/λ ≈ 1. They obtained a maximum underlying
growth rate

γmax/Ωi0 ≈ 0.50(ρi0/λ)5/2/(1+2ρ2
i0/λ2). (3.65)

The term 1 + 2ρ2
i0/λ2 in the denominator arises from the inclusion of the particle

drift in the cross-tail direction in the particle orbits. For ρi0/λ∼1, this term clearly
differs significantly from unity, and the maximum growth rate for ρi0/λ = 1 is only
γmax/Ωi0 ≈ 0.17, roughly a factor of 6 smaller than expected from (3.64). Thus even
for a sheet as thin as the ion gyroradius (∼400km), the maximum tearing growth rate
is only marginally larger than the typical value of Bn/B0∼0.1. Particle-in-cell (PIC)
simulations have confirmed that the stabilization of the pure ion tearing mode in a
thin current sheet does indeed occur when Bn/B0∼γ/Ωi0 (Pritchett et al., 1991).

The tearing growth rate as a function of mi/me has been calculated by Daughton
(1999b) for the case of the Harris neutral sheet. The maximum growth rate decreases
slowly with increasing mi/me; for ρi0/λ = 1 and Ti/Te = 1, it falls to γ/Ωi0 = 0.07
at mi/me = 1836. It thus seems that it would be very difficult to excite the sponta-
neous ion tearing instability unless Bn were reduced considerably below its normal
value.

3.3.2 Electron stabilization of ion tearing
Traditionally, the analysis of electron stabilization for the ion tearing insta-

bility has been carried out using an idealized 2D plasma sheet configuration in the
noon–midnight meridional (x, z) plane; no variation in the y direction is considered.
In such a configuration and assuming a tearing perturbation A1y = A1(x, z)eγt and
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124 Basic theory of collisionless reconnection

an electrostatic potential Φ1 = Φ1(x, z)eγt, the completely general energy principle
is (Laval and Pellat, 1964; Schindler, 1966)

δW =
∫

d3x
[
|∇A1|2 −μ0

dJ0

dA0
|A1|2 +

∑
i,e

4πT

∫
d3v

|f̃1|2
f0

]
. (3.66)

Here, f0 is the equilibrium distribution function, J0 is the equilibrium current density,
and f̃1 = f1 −A1∂f0/∂A0 is the nonadiabatic part of the perturbed distribution f1.
The first term in (3.66) represents the stabilizing effect of field-line tension, the
second term is the destabilizing free energy associated with the adiabatic response
to the equilibrium currents, and the last term represents the compressibility effect
arising from the perturbed current density due to f̃1. Various assumptions have been
made regarding the nature of the electron dynamics.

Adiabatic electrons
Lembège and Pellat (1982) used a drift-kinetic analysis (which should be

valid for time and space scales long compared to the electron cyclotron period
and electron Larmor radius) and assumed adiabatic motion for the electrons. They
demonstrated that the tearing mode electromagnetic field produces a strong compres-
sion of the electron density which is independent of Te. This perturbation also forces
a large electrostatic potential in order to maintain charge neutrality. In the energy
principle (3.66), the energy associated with the electron compression exceeds the free
energy available from the reversed magnetic field configuration provided that the
condition

kxλ > (4/π)Bn/B0 (3.67)

is satisfied. In order to violate (3.67) and thus to permit instability, the wavelength of
the mode would have to exceed∼60λ. On such a large scale the conditions necessary
for the WKB approximation to be valid would be violated, and so Lembège and
Pellat concluded that the ion tearing mode was stable.

Effects of turbulence
Several attempts to circumvent this result were made by appealing to the

effects of turbulence. Coroniti (1980) argued that, since the plasma sheet contains
modest to high levels of electromagnetic turbulence, it is possible that pitch angle
scattering by background wave turbulence could invalidate the assumption of adia-
batic electron motion. His analysis found an electron tearing mode growth rate
proportional to a bounce-averaged pitch angle diffusion coefficient.

Adopting Coroniti’s formalism, Büchner and Zelenyi (1987) replaced wave pitch-
angle scattering by the stochastic changes in the first adiabatic invariant (μ) which
can occur when the plasma sheet thins and the adiabaticity parameter

κe = (Bn/B0)(λ/ρe0)1/2 (3.68)

becomes less than or of the order of 1. Here ρe0 is the electron Larmor radius based
on B0. They suggested that the resulting diffusion in μ should permit tearing growth
rates comparable to Schindler’s estimate (3.64) for the ion tearing mode. With κe∼1,
they argued that the electron dynamics would be unimportant.
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3.3 Onset of magnetic reconnection 125

Canonical momentum conservation
Pellat et al. (1991) pointed out that the analysis by Coroniti (1980) contained

an error in that it relied on an approximate form of a Green’s function solution. The
exact solution has the property that the perturbed number of particles on a flux
tube is conserved. They showed that this result followed directly from the conser-
vation of the canonical momentum Py in a 2D system, independent of any assump-
tion of electron adiabaticity. Py conservation alone was sufficient to constrain the
cyclotron excursion in the direction transverse to the magnetic surface. They demon-
strated further that neither wave turbulent pitch-angle scattering nor nonadiabatic
stochastic first-invariant diffusion would alter the number of particles on a flux tube.
They recovered the Lembège–Pellat stability criterion (3.67) under the very mild
assumption that kxρen < 1, where ρen is the electron Larmor radius in the Bn field.
Assuming the proton/electron value for the mass ratio, Ti/Te ≈ 7, ρi0/λ∼1, and a
wavenumber kxλ ≈ 0.5, one finds that this condition is satisfied for a normal field of
only Bn/B0∼5×10−3.

2D PIC simulations provided direct confirmation of this electron stabilization
effect (Pritchett, 1994). These simulations used a value Bn/B0 = 0.02 so that the
ion tearing mode was still unstable. With ρi0/λ held fixed at 1, simulations were
performed with mi/me varying from 1 to 64 and Ti/Te from 1 to 8. As kxρen

approached unity, the tearing mode growth decreased dramatically. Qualitatively
similar results were obtained in simulations by Dreher et al. (1996) for a mass ratio
mi/me = 10 and temperature ratios up to Ti/Te = 20.

Brittnacher et al. (1994) reexamined use of the energy principle as applied to
ion tearing. They treated the case of intrinsic pitch-angle diffusion using a Vlasov
description and recovered the Lembège–Pellat result (3.67). For the case of external
pitch-angle diffusion they employed a drift-kinetic description and found that the
energy principle contains an additional term. This new term is stabilizing, however,
and thus at best the marginal stability criterion is still the same.

An alternative Vlasov treatment of the onset problem is given in Section 4.3.2. The
approach discussed there treats a larger class of distribution functions, avoids the
use of inequalities, and introduces the small electron gyroscale regime by considering
the formal limit me → 0. This more refined approach confirms the strong electron
stabilization in the appropriate limit.

Fluid treatment
Further insight into the physics of the electron stabilization effect was

provided by Quest et al. (1996). They employed the standard energy principle
formalism given in (3.66). In evaluating the perturbed particle density on a flux tube,
they used fluid equations assuming that the electrons were frozen-in to the magnetic
field. They argued that if the effective gyroradius of the electrons is small compared
to both the half-width λ and 1/kx and if spatial diffusion and electron resonance
effects are negligible, then it is justifiable to neglect both the inertial term and the
off-diagonal pressure tensor elements in the electron momentum equation. There
was no requirement that the electron orbits be adiabatic, merely that they were
confined to the proximity of a field line, as is required by conservation of Py (Pellat
et al., 1991). This fluid analysis also recovered the Lembège–Pellat result (3.67), and
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126 Basic theory of collisionless reconnection

it further demonstrated that the compressional stabilization is independent of the
presence of a (uniform) guide field component B0y in the initial configuration. The
electron stabilization is thus a macroscopic fluid effect, independent of the specifics
of the electron orbits.

Exact particle orbits
In none of the energy principle analyses described so far was the linear

stability problem solved directly. Instead, techniques such as the Schwartz inequality
were employed to obtain marginal stability limits; the exact particle orbits were not
used. Brittnacher et al. (1998) devised a new approach in which the energy equation
was solved using a finite element procedure where the quantities that depend on the
details of the particle orbits were determined by standard PIC simulation methods.
Since the exact orbits were considered, it was possible to take into account the effects
of pitch-angle scattering (both intrinsic and induced by an external wave source)
and spatial diffusion. They found that none of these effects could destabilize the
ion mode. For kxρen < 1, the mode was stabilized by the electron compressibility
effects. For weaker values of Bn, finite Larmor radius effects (Galeev and Zelenyi,
1976) were sufficient to stabilize the mode. Thus, the spontaneous ion mode should
not occur in the tail current sheet. They found that the electron tearing mode could
be reestablished by pitch-angle diffusion, but only for values of Bn/B0 ≈ 10−4 too
small to apply to the near-Earth tail.

Transient electrons
All the previous stability analyses have treated the electron population as

basically a single fluid. Sitnov et al. (1998) reexamined the tearing stability analysis
including the effect of a transient electron population. They stressed that in isotropic
self-consistent current sheet models the number density of transient electrons is not
a free parameter; its local value depends on basic sheet parameters such as Bn/B0

and on the distance z from the neutral plane. Using an energy principle analysis,
they found a new version of the stability condition (3.67):

kxλ > (4/π)(Ti/3Te)2Bn/B0. (3.69)

Since (Ti/3Te)2 ∼ 5 in the magnetotail, it is now possible to reach the marginal
stability limit for modes that are consistent with the WKB approximation, leaving
open the possibility that the tearing mode could be unstable. In a subsequent explicit
nonlocal Vlasov linear stability analysis, Sitnov et al. (2002) found instability with
Te/Ti 
 1 when the current sheet was sufficiently long so that the electrons leaving
it could be treated as transient particles. The specific dependence of the marginal
wavenumber on Ti/Te turned out to be less pronounced than given by (3.69). This
new result suggests that while the tearing mode is unlikely to be excited in the tran-
sition region between the dipole and tail-like magnetic fields, it may very likely be
unstable at distances further down the tail where the length of the tail current sheet
is much larger than its thickness.
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3.3 Onset of magnetic reconnection 127

3.3.3 Effects of the third dimension
When the restriction to 2D systems is removed and variations in the cross-

tail (y) direction are permitted, the canonical momentum Py is no longer conserved.
It then follows that the particle density along a flux tube need no longer be constant.
With the inclusion of the y dependence, a much larger class of instabilities becomes
possible, and many of these have been proposed as mechanisms for disrupting the
tail current sheet. This subject is treated in detail in Section 3.5 of this work. Here
we consider only the rather limited number of investigations that have looked at
cross-tail instabilities in the presence of a finite normal field component.

One member of the class of kinetic cross-field instabilities has the character of a
kink mode in the y, z plane. This mode was first identified in 2D PIC simulations
by Zhu et al. (1992), and they found that its growth rate in a thin current sheet could
be faster than that of the collisionless tearing instability in the Harris sheet. Pritchett
and Coroniti (1996) showed from a two-fluid analysis with finite electron inertia that
the long-wavelength kink mode (kyλ < 1) is linearly unstable. Since the growth rate
is proportional to the magnitude of the relative electron–ion cross-field drift, they
referred to the mode as a drift-kink mode. The behavior of this mode in the presence
of a normal field component was investigated in 3D PIC simulations by Pritchett
et al. (1996). They considered the case of a ρi0/λ = 1 current sheet with a constant
value of Bn/B0 = 0.06 at z = 0 and used mi/me = 16. In a pure 2D geometry this
configuration would be stable to tearing due to the combined effects of electron
stabilization and ion gyromotion. In the early stage of the simulation (up to Ωi0t∼60),
there was clear growth of the drift-kink modes with kyλ∼0.8–1.2, although their
growth rates were reduced compared to the case of Bn = 0. There was no indication for
any growth of shorter-wavelength lower-hybrid drift modes (Section 3.5.2). Beginning
at Ωi0t∼50, pure tearing modes began to grow and there was an increase in the
B2

z field energy, indicating that reconnection was occurring. This initial stage of
reconnection led to a further reduction in the local value of Bn. This field finally
reached zero in one location by Ωi0t∼100, and this event signaled the onset of a
highly nonlinear stage which was characterized by the formation of a conventional
island configuration. It thus appeared that the kink mode could trigger the onset of
reconnection.

It turns out, however, that, unlike the case of the tearing mode, the drift-kink
growth rate is extremely sensitive to the value of mi/me. Daughton (1999b) showed
that while the growth rate of the kink mode exceeds that of the tearing mode by
about a factor of two for mi/me = 16, for the realistic proton mass ratio of 1836
the kink growth rate is smaller than the tearing rate by about a factor of 25. Thus
low mass ratio simulations probably greatly overestimate the effect of the drift-kink
mode. Daughton (1999b) also noted, however, that another type of kink mode could
be strongly excited (γ/Ωi0 ∼0.1) at realistic mass ratios. This second type of kink
mode is driven by the relative drift between two ion species and has been referred to
as the ion–ion kink mode (Karimabadi et al., 2003a,b). The maximum growth rate
occurs for kyλ∼0.7, the real frequency is ωr ≈ kyvd (where vd is the effective single
fluid drift velocity at z = 0), and the growth rate is always larger than that for the
tearing mode. 3D simulations with mi/me = 100 (Karimabadi et al., 2003b) showed
that the growth of the ion–ion kink mode is not sensitive to the presence of a (weak)
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128 Basic theory of collisionless reconnection

normal field component, unlike the case of the electron–ion kink mode. Thus the
ion–ion kink mode is still a possible candidate to reduce or eliminate the effects of
electron stabilization.

3.3.4 Externally driven reconnection
Despite its long history, it is by no means clear that the spontaneous tearing

instability is the relevant process for explaining substorm onset in the magnetotail.
Considerable attention has also been paid to the possibility that substorms could
be triggered by external perturbations (Caan et al., 1975; Rostoker et al., 1983;
Lyons, 1995, 1996). It appears that a substantial fraction (∼60%) of substorm onsets
can be associated with northward turnings of the IMF (Hsu and McPherron, 2003).
Prior to onset, a southward IMF imposes an enhanced convection electric field on
the magnetotail. A number of MHD and Hall MHD studies (Birn and Hesse, 1996;
Rastätter et al., 1999; Birn et al., 1999) have shown that reconnection can be initiated
in regions of finite resistivity by such an externally imposed convection electric field.
A few studies have considered this possibility in regard to collisionless reconnection.

In a series of 2D and 3D PIC simulations, Horiuchi and collaborators (Horiuchi
and Sato, 1994, 1997, 1999; Horiuchi et al., 2001; Pei et al., 2001) considered the
effect of applying a very strong driving electric field with Ey/vAB0 ∼0.5–1.0 to a
Harris neutral sheet. For the case of open downstream boundary conditions, they
found that it was possible to achieve a steady-state reconnection configuration. These
studies were not relevant to the onset problem, however. In 2D and 3D studies of
the effect of imposing a more realistic (Ey/vAB0 ∼0.1) convection electric field on
a near-Earth plasma sheet equilibrium configuration, Pritchett and Coroniti (1995)
and Pritchett et al. (1997) found that this process resulted in the formation of a thin
current sheet accompanied by the development of a deep minimum in the equatorial
Bz field. There was no apparent difficulty in actually driving Bz negative, which then
resulted in the tailward expulsion of a plasmoid. Possible limitations of this study
were that mi/me was only 16 and that the reconnection occurred fairly close to the
inner (near-Earth) boundary of the simulation.

Here we present some results from a recent 3D PIC simulation (Pritchett, 2005)
in which a spatially localized convection electric field is applied to a current sheet
equilibrium with Bn/B0 = 0.04 at the center of the sheet. The system size is Lx ×
Ly ×Lz = 25.6 c/ωpi × 12.8 c/ωpi × 12.8 c/ωpi, and the driving field is localized near
the center of the system in x with a half-width of 3.2 c/ωpi. The field is applied at the
z boundaries uniformly in y, and its peak magnitude is Ey/vAB0 = 0.2. The mass
ratio is mi/me = 100, c/vA = 20, ωpe/Ωe = 2.0, the temperature ratio is Ti/Te = 5,
and there is a uniform background density nb = 0.2n0. The initial half-thickness of
the sheet is moderately large, with λ = 1.6 c/ωpi. The boundary conditions in the x

direction are open for particles and magnetic flux. The peak number of particles is
412 million per species, and the maximum particle density per cell is 50 per species.
The initial field line configuration is shown in Fig. 3.19a.

It has become traditional to describe the evolution of the reconnection process
by the reconnection flux ψ (e.g., Birn et al., 2001, and references therein), which is
defined as the difference between the maximum and minimum values of the vector
potential Ay(x, z) on the axis z = 0. In the presence of the normal field component,
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Fig. 3.19. Field line configuration at time (a) Ωi0t = 0 and (b) Ωi0t = 36.
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Fig. 3.20. Time histories of (a) the reconnected flux ψ and (b) the current sheet
half-thickness w.

the equilibrium function A0y(x, z = 0) itself has a finite ψ value, and so it is
necessary to measure ψ in terms of the perturbed δAy(x, z = 0) only. Figure 3.20a
shows the development of ψ so defined. The initial noise level in the simulation
corresponds to ψ/(B0c/ωpi)∼1×10−3. There is a relatively long development period
of Ωi0t∼20 during which ψ grows slowly as the perturbation fields propagate in
from the boundary. As shown in Fig. 3.20b, the width of the current layer, defined
as the value wJ where |Bx(0,wJ)| = 0.76B0, decreases during this period from its
initial value of 1.6 c/ωpi to a minimum of ∼ 0.4 c/ωpi. Subsequently, the value of
ψ increases much more rapidly, with the peak slope at Ωi0t ∼ 35 corresponding
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130 Basic theory of collisionless reconnection

to a reconnection field Ey/vAB0 ≈ 0.44. This is more than twice as large as the
driving value E0y/vAB0 = 0.2, and it is somewhat larger than the value of ≈ 0.26
which was obtained from the GEM Reconnection Challenge simulations (Birn
et al., 2001) where a λ = 0.5 c/ωpi current sheet was perturbed by an internal flux
perturbation.

The thinning of the overall current layer is the result of the formation of an
embedded thin electron current layer. Figure 3.21 shows a series of profiles in z at
x = 0 and averaged over all values of y at various times for (a) the magnetic field
Bx and (b) the total current density Jy. The overall thinning is apparent from the
increasing magnitude of the slope of Bx through Ωi0t = 24 and from the current
density profiles. During this same time interval, the ion profiles ni, vyi, and Jyi

(not shown) show relatively little change; there is only a modest steepening of the
density profile. In contrast, the electron current density shows a dramatic thinning
and increase in magnitude. At Ωi0t = 24, the peak electron current density is about
three times as large as that of the ions. This represents an increase by a factor of 15
in the relative electron to ion current value. The half-width at half-maximum of the
electron current density at Ωi0t = 32 is only 0.14c/ωpi, which is slightly above the
local value of the electron inertial length of ≈ 0.12c/ωpi.

Figure 3.22a shows the development of the normal field profile Bz(x,0) averaged
over all values of y. As noted before, the initial value is Bz(x,0)/B0 = 0.04. During
the developmental phase this value is enhanced for negative values of x and reduced
for positive values. Bz(x,0) is first driven to zero at Ωi0t ≈ 21 at x ≈ 2 c/ωpi. At this
time, there is only a weak y dependence in the equatorial Bz field (not shown); the
growth rate for mode 1 in y is γ/Ωi0∼0.09, which is consistent with the linear theory
prediction for the ion–ion kink (Karimabadi et al., 2003a). Overall, however, the
cross-field modes do not seem to play a major role in the dynamics that force Bz to
0. Shortly after Bz is reversed, there is a significant increase in the reconnection flux
ψ (Fig. 3.20a) and hence in the rate of reconnection. At this stage the reconnection
proceeds much as for the case of a neutral sheet, and the late nonlinear stage (see
Fig. 3.19b for the field lines at Ωi0t = 36) shows little resemblance to the initial
normal field configuration.
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Fig. 3.21. Profiles in z at x = 0 and averaged over all values of y at the
indicated times Ωi0t for (a) the magnetic field Bx and (b) the total current
density Jy.
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Fig. 3.22. Profiles in x at z = 0 and averaged over all values of y at the indicated
times Ωi0t for the magnetic field Bz.

3.3.5 Summary and outlook
Investigations of collisionless magnetic reconnection in the terrestrial magne-

totail must, at least for the near-Earth portion of the tail, confront the underlying 2D
nature of the tail current sheet. Studies of magnetic reconnection in 1D current sheets
do not suffice. This has led to the long history of the onset problem for reconnection
in the tail. There are two basic issues associated with the presence of the normal
field Bn. The first is that the ion gyromotion in Bn can disrupt the free-streaming
motion that provides the collisionless damping to drive the tearing instability. Only
if Bn/B0 is smaller than its typical value of 0.1 and/or the current sheet is unusually
thin (ρi0/λ ≈ 1) can one expect the spontaneous ion tearing instability to survive.
Even this limited parameter space is probably excluded by the second effect, namely
the electron stabilization. The various kinetic treatments based on the 2D analysis
are now in general agreement that the ion tearing mode cannot exist in the transition
region between dipole and tail fields where significant disruptions associated with
substorm onset occur. The situation further down the tail is less clear.

The linear 2D tearing analysis, however, cannot provide the full story regarding
reconnection in the magnetotail. A key feature of magnetospheric reconnection is
that it occurs in bounded spatial regions which are, however, topologically open.
Particles can ballistically enter the reconnection region, transit through it, and
escape, perhaps never to return. The reconnected magnetic flux is also free to flow
away from the reconnection region. The initial studies by Sitnov et al. (2002) suggest
that these effects can alter significantly the previous results. The reconnection
community has barely begun to address the consequences of a 3D open topology for
reconnection.

A further complication of reconnection in real systems is its bimodal character. Not
only does the kinetic physics near the X-line, which breaks the frozen-in condition,
lead to large-scale consequences in terms of particle energization and magnetic flux
reconfiguration, but the large-scale system reacts back on the local reconnection
region in terms of the boundary conditions that are exerted on this region. Thus there
is compelling statistical evidence that northward turnings of the IMF are frequently
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132 Basic theory of collisionless reconnection

involved in triggering of substorms. Again, our quantitative understanding of the
relevant physical processes is still at an elementary level.

Thus, while at one level the onset problem has been answered – the spontaneous ion
tearing instability is unlikely to be operative in the magnetotail – at the more basic
level we still do not understand the causal sequences that result in the large-scale
reconnection processes associated with a substorm.

3.4 Hall MHD reconnection
A. Bhattacharjee and J. C. Dorelli

As discussed in Section 3.1, the classical models of Sweet–Parker and Petschek leave
us with a quandary for low-resistivity plasmas (corresponding to high Lundquist
numbers S; Section 2.1). On the one hand, the Sweet–Parker time scale is realizable
dynamically in the high-S regime in high-resolution resistive MHD simulations, but
it is too slow to explain dynamic processes such as solar flares or magnetospheric
substorms. On the other hand, the Petschek model, which yields a faster time scale,
appears not to be realizable in the high-S regime.

In addition, steady-state resistive models can provide but one time scale – that of
steady reconnection (proportional to S1/2 for Sweet–Parker and lnS for Petschek).
However, steady reconnection is not a generic condition. It is a strong theoretical
assumption and one that is frequently violated in many dynamical situations of great
physical interest. In particular, there are phenomena involving magnetic reconnection
in laboratory as well as space plasmas where the dynamics exhibits an impulsiveness,
that is, a sudden increase in the time derivative of the growth rate. This is often
referred to as the trigger problem – the magnetic field configuration evolves slowly
for a long period of time, only to undergo a sudden dynamical change over a much
shorter period of time. As the classical steady-state reconnection models of Sweet–
Parker and Petschek do not include time dependency, they cannot account for the
time evolution of the reconnection rate.

In this section, we present recent Hall MHD reconnection models that address the
regime of very high Lundquist numbers S. We consider thin current sheets whose
width Δ falls into the collisionless range between the electron and ion skin depths,
that is, de ≡ c/ωpe < Δ ≤ c/ωpi ≡ di (or de < Δ ≤ ρs in the presence of a guide
or toroidal field, where ρs =

√
βdi). In this regime dissipation is governed by the

generalized Ohm’s law (3.4)

E+v×B = ηj+
me

ne2

dj
dt

+
j×B
ne

− ∇pe

ne
. (3.70)

Here the electron pressure pe is assumed to be a scalar, and only a portion of the
electron inertia term, dj/dt = ∂j/∂t+v ·∇j, is retained. In contrast to the discussion
of Section 3.2, we retain the Ohmic term (first term on the RHS), providing dissipa-
tion in competition with the electron inertial term (second term on the RHS). The
last two terms on the right-hand side of Eq. (3.70), collectively referred to as the Hall
MHD terms, do not contribute to the dissipation in this model. But, as discussed in
Section 3.1, they govern whistler and kinetic Alfvén wave dynamics and may thus
be responsible not only for fast reconnection but also for a plausible explanation of
the trigger problem.
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3.4 Hall MHD reconnection 133

In the following sections we describe some recent analytical and numerical models
that focus on the issue of scaling of Hall MHD reconnection in impulsive as well
as quasi-steady regimes. It is difficult to determine scaling results by numerical
computations alone simply because the range of parameters (such as the electron-
to-ion mass ratio and the system size) that can be explored by nonlinear Hall MHD
codes is still quite limited. It is therefore useful to consider reduced systems which
are amenable to analytic treatment, can be tested and benchmarked numerically,
and can be extrapolated to yield scaling results in realistic plasma regimes. In
Section 3.4.1, we present results from a reduced collisionless model in which elec-
tron inertia provides the dominant mechanism for breaking field lines, and strongly
time-dependent current singularities drive impulsive reconnection. In Section 3.4.2,
we present results from a semi-collisional 2D Hall MHD model in which resistivity
provides the mechanism for breaking field lines.

3.4.1 Impulsive Hall MHD reconnection
Here we present some analytical and numerical results from the so-called two-

field model, which is deduced from the primitive Hall MHD equations by means of
analytical approximations. The basic assumptions are a large guide field and low beta,
so that the compressional wave propagates faster than any other wave in the system
and the fluid motion is essentially incompressible. It is assumed that the resistivity is
zero, and electron inertia breaks field lines. This model, which is simpler than the full
two-fluid or Hall MHD equations, is amenable to analytical treatment in the linear
as well as nonlinear regimes, and captures certain essential features of impulsive Hall
MHD reconnection dynamics in collisionless plasmas. By a combination of analytical
and numerical studies, we are able to obtain scaling results on the reconnection rate
that can be compared with results obtained from other computational studies.

The dynamics is two-dimensional, and depends only on the coordinates x and z,
with y as an ignorable coordinate. The magnetic field is represented as

B(x, z, t) = B0ŷ+∇Ψ(x, z, t)× ŷ, (3.71)

where B0 is a constant and large guide field, and Ψ(x, z, t) is a flux function. The
velocity is represented as

v(x, z, t) = ŷ×∇Φ(x, z, t), (3.72)

where Φ(x, z, t) is a stream function. The two-field equations are given by (Grasso
et al., 1999)

∂F/∂t+[Φ, F ] = ρ2
s [U,Ψ], (3.73)

∂U/∂t+[Φ,U ] = [J,Ψ], (3.74)

where J = −∇2
⊥Ψ, U = ∇2

⊥Φ, F = Ψ + d2
eJ , and the Poisson bracket is defined

by [Φ, F ] ≡ ŷ ·∇Φ×∇F . In Eqs. (3.73) and (3.74), all quantities have been made
dimensionless. In particular, distance is normalized by the characteristic equilibrium
scale Lz in the z direction, and time is normalized by the Alfvén time scale τA =√

μ0n0miLz/By0 based on the magnetic field component By0. The two dimensionless
parameters are the (normalized) electron skin depth de = c/(ωpeLz), where ωpe is
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134 Basic theory of collisionless reconnection

the electron plasma frequency, and the (normalized) ion sound gyro radius ρs =√
Te/mi/(ΩiLz) = ρi

√
Te/Ti where Te and Ti are the electron and ion temperatures,

Ωi is the ion cyclotron frequency, and ρi is the ion Larmor radius (also normalized
by Lz). The term proportional to ρ2

s on the right of Eq. (3.73) is due to finite
electron compressibility, and can be traced to the electron pressure gradient term in
the generalized Ohm’s law (3.70). The linearized versions of Eqs. (3.73) and (3.74)
support kinetic Alfvén waves.

For the purpose of the present study, periodic boundary conditions are imposed
in both x and z directions, with the domain of a single periodic cell given by
−Lx ≤ x ≤ Lx, and −Lz ≤ z ≤ Lz. We choose Lz = π and Lx = π/ε, where ε =
Lz/Lx is the slab aspect ratio. Due to the symmetry properties of Eqs. (3.73)
and (3.74), we can consider Ψ(Φ) to be an even (odd) function in both x and z

for all time, if it is so initially. In the following discussion we consider the linear
and nonlinear evolution of the equilibrium given by J0 = Ψ0 = cos z, U0 = Φ0 =
0. It is doubly periodic, and is unstable with respect to double tearing modes,
which grow around resonant surfaces, located at z = 0 and ±π in the periodic cell.
Despite its apparent simplicity, the two-field model is computationally challenging,
because it involves tracking near-singular and dynamic current sheets that grow near-
explosively in the nonlinear regime. We use the Magnetic Reconnection Code (MRC)
which is a massively parallel code in an Adaptive Mesh Refinement (AMR) framework
(Bhattacharjee et al., 2005).

To determine the linear instability of equilibria that depend only on z, we write
Ψ = ψ0 +ψk(z, t) cos(kx), where k = mε, m is an integer and ε is the aspect ratio
defined earlier. The linear dispersion relation and growth rate of collisionless tearing
modes in the two-field model have been obtained analytically using boundary-layer
and asymptotic matching techniques (Porcelli, 1991). The analytic theory is mostly
based on the large-Δ′ approximation, i.e., Δ′de � min[1, (de/ρs)1/3], where Δ′ =
2σ tan(σπ/2), σ =

√
1−k2.2 The parameter Δ′ is positive for 0 < k ≤ 1, which is

necessary for instability. The large Δ′ regime generally requires small k because Δ′ is
proportional to k−2 for small k, that is, small mε. When 0.5 ≤ ε < 1, only the m = 1
mode is linearly unstable. For ε < 0.5, a larger range of m-numbers are destabilized,
up to a maximum mode number equal to integer (ε−1). Bhattacharjee et al. (2005)
have presented fairly comprehensive results on the linear instability of the system
for arbitrary values of the parameters de, ρs, and k. These results generally confirm
the predictions of analytic linear theory in the regime of large Δ′ which generally
requires small k. In the case de � ρs, when Δ′ is large, the analytic theory predicts
the linear growth rate γL ≈ kde. For the case de 
 ρs, the analytic theory predicts
γL ≈ k(deρ

2
s )

1/3 in the large-Δ′ regime. We note that the linear growth rates depend
quite strongly on the aspect ratio (proportional to k), the parameter ρs, and even
the electron inertia, which enters the parameter de, and provides the mechanism for
breaking field lines. An important question is how these dependencies are altered in
the nonlinear regime.

2 The parameter Δ′ governs the matching of a linear tearing mode between the external, ideal-MHD,
solution and the internal solution in the dissipative layer (see, e.g., Biskamp, 2000). Δ′ > 0 is a
necessary and sufficient condition for linear instability.
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3.4 Hall MHD reconnection 135

It can be shown, under certain strong assumptions (Ottaviani and Porcelli, 1993;
Grasso et al., 1999; Bhattacharjee et al., 2005), that when de �= 0, ρs �= 0 the island
half-width w, defined by the relation ψ(0,0, t) = 1 − w2(t)/2, obeys the nonlinear
equation

d2ŵ

dt̃2
≈ 1

4
(ŵ+ cJ ŵ4), (3.75)

where t̃ = γLt is the time variable normalized by the linear growth rate γL, ŵ ≡ w/δL

where δL (equal to d
1/3
e ρ

2/3
s in the large-Δ′ regime) is the linear boundary-layer

width, and cJ is a positive quantity, slowly varying in time, of the order of unity. We
note that ψ(0,0, t = 0) = 1 and w(0) = 0, and we have included a factor of 1/4 in the
first term of Eq. (3.75) because w grows exponentially with half of the linear growth
rate γL. Equation (3.75) predicts that the island width grows near-explosively in
the nonlinear regime. By the time w becomes of the order of the system size, most
of the magnetic flux is reconnected, and the near-explosive growth of the island is
quenched. (The quenching process is not described by Eq. (3.75), which breaks down
when w becomes of the order of the system size.)

It is worth noting that the tendency for the formation of a current singularity
and island blow-up is already inherent in this problem due to the presence of finite
electron inertia even when ρs = 0. It is in this sense that we describe the current
singularity as a driver of impulsive reconnection. The analytical model also predicts
that the linear as well as the nonlinear reconnection rate does depend on the system
size (that is, k). In what follows, we will test the predictions of this analytical model
with numerical simulations using the MRC.

Figure 3.23 is a typical image plot of the current density J(x, z, t) = −∇2
⊥ψ in the

nonlinear regime. This picture illustrates the usefulness of AMR grids in resolving
intense and thin current sheets produced during collisionless reconnection dynamics.
The magnified images in the smaller inserts show clearly the detailed spatial structure

(a) (b)

Fig. 3.23. (a) Current density in the nonlinear phase. The smaller inserts are
magnified images of the near-singular current sheet at the X-point, showing how
AMR enables resolution of the fine structure. (b) We overlay the plot with a visual-
ization of the adaptive grids, as they provide higher resolution near the small-scale
structures as needed. See also color plate.
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136 Basic theory of collisionless reconnection
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Fig. 3.24. (a) Plot of J−1(∂2J/∂x2) at the origin, which is inverse square of the thin
current sheet width. Very high resolution is needed to follow the rapidly shrinking
current width. (b) Plot of the time evolution of the island width.

in the vicinity of an X-point, which is a signature of collisionless fast reconnection,
and the AMR grids used to resolve them.

Figure 3.24a shows a plot of J−1(∂2J/∂x2) at the origin, which is essentially the
reciprocal of the square of the current sheet width. After a period of exponential
growth, this quantity tends to increase very rapidly, consistent with the analytical
prediction given by Bhattacharjee et al. (2005). We show this plot for three different
levels of AMR. It is clear by inspection that the higher the level of AMR, the longer
is the blow-up phase, before the process saturates. Figure 3.24b shows a plot of the
time evolution of the island width.

In Fig. 3.25, we compare the simulation result from the MRC with the island
equation (3.75) for the same parameters as Fig. 3.24. (Note that the ordinate is
plotted on a logarithmic scale.) As mentioned above, the constant cJ is not fixed by
our analysis. We find that cJ ≈ 0.1 provides a reasonably good fit for the simulation
results.

Shay et al. (1999, 2004) have presented extensive numerical results in support
of their claim that the reconnection eventually evolves into a late nonlinear phase,
which they call the asymptotic phase, when the reconnection rate becomes of the
order of one-tenth of the Alfvén speed (based on the magnetic field just upstream of
the reconnection layer), independent of the electron and the ion skin depth as well
as the system size. (See also Section 4.1.) We revisit this question here because the
initial condition for the magnetic field used by Shay et al. is very similar to the one
used here for the field in the x, z plane, perpendicular to the guide field. There are,
however, significant differences between our model and theirs. Shay et al. use the full
Hall MHD equations and take the equilibrium guide field to be zero. We consider an
equilibrium with a large and constant guide field, and integrate the reduced two-field
equations which are obtained from the full Hall MHD equations in the limit of large
toroidal field and low beta. Despite these differences, it is instructive to compare our
results with those of Shay et al., because there is no doubt that both simulations
exhibit an asymptotic phase. (In these simulations, we explore parameter regimes
in which reconnection proceeds nonlinearly to form islands with widths of the order
of the system size so that the inequality z 
 ρs, de is realized.) We suggest that the
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3.4 Hall MHD reconnection 137
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Fig. 3.25. Island half-width ŵ as a function of time from numerical simulation
(solid curve) and from Eq. (3.75) with cJ = 0.1 (dashed curve), for the case with
ρs = 0.2, de = 0.1, k = 0.5, γL = 0.0024.
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Fig. 3.26. (a) Island width time evolution for different values of ρs for de = 0.25, ε =
0.5, in rescaled (with linear growth rate) time. (b) Linear and nonlinear growth
rates (at fixed island size) for the runs in Fig. 3.26a.

instantaneous reconnection rate, as measured by the rate of change of the island
width (which is proportional to the inflow velocity towards the X-point) is a good
diagnostic with which we can test the claim regarding asymptotic reconnection rates.

Figure 3.26a shows five plots of the island width as a function of γLt, where γL

is the linear growth rate, determined numerically from the MRC for the parameters
de = 0.1 and ρs = 0, 0.25, 0.5, 0.75, 1.0, holding the aspect ratio ε fixed at the value
0.5. We observe that the five plots essentially lie on top of each other for most of the
time interval during the evolution of the instability. In other words, the equation w =
w(γLt) is a reasonably good description for the island width evolution for most of the
time interval. Had this been the whole story, the issue of scaling of the reconnection
rate would be completely settled, and we could claim, following Ottaviani and Porcelli
(1993, 1995), that the instantaneous reconnection rate at all times scales as the linear
growth rate, which is given by γL = k(deρ

2
s )

1/3 in the large-Δ′ regime. In turn, this
would imply that the reconnection rate is not a “universal constant,” and depends
on the aspect ratio as well as de and ρs. Under these conditions, the dependence
on the electron mass, which provides the mechanism breaking field lines, is weak
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138 Basic theory of collisionless reconnection

(proportional to m
−1/6
e ) but nonetheless significant because it establishes the point of

principle that the reconnection rate is not independent of the parameter that breaks
field lines and controls the structure of the current sheet.

We note, however, that the equation w = w(γLt) is not quite the whole story.
The five curves in Fig. 3.26a do not lie on top of each other in the late nonlinear
phase, although they tend to be quite close to doing so as the ratio de/ρs becomes
larger. In order to determine numerically the scaling behavior of the time-dependent
growth rate in the late nonlinear (or asymptotic) phase, we choose to examine the
nonlinear growth rate at a fixed size of the island width (w = 2), which falls right in
the middle of the late nonlinear phase. (The choice w = 2 is admittedly ad hoc, but
our qualitative conclusions regarding the late nonlinear phase do not depend on this
specific choice.) Figure 3.26b shows the plots of γNL for the five values of ρs given
above at fixed island size. For comparison, we also plot γL for the same values of ρs.
From inspection of Fig. 3.26b, we conclude that although the growth rate in the late
nonlinear regime shows deviation from the equation w = w(γLt), this growth rate
scales with ρs in approximately the same way as γL does. A similar conclusion holds
for the dependence of the growth rate on de in the late nonlinear phase.

We now investigate the dependency of the asymptotic growth rate on the aspect
ratio ε. Figure 3.27a shows five plots of the island width as a function of γLt, where
γL is the linear growth rate, determined numerically for fixed de = 0.25 and ρs = 0.75,
and five different values of the aspect ratio given by ε = 0.1, 0.2, 0.3, 0.4, 0.5. Once
again, we observe that the five plots essentially lie on top of each other for most of
the time interval during the evolution of the instability. In other words, in this case
too the equation w = w(γLt) is a reasonably good description for the island width
evolution for most of the time interval. This would imply a strong dependence of
the reconnection rate on k, in contrast with the conclusion of Shay and coworkers.
However, as in Fig. 3.26a, we note that the five curves in Fig. 3.27a do not lie on
top of each other in the late nonlinear phase. So in order to determine numerically
the dependence of the time-dependent growth rate on the aspect ratio in the late
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Fig. 3.27. (a) Island width time evolution for different values of ε for ρs = 0.75, de =
0.25 in rescaled (with linear growth rate) time. (b) Linear and nonlinear growth
rates (at fixed island size) for the runs in Fig. 3.27a.
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3.4 Hall MHD reconnection 139

nonlinear phase, we choose to examine the nonlinear growth rate at a fixed size of
the island width (w = 2).

Figure 3.27b shows the plots of γNL for four values of ε at fixed island size. For
comparison, we also plot γL for the same values of ε. From inspection of Fig. 3.27a, we
conclude that although the growth rate in the late nonlinear regime shows deviation
from the equation w = w(γLt), this growth rate clearly exhibits a definite dependency
on ε. However, this dependency of the nonlinear growth rate on ε appears to be a
little weaker than the dependency of γL on ε.

In summary, we have presented linear and nonlinear results on collisionless recon-
nection in a two-field model, valid in the regime of high guide (or toroidal) field and
low plasma beta. In this model, electron inertia breaks field lines, and two-fluid (or
Hall MHD) effects enter via the electron pressure gradient term in the generalized
Ohm’s law. The two parameters representing electron inertia and pressure gradient
are de and ρs, respectively. Even if ρs = 0, the system of equations exhibits near-
explosive nonlinear growth of current sheet amplitude and magnetic island width.
In the regime ρs > de the tendency for near-explosive growth persists, but we repeat
for emphasis that this tendency is already inherent in the system without ρs. Thus,
in the present model, current singularities drive impulsive reconnection, and it is
not surprising that the scaling properties of this system exhibit dependency not
only on ρs but also on de, which breaks field lines and controls the structure of the
current sheet. This type of dynamics has been studied by Shay et al., who have
suggested that the reconnection rate tends to a “universal” rate of the order of one-
tenth of the Alfvén speed (where the Alfvén speed is calculated using the upstream
magnetic field strength) in the late nonlinear regime. We have demonstrated that
the reconnection rate in the late nonlinear regime of the two-field model attains no
such “universal” behavior, but depends on de and ρs in approximately the same way
as the linear growth rate. We have also demonstrated that this reconnection rate
depends on the aspect ratio (or the system size), although this dependency is a little
weaker in the late nonlinear regime than it is in linear theory. These dependencies
cast some doubt on heuristic analyses which use linear wave dispersion relations
to make strong conclusions regarding “universal” reconnection rates in nonlinear
regimes.

As discussed above, one of the significant qualitative consequences of the present
study is that the dynamics and scaling properties of Hall MHD or two-fluid colli-
sionless reconnection models are not independent of the mechanism that breaks field
lines. In the present context, electron inertia is that mechanism, and it introduces
filamentary and rapidly time-varying current density structures that persist through
the linear as well as nonlinear regimes, and produce dynamics that is quite different
than resistive MHD dynamics. That this is so for linear theory has been known for a
long time, but the effect persists also in the nonlinear regime of the present model.
Thus, in problems of time-dependent collisionless reconnection, current singularities
that are dominantly controlled by electron inertia cannot, in general, be assumed
to be a sideshow to ion-controlled reconnection. As the nature and dynamics of the
current singularities do depend on whether resistivity or electron inertia breaks field
lines, the sensitivity of the reconnection rate to these rather different mechanisms
can be different.
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140 Basic theory of collisionless reconnection

3.4.2 Resistive Hall MHD reconnection scaling: Role of flux pile-up
We now present analytical and numerical results in a quasi-steady Hall MHD

reconnection model where resistivity is the mechanism that breaks field lines. (This
complements the study in Section 3.4.1, where electron inertia breaks field lines and
the system is strongly time-dependent and impulsive.) While the results of the GEM
Reconnection Challenge (Birn et al., 2001) suggest that Hall electric fields can, by
themselves, allow magnetic reconnection to occur on time scales which are much
shorter than the Sweet–Parker time scale, the question of how this reconnection rate
scales with the system size was not addressed by the GEM challenge. Answering this
question is particularly important in the context of the solar corona, where the ion
inertial length can be smaller than the length of a typical coronal arcade by a factor
of ten million. As discussed in Section 3.1.2, Shay et al. (1999, 2004) have argued
that the ion inertial region – the spatial region over which electron and ion bulk
velocities decouple – in a 2D reconnection process should have a thickness of the order
of an ion inertial length, and a width of the order of ten ion inertial lengths. Thus,
they argue that a Sweet–Parker analysis of the ion inertial region implies that the
reconnection inflow speed should be about a tenth of an Alfvén speed and insensitive
to the system size. In an earlier paper, Biskamp et al. (1997) had pointed out that,
although the quasi-steady reconnection rate may be insensitive to the mechanism
that breaks field lines (consistent with the GEM challenge results), the formation
of a macroscopic ion inertial sheet (analogous to the Sweet–Parker current sheet in
resistive MHD) cannot be ruled out. Subsequent studies (Wang et al., 2001; Dorelli
and Birn, 2003; Fitzpatrick, 2004) seem to be consistent with the conjecture advanced
by Biskamp et al.

In this section, we will approach the problem from a different perspective that
draws on an analogy between the current debate about system size scaling and
the Petschek versus Sweet–Parker debate of the last several decades. In particular,
Biskamp’s (Biskamp, 1986) numerical experiments suggested that driven magnetic
reconnection occurs, in the context of resistive MHD, via a process of magnetic
flux pile-up (see also Parker, 1973b; Sonnerup and Priest, 1975; Priest and Forbes,
1986) rather than in a Petschek configuration. In flux pile-up reconnection, magnetic
energy accumulates upstream of a Sweet–Parker current sheet to accommodate a
sub-Alfvénic inflow velocity. As the plasma resistivity is decreased, the magnetic pile-
up increases, compensating for the resulting decrease in the inflow velocity (which
scales like the square root of the resistivity in the Sweet–Parker model); thus, the
reconnection rate is insensitive to the plasma resistivity.

However, momentum conservation considerations prevent this resistivity-
independent reconnection rate from being realized at arbitrarily small resistivities
(Priest, 1996; Litvinenko, 1999). Since the plasma inflow Alfvén Mach number
is much less than one, and there is a finite upstream pressure available to drive
this sub-Alfvénic inflow, there must be an upper limit to the amount of magnetic
energy which can accumulate upstream of the current sheet. Thus, one expects to
observe two distinct regimes of flux pile-up reconnection: a presaturation phase,
in which the reconnection rate is insensitive to the plasma resistivity; and a
postsaturation phase, in which the reconnection rate scales strongly with plasma
resistivity.
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3.4 Hall MHD reconnection 141

In principle, one can generalize the above arguments to address the scaling of Hall
MHD reconnection with system size. Just as the strong scaling of magnetic pile-up
with resistivity in resistive MHD implies that the reconnection rate scales strongly
with resistivity in the postsaturation regime, a strong scaling of magnetic flux pile-up
with the ion inertial length in Hall MHD implies (by arguments very similar to those
made by Litvinenko, 1999) that the reconnection rate scales strongly with the system
size (i.e., the ratio of the characteristic system length to the ion inertial length). We
illustrate this argument with a simple example (see Dorelli, 2003, for details).

Consider the following incompressible stagnation point flow field:

Ux = U0(x/λ), (3.76)

Uz = −U0(−z/λ), (3.77)

where U0 is a constant with dimensions of speed, and λ is a length scale characterizing
the stagnation point flow. If we assume that the magnetic field is unidirectional,
B = Bx(z)x̂, and that Bx(0) = 0, then the flow field (3.76) and (3.77) describes the
annihilation of antiparallel magnetic fields (in the x, z plane) at a one-dimensional
current sheet, with the current flowing in the y direction. One can demonstrate (see,
for example, Parker, 1973b; Sonnerup and Priest, 1975) that such a flow field solves
the momentum and continuity equations; the magnetic field profile is then determined
from Ohm’s law, and the thermal pressure, p(x, z), is determined by the conditions
of pressure balance:

p(x, z) = p0(x)− 1
2
ρU2 − B2

2μ0
, (3.78)

where ρ is the plasma density (hereafter assumed to be constant), and p0 is a constant.
As described by Dorelli (2003), one can generalize the analysis of Sonnerup and Priest
(1975) to obtain solutions which describe the pile-up of magnetic energy upstream
of the current sheet:

Bx(ζ) = Ey

(
S

U0

)1/2

exp
(

− 1
2
αζ2

)∫ ζ

0
exp

(
− 1

2
αu2

)
du (3.79)

where ζ = (SU0)1/2z, α = 1 + SδiC, S is the Lundquist number (S = μ0λvA/η),
δi = di/λ, and C is an arbitrary constant.

Figure 3.28 shows the magnetic field profile given by (3.79) for various values of the
ion inertial scale; clearly we can see that, for a fixed Lundquist number, the pile-up
scales with δi. Thus, if we define “system size” to be the scale of the stagnation point
flow, then we see that the flux pile-up required to support a given inflow decreases as
the system size decreases. Specifically, if Bmax

x is the magnitude of Bx at the location
of its local maximum, then:

Bmax
x = Ey

[ 2S

U0(1+SδiC)

]1/2
D+(χ), (3.80)

where D+(χ) is Dawson’s integral (Abramowitz and Stegun, 1964),

D+(u) = e−u2
∫ u

0
et2dt, (3.81)
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Fig. 3.28. The (x, z plane) magnetic field component (3.79) is shown for several
values of δi.

and the current sheet thickness χ follows from 1/(2χ) = D+(χ). Thus, as the
Lundquist number approaches infinity, the magnetic flux pile-up saturates at a level
which is independent of the Lundquist number:

Bsat
x = Ey

( 2
δiC

)1/2
D+(χ). (3.82)

Figure 3.29a shows the maximum upstream magnetic field, given by (3.81), as a
function of S, where we have set Ey = 0.009, U0 = 0.1, and C = 0.01. As shown
in Fig. 3.29b, a similar pile-up saturation effect, with the saturation level strongly
dependent on the ion inertial length (and insensitive to the Lundquist number) in
the high-Lundquist number limit, was observed in resistive Hall MHD simulations of
magnetic island coalescence (Dorelli and Birn, 2003).

While the observation of flux pile-up in an island coalescence process is not
surprising, since such pile-up has been observed previously in the context of resistive
MHD (Biskamp, 1986), the δi-dependent saturation of the pile-up observed in the
Hall MHD runs has implications for the scaling of the reconnection rate with system
size. Following Litvinenko (1999), the maximum flux pile-up reconnection rate may
be estimated by constraining the upstream plasma pressure to be positive. One
obtains (Dorelli, 2003):

Ey ≈ 1.31(βU0)1/2
(1+SδiC

S

)1/2
. (3.83)

When the system size is very large (i.e., when δi approaches 0), the maximum recon-
nection rate decreases as the square root of the Lundquist number; however, for any
finite system size, a limit is always reached (for large enough S) in which the recon-
nection electric field becomes insensitive to S. In this limit, however, the electric field
scales strongly with system size (Ey ∝ δ

1/2
i ). This dependence of the asymptotic (as
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Fig. 3.29. The local maximum of the magnetic field Bx in the pile-up region as a
function of the Lundquist number S: (a) from the analytic model given by (3.81);
(b) obtained from a simulation of magnetic island coalescence, upstream of the
current sheet between the coalescing islands (Dorelli and Birn, 2003).
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Fig. 3.30. Maximum reconnection electric field (3.83) as a function of S and system
size.

S approaches infinity) maximum reconnection electric field on system size is shown
in Fig. 3.30.

The physical reason for the reduction in pile-up in Hall MHD flux pile-up recon-
nection can be understood as a consequence of the spatial structure of the guide field.
This field has the form (Dorelli, 2003) By = Cξζ, where C is an arbitrary constant,
ξ = (SU0)1/2x, and ζ = (SU0)1/2z. From Ampère’s law, we can interpret the guide
field as a stream function for the current density in the x, z plane. Thus, if the ion
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144 Basic theory of collisionless reconnection

inflow velocity is fixed, then the guide field describes an electron stagnation point
flow, the magnitude of which is determined by the first derivatives of By near the
origin. Thus, if C is independent of the plasma resistivity (i.e., if the first derivatives
of the guide field scale inversely with the plasma resistivity), then the magnitude
of the electron flow in the x, z plane scales like the square root of S, and less pile-
up of magnetic energy is required upstream of the current sheet to support a given
reconnection electric field. In other words, fast electron flows may transport magnetic
flux into the current sheet without requiring a compensating drop in plasma pres-
sure (so long as the large first derivatives of By are spatially localized within the ion
inertial layer).

What, then, can we say about the scaling of the Hall MHD reconnection rate with
system size? It appears that if Hall MHD reconnection occurs via a magnetic flux
pile-up mechanism, where the magnetic pile-up is sensitive to the system size (see
for example Wang et al., 2001; Dorelli and Birn, 2003), then one expects to observe,
in the large Lundquist number limit, a pile-up saturation effect which renders the
reconnection rate sensitive to the system size. To settle this question conclusively,
we will have to extend our analytic work to address much more general classes of
problems than the one addressed in this section.

3.5 Role of current-aligned instabilities
J. Büchner and W. S. Daughton

In this section we return to the discussion of collisionless mechanisms that might
generate nonideal contributions to the electric field E+v×B = E′, providing dissi-
pation j ·E′ �= 0. Section 3.2 focused on mechanisms that operate even in the absence
of modes in the direction of the main current in a reconnecting current sheet. Here
we discuss the particular role of current-aligned modes, that is, modes with a wave
vector component ky in the direction of the main current. (Since most of the applica-
tions are made to the magnetotail current sheet, we continue to use a magnetospheric
coordinate system with x in the direction of the main magnetic field, y in the direc-
tion of the current, and z perpendicular to the current sheet.) There are several ways
in which such modes might play a role.

Current-aligned modes might directly generate dissipative electric fields. In
contrast to the DC electric fields discussed in Section 3.2, this influence involves
net effects of alternating or fluctuating electric fields. This represents the classical
concept of anomalous resistivity, which also entails the idea that the dissipative elec-
tric field depends on the local plasma properties, most specifically, the local current
density. In the simplest case, this relationship would be governed by Ohm’s law,
with E′ proportional to j. However, more generally the factor between E′ and j need
not be a constant nor a scalar. Anomalous resistivity due to low-frequency plasma
turbulence was considered in numerous papers, based, for instance, on ion-acoustic
waves or lower-hybrid drift (LHD) waves (see, e.g., Rowland and Palmadesso, 1983).

But there is also the possibility that unstable current-aligned plasma waves may
indirectly and nonlinearly interact with reconnection. Current-aligned modes might
alter the structure of the current sheet and thereby change the stability properties
and the early (linear) evolution or they might play a role in the nonlinear dynamic
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3.5 Role of current-aligned instabilities 145

evolution. Modes of particular interest in this kind of interaction are unstable kink-
or sausage-type modes of the current sheet and the lower-hybrid drift instability.

In the following we review key theoretical and simulation results and discuss their
applicability to experimental and observational findings of current-aligned instabili-
ties as well as their potential importance for reconnection. We focus particularly on
lower-hybrid drift modes and kink modes, which are well observed in the magne-
tosphere. Ballooning modes, driven by pressure gradients in the direction of the
magnetic field curvature, will be discussed in Section 4.3. These modes operate
also in the ideal MHD limit, although collisionless effects might provide important
modifications.

3.5.1 Ion-acoustic instability
A current-driven instability which may cause anomalous resistivity in current

sheets is the ion-acoustic (also called ion-sound) instability (e.g., Manheimer and
Flynn, 1971). For space applications it was considered by Kan (1971). Ion-acoustic
waves are unstably excited by a resonant interaction of drifting electrons or ions
with the electric field oscillations of ion-sound waves (e.g., Krall, 1977), thereby
providing momentum exchange between ions and electrons. Ion-sound waves prop-
agate in plasmas with Te � Ti but become strongly Landau-damped when Te ≈ Ti.
In the Earth’s magnetosphere, the proton temperature is typically about 5 to 10
times larger than the electron temperature, so that ion-acoustic waves are strongly
damped. As a result anomalous resistivity due to dissipation of ion-acoustic waves
was expected mainly in laboratory plasmas, e.g. theta-pinch experiments (Liewer
and Krall, 1973) and solenoidal fusion systems (Davidson et al., 1977). Considering
space plasmas, Coroniti (1985) concluded that anomalous resistivity resulting from
the quasi-linear saturation of ion-acoustic instability is much too small to account
for fast reconnection.

Considerably larger wave amplitudes could, however, be expected for stronger
driven currents, for which ion-acoustic instabilities may develop even in plasmas
with Ti ≈ Te. Also, instead of the usually applied one-dimensional quasi-linear theory
which leads to plateau formation stopping wave generation, two-dimensional scat-
tering of the electrons at ion fluctuations should be considered. The investigation of
such systems can be carried out, however, only by means of numerical simulations, for
which Vlasov-code simulations are most appropriate. Even one-dimensional recent
Vlasov-code simulations (Watt et al., 2002; Petkaki et al., 2003) claimed a much
stronger wave excitation than the one predicted by the one-dimensional quasi-linear
theory. These findings revived the interest in the ion-acoustic instability as a possible
mechanism for collisionless dissipation in space plasmas. Since these simulations were
restricted to low mass ratios, Hellinger et al. (2004) and Büchner (2005) repeated the
simulations for the same parameters as Watt et al. (2002) and Petkaki et al. (2003),
but for the realistic proton/electron mass ratio mi/me = 1836, using more accurate
Vlasov solvers (see, e.g., Elkina and Büchner, 2005). As a result it appeared that for
realistic mass ratios the old quasi-linear estimate can be recovered within an order
of magnitude. It has still to be investigated, however, whether dissipation becomes
sufficient to support reconnection in more realistic two- and three-dimensional cases,
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146 Basic theory of collisionless reconnection

which permit pitch-angle scattering, or under, quasi-stationary, continuous current
flow conditions, driven by external forces.

3.5.2 Lower-hybrid drift instability
Waves in the lower-hybrid frequency range,

ΩLH = ωpi(1+ω2
pe/Ω2

e)
−1/2, (3.84)

where ωpi and ωpe are the ion and electron plasma frequencies, respectively, and
Ωe is the electron cyclotron frequency, are commonly observed in the current sheets
at the Earth’s magnetopause (e.g., Vaisberg et al., 1983; André et al., 2001; Lucek
et al., 2001; Bale et al., 2002; Vaivads et al., 2004a), the magnetotail (e.g., Gurnett
et al., 1976; Pu et al., 1981) and in laboratory plasmas (e.g., Takeda and Inuzuka,
2000; Carter et al., 2002b). They arise from the lower-hybrid drift (LHD) instability
driven by diamagnetic drifts associated with strong pressure gradients, particularly
in the boundary regions of the current sheets (Gary and Eastman, 1979; Labelle and
Treumann, 1988).

The kinetic LHD instability (LHDI) requires gradients L/ρi <∼ (mi/me)1/4 where
L is the characteristic density scale length. This condition is easily satisfied in magne-
tospheric plasmas (Huba et al., 1978). For weaker gradients (mi/me)1/4 < L/ρi <

(mi/me)1/2, the LHDI transforms into the drift cyclotron instability (Freidberg and
Gerwin, 1977). In the opposite limit of strong plasma pressure gradients L <∼ ρi, the
LHDI becomes a fluid instability, excited through the coupling of a lower-hybrid wave
with a drift wave (Huba et al., 1978).

In magnetospheric plasmas, where usually ω2
pe � Ω2

e , the expression for the lower-
hybrid frequency simplifies to ΩLH ≈ (ΩiΩe)1/2. Simple linear theory predicts that
the fastest growing LHD waves are on the electron gyroscale kyρe ∼1, while more
generally, due to nonlinear effects, a broad spectrum of wavelengths may be excited,
reaching up to ky

√
ρeρi∼1. Unstable LHD waves propagate with diamagnetic drift

velocity perpendicular to the local magnetic field (Krall and Liewer, 1971; Liewer
and Krall, 1973; Huba et al., 1977).

Perhaps the most attractive feature of LHDI over other current-driven instabilities
such as ion-acoustic or Buneman instability, is that it persists for a much broader
range of interesting parameters (i.e., weaker drifts and Te < Ti). The quasi-linear satu-
ration of the LHDI and the corresponding anomalous dissipation is well known (e.g.,
Davidson and Gladd, 1975). The LHDI therefore has been considered extensively as a
possible candidate to enable reconnection through anomalous resistivity generated by
wave–particle interactions (Huba et al., 1977, 1980; Winske, 1981; Tanaka and Sato,
1981). However, for a typical current sheet structure, nonlocal kinetic theory predicts
that the fastest growing modes are well localized on the edge of the current layer while
enhanced fluctuations are required in the central region to produce significant anoma-
lous resistivity (Huba et al., 1980). The effects of finite plasma β and the electron ∇B

drift-wave resonance damp the mode in the central region and limit the penetration
to distances greater than ∼L(Te/2Ti)1/2, where L is the half-thickness of the sheet.
For the fastest growing short-wavelength modes kyρe∼1, this conclusion is supported
by kinetic simulations (Tanaka and Sato, 1981; Winske, 1981; Brackbill et al., 1984),
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3.5 Role of current-aligned instabilities 147

observations at the magnetopause (Bale et al., 2002), in the magnetotail (Shinohara
et al., 1998), and also by laboratory experiments (Carter et al., 2002a,b).

Although the fastest growing linearly unstable LHD modes are on the electron
gyroscale kyρe ∼1, LHD modes are actually unstable over a broad range of wave-
lengths and frequencies (Ωi < ω ≤ ΩLH). Several of the early simulation papers on
the LHDI report longer-wavelength electromagnetic instabilities near the center of
the sheet after the saturation of the short-wavelength modes (Winske, 1981; Tanaka
and Sato, 1981). Two explanations for these waves were recently proposed, one based
on a new approach to the nonlocal linear stability (Daughton, 2003) and another
based on the nonlinear excitation of a drift resonance between LHD modes generated
at the edge of the current sheet and meandering ions at the center of the current
sheet (Silin and Büchner, 2003a). Both predict that longer-wavelength LHD modes
with wavelengths intermediate between the electron and ion gyroscale ky

√
ρiρe∼1 can

penetrate into the central region, whereas the fastest growing modes with kyρe∼1 are
confined to the edge of the current sheet. These new predictions have been confirmed
in two dimensions by fully kinetic particle-in-cell (PIC) simulations at high mass
ratio (Daughton, 2003).

Figure 3.31 demonstrates these effects, showing the current density jy(y, z) from
a 2D PIC simulation at a realistic mass ratio for a hydrogen plasma, mi/me = 1836
(Daughton, unpublished). The initial state is a thin Harris sheet with parameters
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Fig. 3.31. Evolution of the current density jy(y, z) (grayscale) from a 2D PIC
simulation at realistic mass ratio for a hydrogen plasma, mi/me = 1836. The
three panels demonstrate the transition from the saturation of the fastest growing,
short-wavelength, LHD modes with kyρe ∼ 1 (top) through intermediate-scale
(ky(ρiρe)1/2 ≈ 0.8) modes (center) to long-wavelength (kyL ≈ 0.5) ion–ion kink
instability (bottom).
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148 Basic theory of collisionless reconnection

ρi/L = 2, Ti = Te, ωpe/Ωe = 4 with a background density of nb/n0 = 0.1 and box size
12L×12L, where L is the current sheet half-thickness. The grid size is 1024×1024
with 150×106 computational particles for each species and a time step of tΩe = 0.03.
At early time, tΩi = 4 (top), the fastest growing, short-wavelength, LHD modes with
kyρe ∼ 1 have saturated leading to the turbulent fluctuations on the edge of the
current layer. At intermediate time, tΩi = 13 (middle), growth of the intermediate
scale ky(ρiρe)1/2 ≈ 0.8 LHDI is clearly evident in the growing m = 5 structure, while
at late time, tΩi = 17 (bottom), a long-wavelength kyL ≈ 0.5 ion–ion kink instability
is observed in conjunction with the intermediate LHDI (see also Karimabadi et al.,
2003b, and Section 3.5.4).

These simulations have shown that for a current sheet thickness near or less than
the ion inertial length, LHD modes may penetrate and modify the central region of
the current sheet, initiating long-wavelength modes that saturate at large amplitudes.
Similar results have been found by Vlasov-code simulations in three dimensions, but
with smaller mass ratio (Silin and Büchner, 2003b). This suggests the possibility
that these fluctuations may influence the development of magnetic reconnection.
Consistent with these results, Silin and Büchner (2005a) also found that the growth
rate increases with the sheet thinning as shown in Fig. 3.32.

It is important to note that the penetration of longer-wavelength LHD modes into
the central region appears to require very thin current layers L <∼ 0.6ρi(ρi/L > 1.6,
see Fig. 3.32). Although current sheets in this parameter regime are clearly observed
in laboratory plasmas (Yamada et al., 2000; Ji et al., 2004), current layers observed in
the magnetosphere are only occasionally that thin (André et al., 2004) but typically
somewhat thicker L >∼ ρi. In this parameter regime, the theoretical results consis-
tently predict that the LHDI is confined to the edge region of the current layer,
where it is in the wrong location to directly produce the anomalous resistivity needed
for reconnection. However, recent explicit 2D kinetic simulations for this parameter
regime, using the realistic ion to electron mass ratio mi/me = 1836, indicate that the
LHDI may, nevertheless, play an important role in the onset of magnetic reconnec-
tion (Daughton et al., 2004; Ricci et al., 2004a). Although the unstable LHDI modes
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Fig. 3.32. Dependence of the global current-aligned mode (thick line) and tearing-
mode instability (thin line) growth rates on the current sheet thickness. After Silin
and Büchner (2005a).
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3.5 Role of current-aligned instabilities 149
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Fig. 3.33. Mass-ratio dependence of the current-aligned mode. Büchner and Kuska
(1998a).

are clearly localized on the edge of the layer in these simulations, the nonlinear evolu-
tion induces a dramatic bifurcation of the current density and leads to significant
anisotropic heating of the electrons in the central region of the sheet. The essential
physics involves a resonant scattering of the crossing ion orbits into the noncrossing
region of phase space which creates an electrostatic potential structure across the
layer. The basic predictions from this model are in good agreement with observations
concerning the electron flow velocity, bifurcated current structure and the electron
anisotropy.

Since most of the kinetic simulations necessarily still use artificially small ion–
electron mass ratios, the mass-ratio dependence of the nonlinear simulation results
was investigated by Büchner and Kuska (1998a). Figure 3.33 shows that the growth
rate increases mainly for small mass ratios and then saturates towards the realistic
mass ratio of 1836.

3.5.3 Lower-hybrid drift instability in non-antiparallel fields
Huba et al. (1982) first theoretically considered the lower-hybrid drift insta-

bility in non-antiparallel reversed fields. Indeed, while not changing the current sheet
equilibrium, a uniform externally imposed current-aligned magnetic guide field intro-
duces a serious change in the current sheet instabilities. While in the generic Harris
(1962) sheet with antiparallel magnetic fields the particles crossing the current sheet
center may be nongyrotropic and therefore may easily become accelerated by elec-
tric fields of unstable modes, in the presence of the guide field this is no longer the
case (Büchner and Zelenyi, 1991). Thus, the Hall currents, which play an important
role in collisionless reconnection of antiparallel fields, are suppressed in the config-
urations with sufficiently large guide fields. Also, the structure of the reconnected
magnetic field lines changes from closed O-type field lines in the case of antiparallel
reconnection to helical (corkscrew) type in the presence of the guide field, i.e., there
are no classical X- or O-points as in two-dimensional reconnection (Büchner, 1999).

For the case of finite guide fields Galeev et al. (1985) and Kuznetsova and Zelenyi
(1985, 1990a) proposed obliquely propagating nonlinearly unstable drift-tearing
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150 Basic theory of collisionless reconnection

modes, which could lead to stochastic reconnection. Indeed, in the presence of guide
fields, tearing-mode reconnection islands cannot grow coherently to large amplitudes
due to the rotation of the wave vector with increasing distance from the central
plane. Instead, the authors proposed that small-scale reconnection coupled to a drift
mode would lead to magnetic percolation (Kuznetsova and Zelenyi, 1990b). These
drift-tearing modes, which cause small-scale reconnection, become unstable first near
the current sheet center, where they resemble the classical tearing instability. Later,
oblique modes arise further away from the current sheet center. The authors spec-
ulated that after the magnetic field perturbations exceed a critical level, magnetic
islands overlap and the small-scale reconnection might even grow algebraically with
time to large amplitudes (Galeev et al., 1985).

Pressure-gradient-driven unstable LHD waves always propagate perpendicular to
the local magnetic field (Krall and Liewer, 1971; Liewer and Krall, 1973; Huba et al.,
1977). To investigate their possible consequences for reconnection, Silin and Büchner
(2003b) recently reconsidered the influence of a guide magnetic field on the resonant
LHDI. They found that the unstable LHD waves become decoupled from each other
in the presence of the guide field, because they always propagate perpendicular to
the local magnetic field. The number of resonant ions becomes smaller as the guide
field becomes stronger, and hence the resulting growth rate of the combined mode
decreases as well (see Fig. 3.34). Silin and Büchner (2005b) investigated the LHDI in
a rotating magnetic field, typical for magnetopause current sheets. They found that
in their model the instability saturates at low levels, unable to provide a sufficient
amount of anomalous resistivity.

3.5.4 Kink instability
Kink modes are frequently observed in thin current sheets in the magneto-

tail (e.g., Sergeev et al., 2003, 2004); however, their relation to reconnection remains
unclear. They may provide a means to initiate reconnection, they may be excited
simultaneously but independently, or they may grow as a consequence of reconnec-
tion. Here we discuss particularly their potential role in the initiation of reconnection.

The drift-kink instability is a long wavelength kyL <∼ 1 electromagnetic mode
driven by the relative drift between ions and electrons. It was originally uncovered
from fully kinetic simulations of current sheets (Ozaki et al., 1996; Pritchett and

0.5 1 1.5 2
By / B0

0.1
0.2
0.3
0.4
0.5
0.6

γ /Ω0 i

Fig. 3.34. Growth rate of the nonlocal long-wavelength LHDI at the center of the
current sheet with a finite guide field By for L = ρi.
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3.5 Role of current-aligned instabilities 151

Coroniti, 1996; Pritchett et al., 1996; Zhu and Winglee, 1996; Lapenta and Brack-
bill, 1997) and gives rise to a large-scale undulation of the layer. Linear Vlasov
theory (Daughton, 1999b) predicts substantial growth rates for the artificial mass
ratios typically employed in PIC simulations mi/me <∼ 100. However, the growth
rate is drastically reduced for realistic mass ratio (Daughton, 1999a,b). Comparison
between the predicted theoretical scaling and fully kinetic simulations is excellent for
relatively modest mass ratio mi/me <∼ 100 but deviates significantly at larger mass
ratio (Daughton, 2002). The apparent reason for this discrepancy is the presence of
the LHDI in these simulations which generates significant ion velocity shear which
drives a kinking of the current layer by a Kelvin–Helmholtz type mode (Hesse et al.,
1998; Daughton, 2002; Lapenta and Brackbill, 2002; Lapenta et al., 2003).

It is interesting to note that the original linear Vlasov theory of the drift-kink mode
also explored the possibility of adding a uniform background plasma to the standard
Harris sheet equilibrium (Daughton, 1999b). This introduces a relative drift between
the current-carrying and background ion populations and the linear theory predicts
large growth rates that are independent of the electron mass. This so-called ion–ion
kink instability (Karimabadi et al., 2003a,b) has features which are very similar to
the drift-kink mode in terms of wavelength, frequency, and mode structure, but the
driving factor is the relative drift between two ion populations. Within a single fluid
picture the bulk fluid velocity is sheared, so the mode appears to be closely related
to the Kelvin–Helmholtz instability (Hesse et al., 1998) but the typical regime of
interest is highly kinetic so there are important modifications. An example of the
ion–ion kink mode in a PIC simulation at realistic mass ratio is shown in the bottom
panel of Fig. 3.31.

To summarize, the drift-kink mode is very weak in the limit of realistic mass and
is not physically interesting. However, the ion–ion kink mode has significant growth
rates over a broad range of interesting parameters and is easy to excite with either
shear or multiple drifting ion components. The primary stabilizing factor for the
mode is the presence of a finite guide field. For the parameter regime relevant to
the magnetotail, the properties of the ion–ion kink mode have been systematically
examined using a combination of linear Vlasov theory (Karimabadi et al., 2003a)
along with full PIC and hybrid simulations (Karimabadi et al., 2003b). Some of
the essential properties of the ion–ion kink instability are consistent with recent
magnetotail observations (Karimabadi et al., 2003b; Ricci et al., 2004b).

Although it has been suggested that kink instabilities may perhaps play a role in
the onset of magnetic reconnection (Lapenta et al., 2003), the precise mechanism by
which this would occur has not been identified. To complicate matters, the LHDI is
also typically present in 3D kinetic simulations, and there is now fairly convincing
evidence that it does play a role in the onset. It is interesting to note that the
LHDI modes can be suppressed with the introduction of a sufficient background
plasma which increases the plasma β in the edge region. Recent fully kinetic 3D
simulations with 20% background density have simulated the simultaneous evolution
of an unstable kink mode in conjunction with collisionless tearing (Karimabadi et al.,
2003b). Although there are a number of interesting effects observed during the initial
phase of these simulations, the final stage of evolution in these 3D simulations is
quite similar to the usual 2D tearing scenario.
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152 Basic theory of collisionless reconnection

3.5.5 Drift-sausage instability
Sausage modes in a current sheet are symmetric modes, characterized

by periodic thinning and thickening. The localized thinning makes them rather
attractive as a means to initiate reconnection. However, results on the exis-
tence of such modes are contradictory, so that their importance has not been
established.

A threshold of a sausage-type electromagnetic instability of a current sheet was
first obtained by Yamanaka (1978), who took into account specifics of the particle
motion in antiparallel fields. Neglecting electrostatic effects, Lapenta and Brack-
bill (1997) solved the linear dispersion relation for a drift-sausage instability based
on a straight orbit integration of the linearized Vlasov equation. Their simulation,
reported in the same paper, however, revealed only a kink-instability of the sheet.
A nonlocal linear theory based on a full orbit integration (Daughton, 1999a, 2003)
of the linearized Vlasov equation also did not find evidence for a drift-sausage
mode. Likewise, the particle-in-cell simulations of current sheet dynamics listed in
Section 3.5.4, which found clear evidence of kink modes, did not observe drift-sausage
modes.

In contrast, Büchner and Kuska (1998a,b, 1999) investigating unstable drift-
sausage modes also by means of PIC simulations, concluded that drift-sausage modes
are nonlinearly unstable, the wavelength of the most unstable mode depending on the
mass ratio as kyLz∼(mi/me)1/4. Wiegelmann and Büchner (2000) showed that elec-
trostatic contributions are indeed necessary to cause a nonlinear drift-sausage sheet
instability in the current flow direction. Otherwise, if the electrostatic perturbations
are artificially suppressed, the tearing-mode instability dominates the current sheet
decay. Considering global eigenmodes, Yoon and Lui (2001) found a preference for
the sausage mode. According to Yoon et al. (2002), for small particle mass ratios
mi/me asymmetric kink modes should dominate, while for higher mass ratios the
sausage mode was more probable. Analytically considering the long-wavelength
limit, Silin et al. (2002) demonstrated that for the correct consideration of the
electrostatic (charge-separation) effects the sausage mode can directly couple into
reconnection via the current-aligned longitudinal electric field Ey at the center of the
current sheet. The resulting reconnection perturbations have finite wave vectors kx

and ky. This way, magnetic reconnection in thin current sheets becomes intrinsically
three-dimensional, propagating together with the global current sheet instability
(reconnection wave) as predicted by Büchner and Kuska (1996, 1998b).

Observationally, sausage modes have been identified in the magnetotail current
sheet by the Cluster satellite tetrahedron (Volwerk et al., 2004; Fruit et al., 2004).
However, the propagation direction of these modes was along the tail, rather than
across. Furthermore, they seemed to be a consequence of substorm onset rather than
leading into it. Therefore, the role of sausage modes in the onset of reconnection
remains unclear, both theoretically and observationally.

3.5.6 Modified two-stream instability
The modified two-stream instability (MTSI) (McBride et al., 1972) and the

closely related ion-Weibel instability (IWI), which represents the special case of
propagation along the magnetic field (Chang et al., 1990), share many of the features
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3.5 Role of current-aligned instabilities 153

of the lower-hybrid drift instability, including similar frequencies, growth rates and
wavelengths. As discussed in Section 3.5.2, the LHDI is considered as being driven by
a density gradient, has maximum growth for k ·B = 0 and operates predominantly
in the boundary layers of a current sheet. In contrast, the MTSI/IWI is considered
as being driven by the cross-field drift of unmagnetized ions even in the absence of
a density gradient. It is predicted to have maximum growth for oblique propagation
and to operate predominantly in the region of strongest current, that is, near the
center of the current sheet (McBride et al., 1972; Lemons and Gary, 1977; Wu et al.,
1983; Chang et al., 1990; Lui et al., 1991; Yoon and Lui, 1993; Lui, 2004).

The distinction between the drivers is somewhat arbitrary, because in self-
consistent current sheet models current-associated drifts are typically related to
magnetic field and density gradients as well. Using a local approach that includes
weak inhomogeneity of both density and magnetic field, Silveira et al. (2002)
obtained a unified local kinetic treatment of these instabilities, while Yoon and Lui
(2004) investigated the transition between LHDI and MTSI on the basis of certain
non-Harris type current sheets with signficant E×B drifts, incorporating the spatial
variation through varying parameters such as the plasma β and the ion drift speed.
In both of these investigations, LHDI and MTSI were distinguished according to the
resulting dispersion properties, particularly the wave vector direction of the most
unstable modes. Thus, LHDI is predicted to be dominant for Harris-type equilibria,
where the relative electron–ion drift is entirely diamagnetic, and for the low-β
boundary regions of non-Harris type models (Yoon and Lui, 2004). In contrast,
the MTSI is predicted to be dominant in the high-β central region of non-Harris
equilibria.

It is important to note that these predictions are based on local kinetic theory
which may not be applicable to the central region of a current sheet. Further investi-
gation of these linear predictions requires a nonlocal kinetic treatment in conjunction
with 2D and 3D kinetic simulations.

3.5.7 Summary and conclusions
Current investigations have shown that kinetic instabilities in model

current sheets might, in principle, provide the plasma nonideality necessary for
reconnection in collisionless space plasmas. While the classical one-dimensional
Te � Ti ion-acoustic instability does not operate under realistic space plasma
conditions, the lower-hybrid drift instability is more likely to operate and play
a significant role. While it may be a source of anomalous resistivity under
drastic thinning, under less stringent conditions it may alter the current sheet
structure and thereby destabilize it and couple to reconnection. Kink insta-
bilities are likely to operate, and are indeed observed in thin magnetotail
current sheets (while results on sausage modes are still controversial). However,
it is not clear whether and how they might affect reconnection. More real-
istic 3D model calculations are necessary to further clarify the relationship
between current-driven, current-aligned instabilities and fast reconnection in space
plasmas.
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154 Basic theory of collisionless reconnection

3.6 Nonthermal particle acceleration
M. Hoshino

Nonthermal particle acceleration in magnetic reconnection is a long-standing problem
in cosmic plasmas. In fact, the possibility of accelerating charged particles by an
electric field along a magnetic neutral line or, more generally, along a magnetic field
line in reconnecting magnetic fields was the reason for introducing the concept of
magnetic reconnection, although not the term, by Giovanelli (1946) as a mechanism
for particle acceleration in solar flares. The relationship between flares and particle
energization by reconnection has been widely recognized after Yohkoh and SOHO
observations (e.g., Tsuneta et al., 1992; Sterling et al., 2000). RHESSI observations
reported substantial electron acceleration and a double power-law X-ray spectrum
in association with flares (Lin et al., 2003).

In the astrophysical context, it is known that almost all young stellar objects emit
X-rays with light curves that are quite similar to those of solar flares, characterized by
a fast rise and exponential decay, even though the luminosities are very much higher
than those of solar flares (Koyama et al., 1996; Montmerle et al., 2000). Furthermore,
a good correlation between the emission measure and the plasma temperature can
been seen (Feldman et al., 1995; Shibata and Yokoyama, 1999). Therefore, those
flares are believed to be related to magnetic reconnection.

Pulsars and their surrounding nebulae are another example of magneto-active
objects, and ultra-relativistic particles are known to be generated in the form of synch-
rotron radiation. The shock acceleration by the interaction of a relativistic pulsar wind
with the nebula is the most widely accepted scenario of generation of ultra-high energy
particles (Kennel and Coroniti, 1984), but magnetic reconnection is also suggested
as another important acceleration process in a striped magnetic field in pulsar
winds (Coroniti, 1990; Lyubarsky and Kirk, 2001). In fact, on the basis of Chandra
X-ray satellite observations, Mori et al. (2004) concluded that magnetic energy dissi-
pation is necessary to explain the luminosity of the synchrotron radiation in the Crab
nebula. Zenitani and Hoshino (2001, 2005) and Jaroschek et al. (2004) suggested
that ultra-relativistic particles can be quickly generated by relativistic reconnection.

In most cosmic plasmas, the nonthermal, high-energy spectra are often described
by a power-law energy spectrum. Over the last several decades, considerable effort
has been devoted toward understanding the formation of such high-energy power
laws and the origin of nonthermal particles in reconnection. However, there are
many outstanding questions regarding particle acceleration that motivate continuing
research in the field. Plasma heating and acceleration in magnetic reconnection is
now a frontier subject of plasma astrophysics. In this section, we review the physics
of particle acceleration in reconnection by focusing on the Earth’s magnetosphere
where many key observational data are available. Since the underlying basic physics
of reconnection should be universal, it can be expected that properties of recon-
nection and particle acceleration in the well-studied terrestrial magnetosphere are
applicable to other astronomical objects, too.

3.6.1 Basic plasma parameters in the magnetosphere
Before discussing observations of energetic particles, it is useful to discuss

typical thermal plasma properties in the terrestrial magnetosphere and specifically
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3.6 Nonthermal particle acceleration 155

the magnetotail. We focus on the tail region around 20 to 30 RE distance from Earth
where near-Earth reconnection related to substorms is now believed to occur (e.g.,
Hones, 1979; Nishida et al., 1981; Baumjohann et al., 1991; Nagai et al., 1998).

The ion temperature is always higher than the electron temperature; typical values
are a few keV and several hundred eV, respectively. This preferential ion heating is
believed to be associated with the primary magnetotail acceleration mechanism at
the boundary between the lobe and the plasma sheet.3 The plasma sheet density
is 0.1∼1cm−3, but during an active reconnection period the density may decrease
below ∼ 0.01cm−3 in the vicinity of an X-type neutral line. The gas pressure of
the hot plasma inside the plasma sheet balances the magnetic pressure of the very
tenuous lobes with a magnetic field of about 20nT. The thickness of the electric
current sheet which supports the antiparallel lobe magnetic field is usually about
1∼3RE, but before the onset of substorms the thickness can become as small as the
ion inertia length of the order of 1000 km (e.g., Asano et al., 2003).

Based on the above plasma parameters, let us estimate characteristic limits for the
electric potential induced in the magnetotail. The Alfvén speed estimated by using
the lobe magnetic field and the plasma sheet density is given by

vA = 620
(

Bx

20 nT

)(
0.5 cm−3

n

)1/2

km/s. (3.85)

The reconnecting magnetic field in the plasma sheet may be approximated by

Bz = 2
(

Bx

20 nT

)(
M

0.1

)
nT, (3.86)

where M is the reconnection rate, assumed to be of order 0.1. Therefore, the motional
electric field during reconnection in the magnetotail can be estimated as

Ey = 1.2
(

vA

620 km/s

)(
Bx

20 nT

)(
M

0.1

)
mV/m. (3.87)

Multiplying Eq. (3.87) by the scale length L of the magnetotail cross-section of
about 30RE, the maximum potential difference induced in the tail in the dawn–dusk
direction becomes of the order of

eφ = 240
(

vA

620 km/s

)(
Bx

20 nT

)(
M

0.1

)(
L

30 RE

)
keV. (3.88)

Thus the plasma in the Earth’s magnetotail is characterized by thermal energies
well below the available potential energy estimated by Eq. (3.88). On the other hand,
there are many observations that show that plasma particles can be effectively accel-
erated to energies of 1 MeV. These energetic particles are the continuous extension of
the thermal population, forming a supra-thermal tail beginning at several multiples
of the thermal energy. Most energetic particles seen in the magnetotail seem to be
roughly consistent with the available potential energy (see also Section 4.4.4), but
the highest energy particles seem to exceed the available potential energy.

3 However, a similar ratio is also found in the magnetosheath surrounding the magnetosphere
(Fig. 1.5), so that an acceleration mechanism that preserves this ratio from this source region is
also plausible.
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156 Basic theory of collisionless reconnection

3.6.2 Energetic particle observations and magnetic reconnection
Let us discuss in more detail the energetic particle observations in the Earth’s

magnetotail. In early satellite observations anisotropic energetic particle bursts have
been reported by Sarris et al. (1976) and Hones et al. (1976). An energetic electron
burst with 0.3–1.0 MeV was identified in association with a southward turning of the
Bz magnetic field at x ≈ −20 to −30RE in the magnetotail (Terasawa and Nishida,
1976). The southward turning of Bz suggests that magnetic reconnection is occur-
ring in the magnetotail, because the tail magnetic field during nonreconnection time
intervals should have a northward Bz component.

Similar events were also discussed at x ≈ −30RE based on a survey of electrons
of ε ≥ 200keV by Baker and Stone (1976, 1977), who reported that electron flux
enhancements at energies ε ≥ 1MeV are usually associated with neutral sheet cross-
ings. Sarris et al. (1981) reported ion distribution over the energy range 100 eV to a
few MeV even though the bulk flow speed is not necessarily fast. Möbius et al. (1983)
analyzed energetic protons of 30–500 keV and energetic electrons of ε ≥ 75keV, and
suggested that reconnection near an X-type neutral line is a candidate for the accel-
eration of the energetic particles.

Although the relationship between the energetic particles and reconnection was
plausible, there was no direct evidence of energetic particle production at an X-type
neutral line. The spatial extent of the region around the X-line where non-MHD
processes take place is of the order of an ion inertia length, so that the observational
chance of a satellite traversing this region is very rare. However, Øieroset et al.
(2002) have recently reported the successful observation of energetic particles in the
vicinity of an X-type region. As shown in Fig. 3.35, the fluxes of energetic electrons
up to∼300keV increased approaching the diffusion region, and the energy spectrum
has a power-law signature above ∼2keV with the power-law index of −5. Since the
single, power-law population is extended up to 300 keV, all energetic particles are
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Fig. 3.35. Electron energy spectra observed just on the tailward side of an X-type
region. The power-law indexes k of four different time periods are shown in the
plot. Adapted from Øieroset et al. (2002).
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3.6 Nonthermal particle acceleration 157

thought to be generated in the same acceleration process. The high-energy electrons
of ∼300keV seem to be consistent with the available potential energy estimated by
Eq. (3.88).

The maximum available potential energy, however, may be overestimated, because
the reconnection region is believed to be localized within a few Earth radii in
the y direction (e.g., Angelopoulos et al., 1994), so that such a large electric
potential of eφ ∼ 240keV is not easily induced. The relationship between the
observed maximum energy and the available potential energy remains a controversial
issue.

Another important issue is the distribution of the energetic particles. In association
with magnetic reconnection in the magnetotail, plasma is transported away from the
X-type region. During the plasma transport, ions/electrons are drifting toward dusk/
dawn and should gain energy. As shown in Fig. 3.36, however, this is not supported by
observations. Figure 3.36 shows suprathermal particle observations by the Geotail
satellite in the tail (Imada et al., 2002). Electron fluxes of 3.2 keV (right-bottom) and
9.3 keV (left-bottom), the integrated electron flux of energies greater than 38 keV
(left-top), and the energetic ion flux of 39.5 keV (right-top) are shown as a function of
the dawn–dusk position. The nominal electric field is directed toward the positive y

axis, which is the dawn to dusk direction. One can observe asymmetry of the energetic
particle distributions, but this asymmetry is not very distinct. We can find the ener-
getic electrons (protons) even in the dusk (dawn) side region. The observed energetic
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Fig. 3.36. The dawn–dusk distribution of energetic particles. The gray scale shows
occurrence probability of particle flux in each YGSM bin.
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158 Basic theory of collisionless reconnection

particle distribution is not simply described by a model of the dawn–dusk potential
energy gain. A possible explanation is that diffusion processes of particles play an
important role in the magnetotail. If the spatial diffusion in the dawn–dusk direction
is effectively occurring, the asymmetry of the energetic particle distribution will be
smeared out. There is no energy gain during the diffusion process caused by elastic
scattering, because the potential energy gain/loss can be compensated by the energy
loss/gain from the waves whose scattering centers are embedded in the convecting
plasma. In this case, the maximum energy of particles might even exceed the avail-
able potential energy under the reconnection acceleration with the diffusion process.

3.6.3 Acceleration of test particles under MHD reconnection fields
The direct energization of charged particles in reconnection is provided by the

interaction of the particles with an electric field around the X-type region. In
the earliest exploration of particle acceleration during reconnection, people used
test particle modeling, where a model of the spatial variation of the time-dependent
magnetic and electric fields is given, and they calculated the particle motion and
its energization by integrating the Lorentz equation in time. The test particle
calculations based on the magnetic and electric field structure obtained by a resistive
MHD simulation demonstrated the production of suprathermal particles by moving
in the direction of the electric field over a substantial distance (e.g., Sato et al., 1982;
Scholer and Jamitzky, 1987; Birn and Hesse, 1994). Time-dependent, strong electric
fields generated near the X-type reconnection region in association with a pair of slow
shocks are demonstrated as a primary energy source of the reconnection acceleration.
In addition to the above acceleration mechanism, Ambrosiano et al. (1988) suggested
that small-scale MHD turbulence generated in the plasma sheet under a high
magnetic Reynolds number enhances the particle acceleration through stochastic
scattering.4

Frequently, reconnection is considered to evolve in a steady-state manner, with
the amplitude of the reconnection electric field more or less constant in time. But
it is also postulated that reconnection is nonstationary, and in such a nonsteady
reconnection regime the particle acceleration efficiency may be boosted up. Sakai
and Ohsawa (1987) discussed a driven reconnection scenario by assuming that the
lateral magnetic influx increases in time, and showed the transition to explosive
reconnection. Bulanov and Sasorov (1975), Zelenyi et al. (1984, 1990), and Deeg et al.
(1991) have demonstrated the formation of a power-law type energy spectrum from
inductive electric fields that grow exponentially in time.

While the above theoretical studies of particle acceleration basically assume that
the main acceleration occurs around an X-type region, a more general current sheet
may involve multiple X-points in a filamentary current sheet, which also implies
intervening magnetic islands with O-points. The magnetic islands might play an
important role in trapping particles inside the islands, and if a finite electric field

4 In Section 4.4 we will discuss test particle simulation results that indicate that, in the geomag-
netic tail, betatron or Fermi-type acceleration in the collapsing magnetic field earthward of an
X-type neutral line may be more significant than the acceleration in the immediate vicinity of the
neutral line.
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3.6 Nonthermal particle acceleration 159

exists over the plasma sheet, strong particle acceleration can be expected in and
around the magnetic islands as well (Kliem, 1994).

3.6.4 Turbulence and wave scattering
Processes responsible for nonthermal high-energy particles are likely to

violate adiabatic particle motion, and several waves may contribute to nonadiabatic
processes through wave–particle scattering. As noted in Section 3.6.2, the energetic
particle distributions do not show clear dawn–dusk asymmetry in the magnetotail,
which may be suggestive of a diffusion process across the magnetic field. There
has been accumulating evidence that the plasma sheet is in a turbulent state (e.g.,
Kennel, 1995), and the electric and magnetic field turbulence is believed to be the
primary mechanism by which heating and dissipation takes place through scattering
of particles.

The frequency band of the turbulence ranges from below the ion cyclotron freq-
uency (of the order of 0.1 Hz in the Earth’s magnetotail) to the plasma frequency (of
the order of 10 kHz). The observed Fourier power spectral density of the magnetic
fields can be approximated by a double power-law spectrum in the MHD
range (Hoshino et al., 1994; Bauer et al., 1995). Above MHD frequencies, three diffe-
rent types of wave modes are observed (Gurnett et al., 1976). The most intense waves
are broadband electrostatic noise bursts observed in the outer plasma sheet boundary
layer (PSBL) in association with large plasma flows, the other two are whistler mode
magnetic noise bursts and electrostatic electron cyclotron waves. The whistler waves
are also observed in the same region as the broadband electrostatic noise, and are
thought to be associated with regions carrying substantial field-aligned currents.

Concerning the large number of waves observed in the Earth’s magnetotail, we
briefly mention the current understanding of two main generation mechanisms. In the
outer plasma sheet boundary regions, an anisotropic ion beam velocity distribution
function is often observed during the reconnection phase. The distribution consists
of cold incoming ions streaming toward the diffusion region and accelerated outgoing
ions. The outgoing ions are thought to be generated in the diffusion region and to be
ejected along the reconnecting magnetic field lines (e.g., Hoshino et al., 1998). This
outgoing distribution is called the PSBL ion beam. It is expected that the PSBL ion
beams can excite Alfvénic/whistler waves propagating along the magnetic field due
to the firehose/ion beam cyclotron instability. Arzner and Scholer (2001) performed
a large-scale hybrid simulation of reconnection and demonstrated the generation of
the PSBL ion beams and the emission of the Alfvénic/whistler waves in the plasma
sheet boundary layer, which in turn lead to the evolution of MHD turbulence and
the resultant ion thermalization.

Inside the plasma sheet and around the plasma sheet boundary, broadband waves
with frequencies from the lower-hybrid frequency to the plasma frequency are also
believed to be important for particle scattering (Okada et al., 1994; Cattell et al.,
1994). Modern, high-time-resolution satellite measurements show that the broadband
electrostatic waves are localized, large-amplitude, electrostatic waves with a series of
coherent wave forms, now called ESW (Kojima et al., 1994). The scale of ESW is
probably tens of electron Debye lengths, but the amplitude is 10 to 100 times that of a
large-scale reconnection electric field induced by the global MHD flow (Cattell et al.,
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160 Basic theory of collisionless reconnection

1999). Therefore, the small-scale ESW might appear to control the global dynamics
including the electron heating and acceleration. The emission mechanism may be
attributed to the electron beams generated around the diffusion region in a similar
way to the PSBL ion beams, and the waves are excited by either electron bump-in-tail
instability (Omura et al., 1994) or Buneman instability (Drake et al., 2003).

3.6.5 Strong acceleration during reconnection
As stated in Section 3.6.3, the earliest particle acceleration studies were done

in the framework of prescribed fields or fields computed from resistive MHD recon-
nection models. It is important to explore the particle acceleration in a self-consistent
system of a full particle simulation where the feedback of particle motions via the
electric current into the electric and magnetic fields is taken into account. Larger
amplitude waves could be generated through kinetic instabilities in the collisionless
plasma system. As discussed earlier, the thickness of the plasma sheet is known
to become as small as the ion inertia scale before onset of magnetic reconnection,
and the plasma sheet that governs the macrodynamics also governs the microscale
phenomena. Therefore the microscale plasma dynamics will strongly couple with the
macroscale physics. Then we need kinetic modeling of particle acceleration beyond
the MHD description. Here we discuss energetic electron acceleration processes
obtained by using a full-particle simulation (Hoshino et al., 2001b).

This particle simulation was carried out in two-dimensional (x, z) coordinate space,
assuming the Harris solution (Harris, 1962) as the initial condition. In the early phase,
a localized external electric field drives the evolution from the outer boundary to
initiate reconnection in the center of the simulation box. As time goes on, an X-type
neutral line is formed, and in association with the energy conversion from magnetic
to kinetic energy, the reconnection outflow in the plasma sheet is ejected from the
X-type neutral point. In contrast to resistive MHD models, the energy dissipation
around the X-type magnetic diffusion region is provided by particle inertia due to
inverse Landau resonance of particles with the reconnection electric field and by the
resultant electron pressure anisotropy (Section 3.2).

Figure 3.37 shows a snapshot of the nonlinear evolution of reconnection at t/τA∼
48.8, where τA is the Alfvén transit time for crossing the plasma sheet. The top panel
shows magnetic field lines in the x, z plane (i.e., the reconnection plane), and the
bottom panel shows the magnetic field component perpendicular to the reconnec-
tion plane Bz, which is generated by Hall electric currents in the thin plasma sheet
(Section 3.1).

Figure 3.38 shows energy spectra of electrons integrated over all pitch angles in
the whole simulation domain. In the early phase of reconnection before t/τA∼41.7,
we find that the electrons are gradually thermalized with time, and the spectra
are approximated by a thermal Maxwellian. In the late phase at t/τA ∼48.8, the
enhancement of suprathermal electrons above the thermal Maxwellian can be clearly
seen. By analyzing the positions of those energetic particles, we found that most
energetic electrons of εele/(mec

2) ≥ 0.1 are situated in the X-type region and around
the boundary between the lobe and the plasma sheet, i.e., around the separatrix of
reconnecting magnetic field lines.
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In order to understand how and where the electrons get their energies, we have
analyzed electron trajectories in the reconnection region. Figure 3.39 shows several
typical trajectories. The starting points of the trajectories are denoted S1, S2, etc.,
while the end points are labeled E1, E2, etc. The S1–E1 curve is one of the most
typical orbits showing particle acceleration. The electron is initially accelerated near
the X-type region by moving in the negative electric field direction, and is ejected
along the magnetic field line at the separatrix boundary. The particle with the S2–E2
trajectory gains much larger energy than the S1–E1 electron does, during several
bounce motions in the reconnecting magnetic fields with mirror geometry. The energy
gain is provided by the curvature and ∇B drift motions toward the negative y direc-
tion. It is important to note that the ratio between the magnetic field curvature
radius and the gyroradius, κ, is almost unity in the central plasma sheet, and that a
particle with κ∼1 is effectively scattered toward a weak magnetic field region, and has
a tendency to stay for a longer time in the plasma sheet (e.g., Delcourt et al., 1996).
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Fig. 3.39. Typical electron trajectories obtained in a particle-in-cell simulation.
The left panels show trajectories in the x, z plane (top) and in the x, y plane
including the reconnection motional electric fields Ey (bottom). The right-hand
panels are a schematic view of the magnetic field lines in the x, z plane and the
electric field in the x, y plane.

The S3–E3 trajectory around x/λ = −7.5 is an example of the cross-field diffusion.
The electron is scattered towards the stronger magnetic field region and the positive
electric field y direction. The orbit S4–E4 shows pitch-angle scattering, with a change
of the pitch of the gyromotion around x/λ = −8 and −10. We suggest that these
trajectories represent the basic scattering processes that play important roles in
particle acceleration.

Figure 3.40 shows the wave spectra obtained in the magnetic field pile-up region,
where the reconnection outflow plasma collides with the pre-existing plasma. The
vertical and horizontal axes are the wave power of (E2

x +E2
z ) and the wave frequency,

respectively. The wave power is normalized by (vAB/c)2, and the wave frequency
is normalized by the electron plasma frequency at the plasma sheet at t = 0. The
spectrum denoted by the dashed line is taken at the boundary between the lobe and
the plasma sheet at (x/λ, z/λ) = (−7,2), while the solid line is the spectrum inside
the plasma sheet at (x/λ, z/λ) = (−7,0). Inside the plasma sheet, we find that the
low-frequency waves are strongly enhanced. Around the plasma sheet boundary layer,
a broadband spectrum from the low frequency to the plasma frequency can be seen.
The spectrum bump around ω/ωpe∼0.7 corresponds to the local plasma frequency,
i.e., Langmuir waves. Since we can see the signature of an accelerated electron beam
in the distribution function taken around the boundary (Hoshino et al., 2001a), the
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Fig. 3.40. Turbulent wave spectra obtained in the magnetic field pile-up region
where the reconnection plasma outflow collides with the O-type magnetic island.

Langmuir waves are thought to be excited by the fast electron beams. The electron
beams are generated in and around the X-type region due to the reconnection electric
field Ey, and after their energization the accelerated high-speed electrons are ejected
along the magnetic field in the boundary between the lobe and the plasma sheet,
which in turn excite a strong coherent wave in the plasma frequency band probably
through the bump-in-tail instability.

From the above simulation results, we can conclude the following conventional
acceleration scenario. The electrons gain their energy around an X-type neutral
region during the Speiser/meandering motion (Speiser, 1965; Section 4.4), and those
pre-accelerated electrons are transported outward together with the reconnecting
magnetic field lines. Around the magnetic field pile-up region formed by the interac-
tion between the fast reconnection outflow and the pre-existing plasma sheet, those
unmagnetized particles are further accelerated with the aid of particle scattering
which breaks down the adiabatic motion (see Fig. 3.39).

So far we have discussed particle acceleration mainly for (perpendicular) elec-
tric fields in the form of the inductive/convection electric field. The electrostatic
fields parallel to the magnetic fields may play an important role also, not only for
wave–particle scattering but also for strong acceleration. Parallel electrostatic fields
have been used to explain particle acceleration in many phenomena such as auroral
electron acceleration. They are known to arise from the interruption of the parallel
current due to plasma instabilities and from the formation of double layers of electric
charge. Recently Drake et al. (2003, 2005b) explored the acceleration of particles
in a configuration with a guide magnetic field. Magnetized electrons can be effi-
ciently accelerated along the guide field, and those accelerated electrons form an
electron beam, which can become faster than the electron thermal speed during
reconnection. They showed that the beam electrons can drive strong electrostatic
waves in the waveform of ESW in association with electron phase-space holes. The
electron hole acceleration may be regarded as one class of field-aligned potential
drop acceleration processes. The electron hole acceleration is not static but rather
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originates in a highly dynamic evolution during the magnetic energy dissipation
phase.

A series of large-amplitude electrostatic waves was also found in a reconnection
simulation without guide magnetic field. Figure 3.41 shows a snapshot of the electric
field Ex obtained in the full particle simulation with a forced boundary condition.
The simulation parameters are the same as those discussed in Figs. 3.37 through 3.39,
but in addition finite plasma inflow was driven continuously from the top and bottom
boundaries. In such a system, one can expect fast and well-developed reconnection
with large-amplitude waves. In Fig. 3.41 the amplitudes of the coherent electrostatic
waves Ex are found to be several times the magnitude of the inductive electric field
Ey, with wavelengths intermediate between electron and ion inertia scales. For spon-
taneous reconnection in Fig. 3.40, we had already found a signature of Langmuir
wave emission, but the amplitudes remained small. The large-amplitude waves in
Fig. 3.41 are produced as the result of the nonlinear evolution of the Langmuir waves
seen in Fig. 3.40.

In addition to a series of the large-amplitude electrostatic waves propagating along
the outer plasma sheet boundary, we also found a pair of polarized V-shape regions
near the X-type region. The electric field vectors are directed outward from the X-
type region, and ambipolar electric fields are known to be produced in association
with Hall electric currents in a thin current sheet (Hoh, 1966; Hoshino, 1987). In the
driven system, we find a pair of polarized regions, which has stronger electric field
than that seen in spontaneous reconnection, which may play an important role in
acceleration. Recently, Hoshino (2005) discussed that some electrons can be trapped
by the electrostatic potential well of the polarization field, and during the trap-
ping phase electrons can gain their energies from the convection/inductive reconnec-
tion electric field due to the so-called surfing acceleration mechanism (e.g., Sagdeev
and Shapiro, 1973; Katsouleas and Dawson, 1983). Hoshino (2005) found that rela-
tivistic electrons with MeV energies are quickly generated, and the energy spectrum
shows a better-developed nonthermal tail than that seen in Fig. 3.38. Although these
large-amplitude electrostatic waves are believed to be important for plasma heating
and acceleration, there remain many fundamental and theoretical questions to be
solved.
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3.6 Nonthermal particle acceleration 165

3.6.6 Discussions and remaining problems
From the observational and theoretical studies, it is now understood that

magnetic reconnection can provide efficient acceleration of particles to suprathermal
energies, but in spite of enormous progress many issues still remain unsolved. One
of the important issues is whether or not reconnection can generate a power-law
energy spectrum. As stated earlier, magnetic energy dissipation is believed to be
important for nonthermal particle acceleration in many astrophysical applications. In
the terrestrial magnetosphere, the energy spectrum is approximately given by a power
law in the high-energy range with a slope of about 3–7 (e.g., Baker and Stone, 1977;
Øieroset et al., 2002). In solar flares where reconnection is regarded as one possible
acceleration model, the power-law index of suprathermal particles is about 2.5–7 as
well. In most space physics and astrophysics contexts, the production of nonthermal
particles is more often attributed to the stochastic/diffusive shock acceleration (e.g.,
Blandford and Ostriker, 1978), because the diffusive shock acceleration can explain
the ubiquitous power-law spectrum with an index of 2, which depends weakly on
plasma parameters. Contrary to the diffusive shock acceleration, the reconnection
acceleration seems to generate softer energy spectra from the observational point of
view. Zenitani and Hoshino (2001, 2005) and Jaroschek et al. (2004), however, found
that reconnection can produce a very hard energy spectrum with a power-law index
of unity in the relativistic regime where the Alfvén speed vA and the thermal velocity
are close to the speed of light c. It is still an open question how the nonthermal energy
spectrum depends on plasma parameters such as temperature and guide magnetic
field, etc.

Another important issue is the spatial energetic particle distribution. The acceler-
ation is basically provided by the inductive/convection electric field in reconnection,
and a localization or spatial separation of energetic particles is expected from the fact
that ions are accelerated parallel to the electric field and electrons in the antiparallel
direction. However, as we stated in Section 3.6.2, dawn–dusk asymmetries of the
energetic particles are not clearly seen at least up to several tens of keV. If diffu-
sion due to wave–particle scattering takes effect substantially during acceleration,
the asymmetry of the energetic particle distribution in the electric field direction is
smeared out, because the potential energy gain/loss is always compensated by the
energy loss/gain from the wave during the scattering. Furthermore, for wave–particle
interaction, the maximum energy may even exceed the available potential energy.
However, it is a controversial issue that the diffusion process plays an important role
in plasma transport in the magnetotail. (Another possible explanation, discussed
further in Section 4.4, is that betatron and Fermi-type acceleration in the collapsing
field earthward of the reconnection site are more important than acceleration near
the X-type neutral line.)

Finally we would like to comment on multiscale coupling. It is well known
that electric and magnetic field turbulence act to heat the plasma through
scattering of particles, but, in addition to this standard paradigm, it has been
suggested that coherent, small-scale, large-amplitude electric field waves, often
observed in key regions of the terrestrial magnetosphere, are responsible for elec-
tron energization. The spatial scale of the small-scale waves is several tens of
Debye lengths, but the amplitudes of the waves are 10 to 100 times that of the
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motional electric field induced in the MHD scale. Then it is proposed that the
microscale processes appear to control the global dynamics. This kind of multiscale
coupling process is beginning to shed light not only on space plasma phenomena
but also on high-energy astroplasma physics. These observational and theoretical
studies are also the key problems of future missions such as MMS/NASA and
SCOPE/JAXA that focus on the potentially rich multiscale structuring plasma
phenomena that result from the coupling of the MHD scale to the scale of electron
kinetics.
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