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Spectrum of Magnetohydrodynamic Turbulence
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We propose a phenomenological theory of strong incompressible magnetohydrodynamic turbulence in
the presence of a strong large-scale external magnetic field. We argue that in the inertial range of scales,
magnetic-field and velocity-field fluctuations tend to align the directions of their polarizations. However,
the perfect alignment cannot be reached; it is precluded by the presence of a constant energy flux over
scales. As a consequence, the directions of shear-Alfvén fluid and magnetic-field fluctuations at each scale
� become effectively aligned within the angle �� / �

1=4, which leads to scale-dependent depletion of the
nonlinear interaction and to the field-perpendicular energy spectrum E�k?� / k

�3=2
? . Our results may be

universal, i.e., independent of the external magnetic field, since small-scale fluctuations locally experience
a strong field produced by large-scale eddies.
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1. Introduction.—Magnetohydrodynamic (MHD) turbu-
lence is pervasive in astrophysical systems, where ranges
of scales available for plasma fluctuations span many
orders of magnitude, and the fluctuations commonly pos-
sess power-law spectral distributions; see, e.g., Ref. [1].
For example, the spectrum and structure of MHD fluctua-
tions are relevant for the physics of solar wind, interstellar
scintillation, cosmic-ray propagation in galaxies, and heat
conduction in cooling flows in galaxy clusters.

The spectrum of MHD turbulence was first addressed by
Iroshnikov [2] and Kraichnan [3], who proposed the physi-
cal framework for describing the turbulent energy cascade
mediated by a guiding magnetic field. However, recent
numerical and analytic works have challenged these stan-
dard results and revived substantial interest to the funda-
mentals of strong MHD turbulence [4–14]. To formulate
the problem and to set the notation, we first describe the
Irosnikov-Kraichnan [2,3] and Goldreich-Sridhar [4] theo-
ries, and point out some discrepancies of these theories
with recent high-resolution numerical findings. Then, we
propose a new model for MHD turbulence, which is free of
such discrepancies, and which explains the results of nu-
merical simulations [8–11].

Consider a conducting fluid stirred by a random force
with the correlation length �0. The system size is larger
than �0, and the viscosity and resistivity of the fluid are
very small. The goal is to find the stationary energy spec-
trum of the resulting turbulent fluctuations in the inertial
interval of scales, �� �0. Let us split the magnetic field
into two parts, B�x; t� � B0 � b�x; t�, where B0 � hBi is
the system-size averaged magnetic field, and b�x; t� is the
fluctuating part. The MHD equations describing the evo-
lution of the magnetic field and of the fluid-velocity field
v�x; t� can be represented in the so-called Elsässer varia-
bles, z � v� b and w � v� b:

@tz� �VA � r�z� �w � r�z � �rP; (1)
06=96(11)=115002(4)$23.00 11500
@tw� �VA � r�w� �z � r�w � �rP; (2)

where VA � B0=
����������
4��
p

is the Alfvén velocity, � is the fluid
density, P is the pressure that is determined from the
incompressibility condition, r � z � 0 or r � w � 0, and
we omit the terms representing large-scale forcing and
small viscosity and resistivity.

To present the standard arguments of Iroshnikov and
Kraichnan, let us note that owing to the symmetric form
of system (1) and (2) two classes of exact solutions exist.
For w � 0, any function z � g�r� VAt� is the solution of
the system; analogously, for z � 0, the solution is given by
an arbitrary function w � h�r� VAt�. From the form of
the nonlinear terms in system (1) and (2), one observes that
Alfvén-wave packets, or ‘‘eddies,’’ propagating in the
same direction along B0 do not interact. One therefore
has to investigate interactions or eddies propagating in
opposite directions.

Consider a wave packet of size � propagating along
the large-scale field B0. We denote the correspond-
ing perturbations (i.e., typical variations across the eddy)
of the velocity and magnetic fields by �v� and �b�; in
the Alfvén wave, �v� 	 �b�. Its interaction with the
counter propagating packet of the same size occurs during
time �=VA. As follows from (1) and (2), during one inter-
action the eddies are deformed only slightly, ��v� 	
��v2

�=����=VA�. Since different eddies are not corre-
lated, the perturbations add up randomly, so the eddy is
deformed considerably only after a large number of inter-
actions, N 	 ��v=��v��

2. The time of energy transfer to a
smaller eddy can thus be estimated as �IK��� 	 N�=VA 	
�=�v��VA=�v��. This time is larger than the Kolmogorov
dynamic time, ���� 	 �=�v�, by the Alfvén factor
VA=�v�. Assuming that the energy flux over scales is
constant, �v2

�=�IK � const, we obtain the Iroshnikov-
Kraichnan energy spectrum,

EIK�k� � hj�v�k�j2ik2 / k�3=2: (3)
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The essential assumption of the Iroshnikov-Kraichnan
picture is that the eddy size is the same in the field-parallel
and field-perpendicular directions. However, numerical
and observational data accumulated for the last 30 years
indicate that in MHD turbulence the energy transfer occurs
predominantly in the field-perpendicular direction; see,
e.g., Refs. [1,7]. This raises the question whether anisot-
ropy is crucial for the energy cascade, and whether it
changes the spectrum of turbulence.

An elegant treatment of anisotropic MHD turbu-
lence was proposed by Goldreich & Sridhar [4]. They
suggested that as the energy cascade proceeds to smaller
scales, turbulent eddies progressively become elongated
along the large-scale field. Their field-parallel and field-
perpendicular scales are found from the so-called critical-
balance condition. This condition follows from two differ-
ent estimates that are equivalent in the Goldreich-Sridhar
picture. First, the field-parallel scale of an eddy is found
from formal balance of the linear and nonlinear terms in
the MHD equations (1) and (2), VA=l	 �v�=�. Second,
the field-parallel scale of an eddy can be obtained from the
requirement that the magnetic field-line displacement in
the eddy, �	 �b�l=VA, be comparable with the field-
perpendicular eddy size, �. The shape of the turbulent
eddy in the Goldreich-Sridhar theory is schematically pre-
sented in Fig. 1. As a result, two counter propagating
eddies are deformed strongly during only one interaction,
and the energy-transfer time is given by the Alfvén cross-
ing time, �GS 	 l=VA 	 �=�v�. The Goldreich-Sridhar
theory thus predicts that due to local anisotropy, the
energy-transfer time is reduced to the Kolmogorov esti-
mate. The field-perpendicular energy spectrum is obtained
from the condition of constant energy flux, �v2

�=�GS �
const, which gives

EGS�k?� � hj�v�k?�j2ik? / k
�5=3
? ; (4)

where �v�k?� �
R
�v�x?� exp��ik? � x?�d2x?.
B
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FIG. 1 (color online). Sketch of a turbulent eddy in the
Goldreich-Sridhar picture. The large-scale magnetic field is in
the vertical direction. The field-perpendicular dimensions of the
eddy are the same, while its field-parallel scale is l / �2=3. As
the turbulent cascade proceeds toward the smallest, dissipative
scales, �! 0, the Goldreich-Sridhar eddy assumes the shape of
a filament.
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Recent high-resolution numerical simulations of MHD
turbulence in a strong external magnetic field indeed con-
firmed the elongation of turbulent fluctuations along the
large-scale magnetic field [6–9]. However, the field-
perpendicular energy spectrum was consistently found to
be close to E�k?� / k

�3=2
? [8–11]. Obviously, such a spec-

trum combined with the anisotropy of fluctuations contra-
dicts both the Iroshnikov-Kraichnan and the Goldreich-
Sridhar phenomenologies. This controversy motivated
our interest in the problem.

In this Letter we argue that filamentlike eddies are, in
fact, nonrealizable. We propose that the small-scale turbu-
lent eddies spontaneously develop angular alignment of
their magnetic-field and velocity-field polarizations, which
leads to their local anisotropy in the field-perpendicular
plane. This effect is similar to the dynamic alignment
known in the case of decaying MHD turbulence, where
magnetic and velocity fluctuations approach the configu-
ration v�x� � b�x� or v�x� � �b�x�, depending on the
initial conditions [15–17]. In the aligned state, the non-
linear interaction is zero; see Eqs. (1) and (2).

We propose that in the case of driven turbulence the
tendency to dynamic alignment is preserved; however, the
precise alignment cannot be reached. The reason is an
energy cascade toward small scales, which should be
maintained by nonlinear interaction. We thus argue that
at each scale �, the alignment of fluctuations should reach
the maximal level consistent with a constant energy flux
through this scale. We demonstrate that this is achieved
when the velocity and magnetic-field fluctuations �v� and

�b� align their directions within the angle �� / �1=4.
The dynamic alignment in driven turbulence thus becomes
scale dependent. Quite remarkably, this leads to the field-
perpendicular energy spectrum E�k?� / k

�3=2
? , which ex-

plains the numerical observations and resolves the above
mentioned controversy.

As another important result, in our theory small-scale
eddies can be viewed as sheets or ‘‘ribbons,’’ stretched
along the magnetic-field lines. This explains the well-
known numerical fact that the dissipative structures in
MHD turbulence are microcurrent sheets rather than fila-
ments, as in, e.g., Refs. [1,5,8]. In the next section we
introduce our model of anisotropic MHD turbulence.
Preliminary results on the dynamic alignment in driven
MHD turbulence can be found in our earlier work [18].

2. Structure and spectrum of MHD turbulence.—As one
can check, the MHD equations (1) and (2) conserve the
integrals

R
z2d3x and

R
w2d3x, if the fluctuations w�x� and

z�x� have periodic boundary conditions or vanish at infin-
ity. These integrals can be expressed through the integral of
energy

E �
1

2

Z
�b2 � v2�d3x; (5)

and the integral of cross helicity,
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FIG. 2 (color online). Anisotropic turbulent eddy in our pic-
ture. The large-scale magnetic field is in the vertical direction.
The field-perpendicular dimensions of the eddy are � and � /
�3=4, and the eddy size in the field-parallel direction is l / �1=2.
As the energy cascade proceeds toward the smallest, dissipative
scales, �! 0, the eddy assumes the shape of a current sheet.
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HC �
Z
�v � b�d3x: (6)

In the unforced case, both integrals decay due to small
viscosity and resistivity of the fluid. However, dissipation
of cross helicity is not sign definite, and, therefore, the
integral of cross helicity decays more slowly than the
integral of energy, as in, e.g., Ref. [1]. As a result of such
‘‘selective decay,’’ turbulence approaches the perfectly
aligned configuration b�x� � v�x� or b�x� � �v�x� de-
pending on the initial conditions. This behavior is known
as the dynamic alignment or the Alfvénization effect [15–
17]. In the aligned state, either z�x� or w�x� is identically
zero and nonlinear interaction vanishes.

We propose that a similar effect is present in driven
MHD turbulence, since the external force locally produces
large-scale fluctuations of cross helicity, which are then
inherited by smaller-scale eddies. Both E and HC cascade
toward small scales; however, the cascade rate of cross
helicity may generally be smaller than that of energy,
which forces fluid and magnetic fluctuations to align their
polarizations at each given scale. However, the precise
alignment cannot be reached; it would be inconsistent
with the constant energy flux over scales. Instead, the
alignment of fluctuations should saturate at the maximal
level that can be achieved in the presence of such a flux.

Let us first describe the shape of the eddy, which would
be dictated solely by a constant energy flux, without any
constraints imposed by the cross helicity conservation (this
derivation was first proposed in Ref. [18]). Assume that
directions of shear-Alfvén velocity- and magnetic-field
fluctuations �v� and 
�b� are aligned within some
(small) angle �� in the field-perpendicular plane. As one
can directly check, this leads to depletion of the nonlinear
interaction in Eqs. (1) and (2): �w � r�z	 �z � r�w	
���v2

�=�. Similarly to the Goldreich-Sridhar critical bal-
ance, the eddy elongation in the field-parallel direction is
found from balancing the linear and nonlinear terms in
Eqs. (1) and (2), l	 VA�=��v����. The energy-transfer
time is then calculated as the Alfvén crossing time, �N 	
l=VA 	 �=��v����. It is important that such turbulence is
strong and essentially three-dimensional.

To determine the shape of the eddy, we require that the
energy flux be constant for all scales, �v2

�=�N � const.
This leads to the scaling of velocity fluctuations �v� /
��=���

1=3. The displacement of magnetic-field lines is
given by �	 �v�l=VA, and the correlation length of fluc-
tuations in the field-displacement direction cannot be
smaller than �. Remarkably, the obtained shape of the
eddy satisfies �=�	 ��, so it is indeed consistent with
the assumed alignment of fluctuations within the angle ��.
Note that, in contrast with the Goldreich-Sridhar picture, in
our model the eddy is three-dimensionally anisotropic, l�
�� �; see Fig. 2.

It is natural to assume that turbulent fluctuations are
scale invariant, which means that �� is a power-law func-
tion of �. We may parametrize �� / �	=�3�	�, which leads
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to �v� / �1=�3�	�, � / �3=�3�	�, l / �2=�3�	�. We thus ob-
tain that the sole requirement of constant energy flux does
not define the eddy shape uniquely, but leads to a one-
parameter family of solutions. The theory is self-consistent
for an arbitrary parameter 	 � 0. (Note that the Goldreich-
Sridhar model is a particular solution corresponding to
	 � 0.) In order to address the crucial question about the
value of 	, we now have to use the second conserved
quantity—cross helicity. In other words, we want to find
	 that minimizes the total angular mismatch between the
shear-Alfvén velocity and magnetic-field polarizations in
the eddy.

The mismatch angle in the field-perpendicular (horizon-
tal) plane is �� / �	=�3�	�. However, the polarization vec-
tors are also mismatched in the vertical direction. To obtain
the vertical alignment angle, ~��, we note that, in the regime
of strong turbulence, eddies propagating along a large-
scale magnetic field interact efficiently during only one
crossing time. Therefore, only the local direction of the
magnetic field matters, and when we speak about eddy
elongation in the field-parallel direction, l, we should mean
the eddy dimension along the local magnetic field (this was
established by Cho & Vishniac [6]). It is, however, impor-
tant to note that the direction of the local magnetic field at
the scale � cannot be defined precisely. Since the corre-
sponding eddy contains magnetic-field lines wandering
within the angle ~�� 	 �=l / �1=�3�	�, the direction of the
local magnetic field can only be defined with the same
accuracy. This means that the directions of shear-Alfvén
velocity-field and magnetic-field fluctuations are aligned in
the vertical direction within the angle ~��, as is sketched in
Fig. 3. Since both alignment angles, �� and ~��, are small,
the total angular mismatch between shear-Alfvén �v� and


�b� can be calculated as �� �
�����������������
�2
� �

~�2
�

q
.

Following our strategy, we now require that the align-
ment angle �� be minimal. We observe, however, that the
obtained shape of the eddy precludes us from achieving the
2-3
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FIG. 3 (color online). Sketch of three-dimensional angular
alignment of shear-Alfvén velocity and magnetic-field fluctua-
tions. The alignment angles consistent with an energy cascade
are given by � / �	=�3�	� and ~� / �1=�3�	�. The maximal align-
ment is achieved for 	 � 1 (see the text).
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perfect alignment, �� � 0. Indeed, if for a given small
scale �, we try to maximally align the polarizations in the
field-perpendicular (horizontal) direction; i.e., to minimize
�� / �	=�3�	�, we need to set 	! 1. In this case, the
fluctuations will be completely misaligned in the vertical
direction, ~� / �1=�3�	� 	 1. Similarly, if we try to maxi-
mally align them in the vertical direction, 	! 0, they
become misaligned in the horizontal plane. This ‘‘uncer-
tainty’’ is minimized when �� 	 ~��, in which case the
maximal angular alignment is achieved and preserved for
all scales. This determines the scaling parameter uniquely:
	 � 1. The resulting scaling of velocity fluctuations is
�v� / �

1=4, and the field-perpendicular energy spectrum
has the form

E�k?� / k
�3=2
? : (7)

The obtained structure and spectrum of turbulent fluctua-
tions is the main result of this Letter.

3. Discussion and conclusion.—It may be reasonable to
believe that an external magnetic field is not essential for
our derivation. Indeed, a local guiding field for small-scale
fluctuations is naturally provided by large-scale eddies, as
in, e.g., Refs. [7,8]. By this analogy, the spectrum of
isotropic MHD turbulence should have scaling (7) as
well. We note, however, that to observe this spectrum in
numerical simulations of isotropic turbulence one would
need to reach extremely high resolution (to ensure
�b�=�b�0

� 1), which is impossible with present day
computer power.

We also note that our theory naturally explains the
presence of ribbonlike dissipative structures (current
sheets) in numerical simulations of MHD turbulence
[5,8]. Indeed, the form of the eddy predicted in our model
converges to such a structure as �! 0.

On the observational side, MHD turbulence is invoked to
explain solar-wind measurements, as in, e.g., Ref. [19] and
interstellar scintillation; see, e.g., Ref. [20]. Although the
inferred spectra of magnetic-field and electron-density
fluctuations are broadly consistent with the �5=3 scaling,
there do exist indications in favor of ‘‘�3=2’’ in some
diffractive scintillation [21].
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In conclusion, we propose that similarly to decaying
MHD turbulence, driven MHD turbulence tends to align
the polarizations of shear-Alfvén magnetic- and velocity-
field fluctuations. However, the dynamic alignment cannot
be perfect: perfectly aligned fluctuations do not interact
and cannot carry energy flux. We therefore require that the
alignment be maximal under the constraint of constant
energy flux. Such a requirement defines the alignment
angle uniquely, �� / �1=4, which means that the strength
of nonlinear interaction in driven MHD turbulence is re-
duced by the factor / �1=4 compared to a simple dimen-
sional estimate ��v��2=�. The resulting fluctuations are
three-dimensionally anisotropic (Fig. 2), and their energy
spectrum is E�k?� / k

�3=2
? , in good agreement with nu-

merical results.
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