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ABSTRACT

We study weak Alfvénic turbulence of an incompressible, magnetized fluid in some detail, with a view to
developing a firm theoretical basis for the dynamics of small-scale turbulence in the interstellar medium. We
prove that resonant 3-wave interactions are absent. We also show that the Iroshnikov-Kraichnan theory of
incompressible, magnetohydrodynamic turbulence—which is widely accepted—describes weak 3-wave turbu-
lence; consequently, it is incorrect. Physical arguments, as well as detailed calculations of the coupling coeffi-
cients are used to demonstrate that these interactions are empty. We then examine resonant 4-wave
interactions, and show that the resonance relations forbid energy transport to small spatial scales along the
direction of the mean magnetic field, for both the shear Alfvén wave and the pseudo Alfvén wave. The three-
dimensional inertial-range energy spectrum of 4-wave shear Alfvén turbulence guessed from physical argu-
ments reads E(k,, k,) ~ Vv, Lk '3, where V, is the Alfvén speed, and v, is the velocity difference across
the outer scale L. Given this spectrum, the velocity difference across 4, ~ ki ' is v;, ~ vy (4,/L)*3. We derive a
kinetic equation, and prove that this energy spectrum is a stationary solution and that it implies a positive
flux of energy in k-space, along directions perpendicular to the mean magnetic field. Using this energy spec-
trum, we deduce that 4-wave interactions strengthen as the energy cascades to small, perpendicular spatial
scales; beyond an upper bound in perpendicular wavenumber, k, L ~ (V,/v;)*?, weak turbulence theory ceases
to be valid. Energy excitation amplitudes must be very small for the 4-wave inertial-range to be substantial.
When the excitation is strong, the width of the 4-wave inertial-range shrinks to zero. This seems likely to be
the case in the interstellar medium. The physics of strong turbulence is explored in Paper II.

Subject headings: ISM: general — MHD — turbulence

1. INTRODUCTION

Electron density fluctuations in the ionized interstellar
medium (ISM) scatter radio waves, giving rise to scintillation
of radio pulsars and compact radio sources (see Rickett 1990
and Narayan 1992 for reviews). The phenomenon was first
understood in its essence by Scheuer (1968), who explained
pulsar variability as an effect of the inhomogeneous, ionized
ISM. In his model, blobs of some characteristic scale (the scale
lying somewhere in the range 10°-10!'3 cm) scattered radio
waves. Lee & Jokipii (1976) proposed a power-law spectrum of
electron density fluctuations, extending from small scales
(<10'! c¢m) to parsec scales of interstellar clouds. They also
postulated a turbulent origin for the fluctuations, and sug-
gested that the power spectrum follows an isotropic
“Kolmogorov law.” The measurements of the decorrelation
bandwidths of several pulsars as a function of the frequency of
observation by Cordes, Weisberg, & Boriakoff (1985) showed
that deviations from the predictions of Scheuer’s single scale
spectrum were consistent with the Lee & Jokipii model.
Further support arrived with the explanation of long time
variability in pulsars and compact extragalactic radio sources
by Rickett, Coles, & Bourgois (1984) as refractive scintillation
on scales ~10'3-10'% cm. Observations of the fluctuations of
dispersion measures of pulsars (e.g., Phillips & Wolszczan
1991) provide more confirmation on similar scales. In
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summary, radio scattering observations seem to be consistent
with a three-dimensional electron density (fluctuation) power
spectrum of the form (wavenumber) ~% where a is close to 11/3,
over a range of scales 108-10'* cm. Armstrong, Cordes, &
Rickett (1981) note that an extrapolation of this power spec-
trum to scales ~ 100 pc is consistent with the known structure
of the ISM on these scales, and suggest that the spectrum
might well span 12 decades in wavenumber!

The long span (at least 6 decades in wavenumber) of the
density spectrum, and the closeness of the spectral index
(o =~ 11/3) to the Kolmogorov value for neutral fluids have lent
weight to the idea of a turbulent origin for the electron density
fluctuations—although Kolmogorov’s theory (and its more
sophisticated descendents) of turbulence in neutral fluids might
be of little relevance in the ionized ISM! The ubiquitous pres-
ence of an interstellar magnetic field (see, e.g., Heiles 1987) of
~3u gauss in the ionized ISM endows the magnetic field with
a non-negligible dynamical role. A theory of interstellar turbu-
lence should, presumably, be based on a theory of turbulence
in a magnetized plasma. Plasma turbulence being the noto-
riously complicated subject it is, one might do not too badly by
studying magnetohydrodynamic (MHD) turbulence. Montgo-
mery, Brown, & Matthaeus (1987) assume an equation of state
for a magnetized plasma, and estimate the density pertur-
bations from the pressure variations; the latter are estimated
from fluctuations of the velocity and magnetic fields. They
claim a Kolmogorov form for the density spectrum, although
they need to impose this form on the velocity and magnetic
field fluctuations. Higdon (1984) proposed that the density
fluctuations play a passive role, behaving like a passive scalar
contaminant that is advected (and mixed) by a turbulent veloc-
ity field. Drawing on work done by Montgomery (1982) on
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incompressible MHD turbulence, Higdon suggested that the
velocity and magnetic field fluctuations would be highly aniso-
tropic (in fact, nearly two dimensional), and concentrated in
directions perpendicular to the mean magnetic field. The elec-
tron density fluctuations were assumed to be isobaric entropy
fluctuations with oppositely directed gradients of density and
temperature. A nice feature of this model is that in the presence
of a strong mean magnetic field, transport coefficients trans-
verse to the field are drastically decreased compared to the case
without a strong mean field; small dissipation would allow the
inertial-range of MHD turbulence to reach small spatial scales,
thereby removing one difficulty in imagining a MHD turbulent
cascade extending to the small scales that give rise to diffrac-
tive scintillation. However, Montgomery’s theory is little more
than a plausibility argument that incompressible MHD turbu-
lence in the presence of a mean magnetic field might become
two-dimensional if only Alfvén waves could be excluded from
the dynamics! Since Alfvén waves form such a large part of the
dynamics, it seems worthwhile to study the dynamics of the
entire system, rather than modes that are nearly two-
dimensional to begin with anyway. In § 2 we shall have
occasion to comment on work of a similar nature done by
Shebalin, Matthaeus, & Montgomery (1983).

A theory of incompressible MHD turbulence due to Iroshni-
kov (1963) and Kraichnan (1965)—hereafter referred to as the
IK theory—is widely accepted. The physical picture of turbu-
lence in this theory is very appealing, but it is incorrect. The
reasons lie far below the surface. We discuss this in some detail
in § 2 as well as § 3. It seems to us that there does not exist even
a phenomenological picture of incompressible MHD turbu-
lence in the presence of a mean magnetic field. We begin a
study of this problem with a view to applying the results to
interstellar turbulence.

In this paper we study the turbulence that develops when an
incompressible, magnetized fluid is weakly perturbed. In § 2 we
discuss linear as well as nonlinear Alfvén waves. We outline the
elements of weak turbulence theory, and show that the IK
theory is based on resonant 3-wave interactions. Physical
arguments are used to demonstrate that these interactions are
absent, thereby rendering the IK theory incorrect. The reson-
ance relations for 4-wave interactions are analysed, and we
conclude on general grounds that 4-wave interactions forbid
transfer of energy to small spatial scales along directions paral-
lel to the mean magnetic field. Heuristic arguments are used to
guess the 4-wave inertial-range energy spectrum for shear
Alfvén waves. Interactions between waves strengthen as the
cascade proceeds to large perpendicular wavenumbers; the
assumptions on which weak turbulence theory is based are
violated to a greater degree at large perpendicular wavenum-
bers, thereby restricting the inertial-range of the 4-wave energy
cascade.

Our motivation for studying shear Alfvén waves derives
from a result of Barnes (1966) showing that, in a high § colli-
sionless plasma (where f is the ratio of gas pressure to mag-
netic pressure—for an incompressible, magnetized fluid, § is
formally infinite, while for the warm, ionized ISM f ~ 1), the
fast and the slow magnetosonic modes are heavily damped by
kinetic effects, while the shear Alfvén wave is not damped by
such an effect.

Section 3 provides a rigorous basis for the physical approach
taken in § 2. A variational principle is used to calculate the
coupling coefficients that govern resonant 3-wave and 4-wave
interactions. Resonant 3-wave interactions are shown to be

empty. A kinetic equation for 4-wave interactions is derived,
and we prove that the 4-wave energy spectrum that was
guessed in § 2 on physical grounds is indeed a stationary solu-
tion to the kinetic equation. We show in the Appendix that this
solution corresponds to a positive flux of energy traveling to
large perpendicular wavenumbers.

In § 4, we discuss the implications of the limitation of the
4-wave inertial-range, and mention issues that need further
investigation.

2. WEAK ALFVENIC TURBULENCE,; THE PHYSICAL PICTURE

2.1. Failure of the IK Theory, and Resonant
3-Wave Interactions

The dynamics of an incompressible, conducting fluid with
constant transport properties can be described by the follow-
ing equations of magnetohydrodynamics (MHD):

0,b=V x (v x b) +rV?b,
ov=—@w - Vo+(b-V)b—Vp+yVp, )
Vev=V:5=0,

where v is the velocity, b = B/(4np)*/* is the magnetic field in
velocity units and p is the ratio of total (mechanical plus
magnetic) pressure to the density. In this paper we assume that
the only role of the magnetic diffusivity (k) and the viscosity (y)
is to provide a sink at small spatial scales. Equations (1) allow
for a stable, static equilibrium in which v, = 0 and B, = B, 2.
Shear Alfvén waves and pseudo-Alfvén waves are the two linear
perturbations about this equilibrium; the latter is the incom-
pressible limit of the slow magnetosonic wave. Both kinds of
waves have the same dispersion relation, namely, w = V, | k,|,
where V, = B,/(4np)'/? is the Alfvén speed. The perturbed
velocity and magnetic field are related by v, = +b,, where the
upper/lower signs correspond to waves traveling antiparallel/
parallel to B, (with k, < 0 and k, > 0, respectively).

Weak turbulence theory (see, e.g., Zakharov, L’vov, & Falk-
ovich 1992) deals with the effects of the nonlinear terms (in the
equations of motion) in a systematic, perturbative manner.
When the nonlinear terms are ignored, the Fourier amplitudes
and phases of the waves are constant in time. However, the
nonlinearity will make the amplitudes change slowly, over
many wave periods. It is this secular change in the amplitudes
that measures energy transfer among the linear modes. A
“kinetic equation” for the rate of change of energy in a mode
with wavevector k describes how other modes in the system
affect the energy in this mode. To lowest order in the nonlin-
earity, the kinetic equation takes account of interactions
among modes taken three at a time. If the wavevectors of the
three modes are k,, k,, and k (clearly, kK must be one of the
three!), then they must satisfy a “ triangle equality,” namely

ky+k,=k. 2

This can be understood, mathematically, as simply arising
from performing a Fourier transform on quadratic quantities,
or physically, as conservation of momentum in every
“elementary interaction” among 3-waves. The slowness of the
secular change of the amplitudes implies that certain resonance
relations—between the frequencies of the modes that form an
elementary interaction—must be satisfied;

oy + 0, = k), ©)
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where w; = w(k;) (for Alfvén waves w; =V, |Z - k;|). Physi-
cally, this can be interpreted as the creation or annihilation of
“quanta” (or “quasi-particles ) in the classical limit of large
occupation numbers. The w’s are the energies of the quanta,
and equations (2) and (3) are statements of conservation of
momentum and energy respectively in every elementary inter-
action. The energy in a mode with wave vector k is equal to the
product of w, and the occupation number of the mode.
Although we find it convenient to phrase the physics in a
quantum-mechanical language, it must be understood that all
our considerations are entirely classical, and concepts such as
“quanta,” “ quasi-particles,” or “occupation numbers” are to
be interpreted in the limit that Planck’s constant becomes very
small, while quantities like the energy per mode remain finite.
When equations (2) and (3) can be satisfied, one says that a
“3-wave ” resonant interaction is allowed. When 3-wave reson-
ant interactions are forbidden (either because the dispersion
relation prevents egs. [2] and [3] from being satisfied, or
because the 3-wave resonant coupling coefficients vanish), one
must consider the effects of 4-wave resonant interactions. The
resonance relations (see eq. [4]) in this case can always be
satisfied. The elementary interactions are waves scattering elas-
tically off each other, and the number of quanta are conserved
(“two in and two out”). So long as the resonant coupling
coefficients do not vanish, 4-wave resonant interactions are
always permitted, and one need not usually worry about the
effects of higher order terms. It must be noted that the entire
formalism depends on the linear wave equations being valid as a
zeroth approximation. This means that, for problems dealing
with fluids, the displacement of a fluid particle must be much
smaller than a wavelength. After one has worked out a weakly
turbulent spectrum, one must determine the range of k over which
the displacement is smaller than k1.

Let 6v and 6b be the perturbations in velocity and magnetic
field respectively, about a static equilibrium in which vy =0
and B, = B, Z. If 6v(x) = — 0b(x) at some instant of time, t = 0,
it can be checked that dv(x, y, z — V,t) = —db(x, y, z — V. 1)
for all time, irrespective of the functional form of dv(x) (see
Parker 1979). This nonlinear solution (of eq. [1], with
y = k = 0) describes a wave packet of arbitrary form traveling
nondispersively in the direction of B,. Similarly, we can also
construct another class of nonlinear solutions, with év = 6b,
that travels nondispersively in a direction opposite to B,. Both
types of nonlinear solutions are stable, and the dynamics is
simple so long as there is no spatial overlap (“collisions”)
between oppositely moving wave packets. In the IK theory of
Alfvén turbulence, a collision between two oppositely moving
wave packets creates small distortions in each of the wave
packets, and successive collisions of one of these wave packets
with other oppositely moving wave packets are assumed to
add with random phases, until the distortions build up to an
amplitude of order unity; at that point the wave packet has lost
memory of its initial state and its energy has cascaded to a
smaller spatial scale. IK assume that the inertial-range energy
spectrum is isotropic in k-space, and that the energy transfer is
local in k-space (this is equivalent to assuming that only colli-
sions between oppositely moving wave packets of similar
spatial extent are effective in transferring energy to smaller
spatial scales). Then, the collision time for packets of size k™! is
of order (kV,)~!. If E(k) is the three-dimensional energy spec-
trum, the perturbation in the velocity, v,, on a spatial scale
A~k is v, ~ [E(k)k*]Y2 IK assume (from the form of the
nonlinear terms in eq. [1]) that the fractional change in the
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velocity (or the magnetic) perturbation is of order v,/V, <1
during one collision—this is equivalent to assuming 3-wave
interactions. Since subsequent collisions are assumed to con-
tribute with random phases, the number of collisions, N,
needed for a typical wave packet to lose memory of its initial
state is N ~ (V,/v,)> > 1. The cascade time on scale k™! is
teas ~ N, 1. Assuming a k-independent rate of energy transfer
per unit mass, v3/t,, ~ €, IK find that E(k) oc k~7/?> and v, oc
A4 (for comparison, the well-known Kolmogorov spectrum
for neutral fluids has E(k) oc k~11/3, giving v, oc 11/3). We noted
earlier that the IK theory is based on 3-wave interactions,
although neither Iroshnikov nor Kraichnan thought of their
theory as describing resonant 3-wave interactions. Let us
imagine that energy is injected into the fluid on some spatial
scale L, and that the velocity perturbation on this scale is
strong (v, ~ V,). Then, in just one (or at most a few) collisions,
energy will be transferred to a smaller scale (say, of order L/2).
As the transfer continues to smaller spatial scales (the inertial-
range), the velocity perturbations decrease [v; ~ Vi(4/L)"*].
Also N ~ (Vy/v;)* ~ (L/A)Y? > 1, implying that in the inertial-
range, it takes very many wave periods for energy to be trans-
ferred through, say, one octave in wavenumber. On some scale
k™1, the equality between the w’s in equation (3) is allowed to
be violated by Aw ~ t_,} ~ (w,/N), which can be understood as
an “uncertainty relation.” Since N increases with k, we expect
that the resonance relations must be satisfied ever more accu-
rately as we go deeper (larger k) into the inertial range. Even if
the excitation is strong to begin with (i.c., on scale L), the
interaction—and hence the turbulence—gets weaker as the
cascade proceeds. Therefore, in the inertial-range, the IK
theory is based on resonant 3-wave interactions. Moreover, N
increases with k, formally granting the theory an infinite
inertial-range, which is a desirable feature.

While the physical arguments given above for the IK picture
seem plausible, we argue below that the IK theory is basically
incorrect. The reason is that the resonant 3-wave coupling
coefficients vanish! Neither Iroshnikov nor Kraichnan took
account of the 3-wave resonance relations, since they did not
view their theories as being based on resonant interactions. We
have demonstrated that the IK theory is indeed based on res-
onant 3-wave interactions. Now, we examine the resonance
relations (eqs. [2] and [3]) and show that the resonant coup-
ling coefficients must vanish. We consider three cases:

(i) k,, and k,, have the same sign—The coupling coefficients
must vanish since there exist nonlinear, nondispersive packets
of arbitrary form.

(ii) k,, and k,, have opposite signs—From equations (2) and
(3) we have

klz+k2z=kz’ lk1z|+|k2z|=|kz'
For definiteness, let k,, > 0 and k,, < 0. When k,, # 0, these

equations do not have a solution, implying that oppositely
directed packets do not interact via the resonant 3-wave
process. This conclusion was reached by Shebalin, Matthaeus,
& Montgomery (1983). Moreover, they proposed that only
interactions with k,, =0 waves would survive, leading to
anisotropic turbulence; however, we shall see that this is incor-
rect since the k,, = 0 waves possess no power to contribute to
resonant interactions.

(iii) k,, = 0.—This is an interaction of a k;-wave with a
zero-mode to produce a k wave. If & = &, e™*+'** is the displace-
ment of a fluid particle corresponding to a zero-mode, then the
associated velocity and magnetic field (in velocity units) are

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994ApJ...432..612S

No. 2, 1994

proportional to w, & for linear waves. Since linear waves are all
that are used to construct resonant 3-wave couplings, a zero-
mode (for which w, = 0, by definition) makes no contribution
at all to resonant 3-wave interactions.

The IK theory, which is based on resonant 3-wave interactions
between oppositely directed wave packets, must be incorrect
since the couplings are empty in this case. At this stage there
does not seem to be a clear connection between the physical
picture of colliding wave packets and the 3-wave resonance con-
ditions. We defer the discussion of this point to Paper 11. Here
we wish to note that in a theory of Strong Alfvénic turbulence
that we develop there, the assumption of isotropy—that seems
innocuous enough in the IK theory—breaks down, leading to
long correlation lengths along the mean magnetic field, and
strong interactions which lead to a cascade so rapid that the
allowed violation of the w resonance conditions become of order
unity. What does survive from the IK theory is Kraichnan’s
insight into the nature of Alfvénic turbulence; that the cascade
results from collisions between oppositely directed packets.

2.2. Resonant 4-W ave Interactions

Since 3-wave interactions are absent, we must examine
4-wave interactions. There seems to be some misconception in
the literature regarding this; for instance, Bondeson (1985)
states that only resonant 3-wave interactions are possible since
equation (1) has only quadratic nonlinearities. This is incorrect
since, in general, the nonlinearities in the equations of motion
do not in any manner limit the order to which the equations
could be solved perturbatively! In § 3 we will analyze 4-wave
interactions in detail. Here, we reach some general conclusions
and explore the physics without using the specific form of the
4-wave couplings. The conservation laws that must be satisfied
for a 4-wave interaction are

ki +k,=ks+k,, 0,+0,=0;+ w0, . 4)

These describe an elastic scattering of two waves into two
other waves. The existence of the nonlinear solutions implies
that the coupling coefficients must vanish when &, and k, have
z-components of the same sign. So we need only consider cases
when their z-components are oppositely directed. For defi-
niteness, let k,, >0 and k,, < 0. Using w; = V,|Z - k;|, the
conservation laws imply that the z-components of k5 and &,
must also be oppositely directed. Let k3, > 0 and k,, <O.
From equation (4) we get

klz + k22 = k3z + k4z p klz - kzz = k3z - k4z . (5)

Therefore k,, = k;, and k,, = k,,; the scattering process
leaves the z-components unaltered. This implies that waves
with values of k, neither present initially nor subsequently
injected cannot be created by 4-wave interactions. Further-
more, since scattering conserves quasi-particle numbers, the net
result of 4-wave interactions is to shuffle quasi-particles around
in k-space without changing their k, components. Energy cannot
cascade along k,. The specific form of the couplings determines
how quasi-particles at k;, affect the shuffling of quasi-particles
atk,.

For an isotropic dispersion relation, w(k), and dw/dk > 0,
4-wave interactions usually result in a direct cascade of energy
and inverse cascade of quasi-particles. The inverse cascade
occurs because the creation of one quasi-particle with large w
(and large k) requires input from many quasi-particles with
middling values of w. Conservation of total number of quasi-
particles implies that many of these should be created at small
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o (and small k}—hence the inverse cascade. For the problem
being studied here, equation (5) implies that the w’s do not
change during an elementary scattering process. Therefore the
energy and quasi-particle budget are automatically satisfied
without the need to create many low-energy quasi-particles.
Hence there is no inverse cascade of quasi-particles.

A general incompressible perturbation is a linear com-
bination of shear and pseudo-Alfvén waves. Shear Alfvén waves
have v, = b, = 0, while pseudo-Alfvén waves in general have
nonzero v, and b,. We limit our further considerations to only
the shear Alfvén waves.? This is a consistent procedure since
the coupling between shear and pseudo-Alfvén waves is weak;
the fractional energy loss per wave period due to the gener-
ation of pseudo-Alfvén waves by shear Alfvénic turbulence is
small. We now study the direct cascade of energy. Assuming
locality of interactions in k-space, we consider the collision
between an Alfvén wave packet of size (k] !, k') with another
packet of comparable size that propagates in the opposite
direction. During a collision time of order (k, V,) ! the change
in the fluid velocity amplitude,* v,, of one of the packets is

|ov,| ~ .

d*v _
_d-t—zi (kz VA) 2

Note that if the 3-wave process were in consideration, the right
side would have been

[(dvy/dtik, Vo)~ .
On dimensional grounds, from equation (1)
d*v, d

dv
_N_(kil’%)NkJ_”zd_:NkiUg-

at* dt

The quantity k, v, arises because, for shear Alfvén waves,
V)= +(b'V)~0v,V, ~k, v,.So,in one collision the frac-

tional change in v, is
ki v,\?
~|l==] . 6
<kz VA) ( )

When this is small, subsequent collisions contribute roughly
equally with random phases. Therefore, the number of colli-
sions needed for the packet to lose memory of its initial state is

N~ ("—l> . ™

kv,

ov;
1)

Energy cascades only along k, and the cascade time is ¢, ~
N(k,V,)~'. Let € be the energy pumped into the system per
unit time, per unit mass, per unit logarithmic interval of |k, |.
Since there is equipartition between kinetic and magnetic ener-
gies, the energy per unit mass is ~v3. Therefore, € ~ v3/t,. The
three-dimensional energy spectrum, E, is defined by

d3k
Z U% = JE(kz’ kJ.) Q ’

3 As noted earlier in the Introduction, in collisionless plasmas, the pseudo
Alfvén waves undergo Barnes damping. This is a kinetic effect and is not
described by the fluid equations (1). Since we are interested in applying our
results to high B plasmas, we look only at resonant 4-wave interactions of
shear Alfvén waves.

4 Consistency with earlier notation would require v, to carry the subscripts
A, and 1, (where A, ~ k7! and A, ~ 4] "), instead of the single subscript 1. We
use the single subscript to avoid clutter.
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where )’ is a sum over wave packets of various scales. For a
constant rate of cascade, we get

E(k,, k) ~ €PVy k108 ®

where € can depend only on k,. This spectrum is valid only
when the 4-wave process is the dominant interaction. A neces-
sary condition is that the fractional change in the velocity per
collision, equation (6), be small (equivalently, N > 1). Equation
(8) implies that v, oc ki 2/3. Using this in equation (7), we find
that the number of collisions per cascade time is N oc k[ 4/3 at
fixed k,; N decreases as the cascade proceeds to higher k.
When N becomes of order unity, the interactions become too
strong to be described within the framework of the per-
turbative expansions of weak turbulence theory (not sur-
prlsmgly, this coincides with fluid displacements becoming of
order ki ). Thus equation (8) is valid only for values of k 1 less
than that for which N ~ 1. Writing € ~ v}/L, where L is the
spatial scale on which energy is injected, and.v; is the fluid
velocity amplitude on that scale, we find that

(D~ (2] o)

L

For this range in k, (ie., the inertial range for the 4-wave
energy cascade) to be substantial, the excitation amplitude v,
must be very small compared to V,. When v, ~ V,, the inertial
range shrinks to zero!

3. WEAK ALFVENIC TURBULENCE; THE THEORY IN
SOME DETAIL

We use Newcomb’s (1962) action principle for ideal MHD to
compute the coupling coefficients for 4-wave interactions.
Enroute, we will show that the third-order terms vanish, imply-
ing the absence of resonant 3-wave interactions. Following
standard procedures, we set up a kinetic equation for 4-wave
interactions; the energy spectrum (eq. [8]) is a stationary solu-
tion of the kinetic equation. The details of the proof are given
in the Appendix.

3.1. The Absence of 3-W ave Interactions

We have modified Newcomb’s approach to simplify calcu-
lations in the incompressible case. The basic variable is the
displacement, &(x,, t), of a fluid element:

x =x4+ &x0, 0. (10)

The equations of motion—equivalent to equations (1)—for the
fluid are obtained by varying the action (S) with respect to
&(xo, t), and requiring that the variation be stationary (i.e.,
0S8 = 0). The action is

= J it &, (11)
and % is the Lagrangian, given by
2 BZ
3
-——]. 1
2= Ja3)5-5) @

Here B(x, t) is the magnetic field at the displaced (x, + &)
position of the fluid element. For an incompressible fluid, the
Jacobian of the transformation (10) should be unity:

J—=—|5ij+fij|=1, (13)
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where ¢;; = 0,/0x;. The constraint J = 1 must be used in the
variation 6S. We now use this to rewrite the magnetic energy
term in the Lagrangian. If the magnetic field in the undisturbed
fluid is By, then B; = J ~ 1(5” + &;)By;. Using J = 1 and B; =
B 63, the magnetlc term in the Lagrangian is

B?
jd3x P 8_7(; jd3xo(1 +2835 + &R). (14)

The &35 term integrates to zero. Dropping the constant term
and rewriting the Lagrangian in Fourier variables, we have

3
<= {g ]g [EK) - §(—k) — *(R)E(K) - E—K)],  (15)

where w(k) = V, | k,|. Let

&) = ity + 420, (16)

Here n and ¢ are the transverse and longitudinal parts of &,
respectively. We require k;n(k) = 0. The Lagrangian can be
written as & = %, + % . Then the Lagrangian is the sum of

3
¢, =5 f% [i(h) * i~ ) — @*(om(k) - n(— k)], (17)

and

sk,
L= - g J 33 [PWS(—k) — 0*(k)k)p(—k)] . (18)

The constraint J = 1 has not yet been completely imposed
on the Lagrangian. The Jacobian has terms of up to third-
order in the spatial derivatives of &;. For our purposes, an
expansion of J up to second-order will suffice:

J=1+&— 388+ 385 +0(E) =1. (19)

To first-order in &;;, we have the familiar condition of incom-
pressibility, namely V - & = 0. This implies that ¢(k) = 0, while
there is no constraint at all on . Working to the next higher
order, we find that ¢ (k) depends on #:

b= idn3 J& % (ky ")k, - ny)

_ 3
873 87 |ky + ky | Ok, +k, —k)+0(n°),

(20)

where we have used a shortened notation, ¢, = ¢(k), ; = n(k,),
and so on. Using equation (20) in equation (18), we see that
Z1ong 18, to lowest nonvanishing order, fourth order in 5. At
this stage it is clear that the third-order terms are absent in the
Lagrangian, implying that there are no resonant 3-wave inter-
actions.” We note that the expression (20), for ¢,, has been
obtained by solving equation (19) perturbatively. Such a solu-
tion converges only when &;; is small, which is precisely the
condition that the turbulence be weak (when ¢;; becomes of

5 The vanishing of the third-order terms means that even nonresonant
3-wave interactions are absent. If, instead of & we had used different
variables—for instance, the Elsasser variables used in Paper II—we would, in
general, find that the third order terms do not vanish. However, the resonant
third-order terms will vanish, since these are invariant under near-identity
change of variables. The situation is very similar to perturbation theory in
Classical Mechanics, where a small perturbation of the Hamiltonian of an
integrable system can be “absorbed ” into the unperturbed Hamiltonian by a
near-identity transformation of the action variables, so long as “small
denominators ” due to resonances don’t arise.
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order unity, we cannot conclude that 3-wave couplings are
absent—this case will be treated in Paper II). Also, the con-
straint J = 1 has now been completely implemented.

3.2. Derivation of the 4-W ave Kinetic Equation
The true degrees of freedom are #,, and the Lagrangian to
fourth-orderis & = ¥, + ¥,,where ¥, = ¥ ,and £, is

@, — 1% jd3k1 &Pk, ks &k,
L= d’k, dky

8n> 8n3 8n° 8xn3 Oy + ka + ks + ko)

1
Tk kg1 + K]
x {[(ky = ny)kz = 0,my) + (ky * 1)Ky * Om2)]
x [(k3 * na)ky = 0,m3) + (kg " m3)(ks - O,14)]
— wilky - m)ky = my)ks - na)ks - 13)} . (21)
In general, 1, is a linear combination of a shear Alfvén and a

pseudo-Alfvén wave. As before we limit our considerations to
the shear Alfvén wave. Then, we can write

ne =ik, x 2), (22)
where , is the Fourier amplitude of a shear Alfvén wave
whose wave vector is along k. The “"” denotes a unit vector,
and k, = k — 2(k - Z). It should also be noted that y*, = n,
and *, = y,. Substituting equation (22) in the Lagrangian,
we arrive at

_b &k
=782
A3k, d3k, A3k, A3k
3 1 87Ky d7Ks A7k
e f 87> 873 8x3 8x°
X (ki + Ky + k3 + kg)Ryz34
x [(¥y ‘pz)(ws ‘//45 - w(21+2)l//1 Va¥aval, (23)

where the coupling coefficient

(1l — @ 1Y)

1191 % 42 193 X 4l
Ryysq = ' :
1234 = (419293 94) lky + ky| ks + kgl

We use ¢; = (k,); and p; = (k,); to avoid a multiplicity of sub-
scripts. In equation (23), w, + 5 stands for w(k, + k,). The res-
onant Lagrangian, £, is obtained as follows: In equation
(23), Y, is rewritten in terms of canonical variables, ¢, and ¢,

2 . .
Yy = /; (cpe™' o 4 c*  e'r) |
k

Then, noting that the effect of the nonlinear terms is to force a
slow change of the amplitude of ¢,, we drop products of ¢, and
¢¥ with themselves in the second-order terms. Averaging the
resulting expression over time, we arrive at the following
expression for the resonant Lagrangian:

(24

. (&K, .
Lr=2ip J‘g (c¥éx — e €F)
&k, d*k, d3ky d3k
3 1 2 3 4
8 J 87 810 8n° 8

X O(ky +ky —ky — k)Ryz34

[(@; + wg)* — w(23 +a)]
(0, 0, w5 w4)”2

i(w1 +w2—w3— w4t

c¥c¥escye

(25)
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The Euler-Lagrange equations of motion, 0,(0.2/6¢F) =
0% /dc, can be written in the following standard form:

iék = % Jd:’kz d3k3 d3k4 5(k + k2 — k3 _ k4)
X 7;:234 C§C3 c4ei(wk+wz—w3—w4)t , (26)
where

Tl — 1 R [w(zs +ay— (03 + w,)’]
k234 647[6 k234 (wk W, W3 w4)1/2

(27)

When k;, and kg, have the same sign, T;,34 = 0. As anticipated
in § 2.2, there are no interactions between waves traveling in
the same direction (parallel or antiparallel to 2).

The slow time evolution of the amplitudes is described by a
kinetic equation for the second order correlator, n,, defined by

Cepety = molk — k),

where n, is the wave action (or “quanta,” in quantum-
mechanical language). The energy (per unit mass) per mode is
E(k, t) = w, n(k, t), and the inertial-range energy spectrum of a
4-wave turbulent cascade therefore arises as a stationary solu-
tion of a kinetic equation for n,. The derivation of the 4-wave
kinetic equation is standard (see, e.g., Zakharov et al. 1992)—
here we simply quote the result. The generic form is

=%k, 1), (28)
where the “ collision ” term & is
Ek, t) = g J‘d3k2 Ak d3k, 0k + ky — k3 — ky)
X MWy + Wy — W3 — Wy)
X | Tiz3a [2[n3 na(m + ny) — meny(ng +ng)] . (29)
We find it convenient to write this explicitly as

Ck,t)=A JdZQZ d’q3d*q,0(q + 4, — 93 — 44)

lg x ¢,1* 193 % q41*
(992 93 94)°

X fdpz dp3dp, 0(p + p, — P3 — P4)

x o(lpl+1p2l —1psl —|pal)

% 1 (P3P4*|P3P4‘)2
[k + ky|? ks + ko |? | pP2 P3 P4l
x [nyng(ny + ny) — meny(ng +ny)] , (30)

where A = 2n/V,(64n°)?, n, = n(q, p), and so on.

In the integrals over p; and p,, the presence of the delta-
functions as well as the factor (p; p, — | p3 p4|)* ensure that the
integrals are nonzero only when

(i) p and p, have opposite signs, and

(ii) either p3 = p, ps = p,, OR p, = p,p3 = p>.

These conditions are identical to those that we found in the
discussion following equations (4) and (5). Since the entire
expression on the right side of equation (30) is symmetric in the
indices 3 and 4, we choose p; = p and p, = p, and multiply the
right side by a factor of 2.
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3.3. Stationary Solution of the 4-W ave Kinetic Equation
Motivated by equation (8), we look for a stationary solution
of the form

na, p) =L ;5’) , (31)

where f(p) is an arbitrary positive function of p that depends on
the nature of the excitation. If the excitation occurs on an
(outer) scale L, then we expect f(p) to be small for |p| > L™ 1.
We assume that fis symmetric in p, so that waves traveling in
opposite directions have equal strengths.®

. =84 J d*q,d*q3d%q, (9 + 45 — 43 — 44)

» lg x ¢;1° 193 X q41* Jdp S(p, p)Lf () f (p2)]?
(99293 94)* ™ 2 |k + ky|*

q 9z g3 s
X §—— —-—— 32

Tt e g 0
where the function S(p, p,) equals unity when p and p, have
opposite signs, and equals zero otherwise. We simplify the
right side by effectively doing the integral over p, :

(i) Note that |k + k,|> = (p + p,)* + | ¢ + ¢, |2 Since f(p)
and f(p,) are effectively cutoff when |p| > L ! or |p,| > L},
retaining the (p + p,) term only introduces corrections due to a
finite outer-scale; these are negligible in the inertial-range.
Therefore, we let |k + k,|* ~|q + q,|* = | g5 + ¢q,|*, where
the last equality is ensured by the delta-function.

(i) We now integrate equation (32) over p. Defining a posi-
tive constant

g=284 jdp dp, S(p, Pz)f(P)fz(Pz)

=84 Jdp dp, S, ) f*(0)f (P2) ,

that depends only on the specific form of the excitation, we can
write the (p-integrated) kinetic equation as the difference of two
positive terms:

qujdpﬁk=g(1+—l_)’ (33)
where
I" = szqz d*q3d*q, 0(g + 42 — 45 — 4.)

lg % q:1* g5 x q41*
Y+q5), (34
(qqzqsq4)2+“lq+qzl‘*(q ), (4

I" = fdzqz d*q3d*q,8(q + 42 — 45 — q.)

FEXAMI T AN
3+a). (35
(‘1‘12%44)2+v|q3+q4|4 (@5 +4q2). (35

The energy per mode is E(q, p) = w, n(g, p). We find it conve-
nient to integrate this over p; hence we define

1
&) = 33 fdpE(q, P, (36)

¢ When f(p) is not symmetric, there are more general solutions for which the
power-law indices differ for waves traveling in opposite directions.
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which is the energy density in g-space. This satisfies a conti-
nuity equation,

3,6 +V, [4F]=0. (37)

where the energy flux at ¢ is §#(q). Equation (30) describes the
scattering of the g5 waves into ¢ waves when the former run
into waves traveling in the opposite direction. Then, if
6(gs — q) is the rate of change of energy density at ¢ due to
scattering of waves from ¢, we have

, AV,
8qs—q) = ~n—3A szfh d*q, 009 + 42 — 43 — 44)

Ll x 2:1*1qs % q.*
(992 95 ‘14)2+v

S, p)Lf(P)Sf (p2)]?
dpd
X_[ pdp,|p| ik + k[
y {q_"+ ¢ 4 _da }
f@) S flo)  f(p2)
The symmetry of this expression implies a detailed balance
in the elementary scattering processes: ie., &(¢q;—¢q) =
—&(q — ¢5). It is now easy to write down an expression for the
magnitude of the energy flux:

2nq?(q)=J d*q J d*q3 8¢5~ q) - 39)
'>q 93 <q

q

From equation (33), it is obvious that v = 0 gives a station-
ary solution. Upon inspection, it is also evident from equations
(38) and (39), that this solution carries zero energy flux. This
then describes thermodynamic equilibrium, with the expected
ultraviolet divergence of energy in g-space.

We give a simple argument to show why v = 10/3 yields a
stationary solution of equation (33) corresponding to a con-
stant flux of energy. From the continuity equation (37), we see
that & oc ¢! for the energy density to be time-independent.
Noting that, in equation (38), replacing |k + k, |* by |q + ¢, |*
introduces only a negligible error, it can be checked that equa-
tions (38) and (39) imply that & oc ¢®® ~3Y. Therefore the solu-
tion describing stationary, turbulent transport energy in
g-space has an index v = 10/3—in fact, this is the only solution
of equation (33) that corresponds to a constant flux of energy.
In the Appendix we show that this energy flux is positive.

4. DISCUSSION

(38)

The principal results of the present work are

1. The absence of resonant 3-wave interactions in Alfvénic
turbulence, and the consequent failure of the IK theory,

2. A relatively complete analysis of resonant 4-wave inter-
actions for shear Alfvén waves. The inertial-range energy spec-
trum is given in equation (8). Using this energy spectrum, we
deduce that the fractional change, per collision, in either the
velocity or the magnetic field perturbations increases with k, .
If the excitation amplitudes are much smaller than V,, the
cascade time is much longer than the wave period on the scale
of the excitation, and the disturbance undergoes a weak,
4-wave cascade. We noted earlier that the resonance condition
on the frequencies may be violated by an amount Aw ~ t.,}.
Weak turbulence theory deals with the limit in which Aw is
much smaller than a typical w that is involved in wave inter-
actions. For a weak excitation, this condition is satisfied (by
definition) on the scale of the excitation. As interactions
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strengthen at high &, the cascade time decreases relative to the
wave period, and the allowed violation of the frequency reson-
ance condition (or frequency “conservation law”) increases
with k, until t,, ~ @~ !, when the allowed violation is of order
unity. At this stage in the energy cascade, the basic conditions
of validity of weak turbulence are not satisfied. The k, at which
this occurs sets the upper bound on k, for the validity of the
inertial-range energy spectrum given in equation (8). For larger
k., the turbulence will be too strong to be described by weak
4-wave interactions. On the other hand, if the perturbation
amplitudes on the excitation scale are of order V,, or perhaps
even larger, the interactions are so strong that the width of the
4-wave inertial-range shrinks to zero. In this case, the turbu-
lence is strong from the beginning; we explore this case in
Paper I1.

Following Higdon (1984), we imagine that the electron
density fluctuations are isobaric, entropy fluctuations having
little effect on the dynamics of the turbulent, ionized medium.
The electron density fluctuations will be advected (and mixed)
by the turbulent velocity field. In neutral fluids undergoing an
isotropic Kolmogorov cascade, the power spectrum of a
passive scalar contaminant acquires the same shape as the
power spectrum of the turbulent velocity fluctuations (see, e.g.,
Lesieur 1990). The velocity power spectrum of the weak 4-wave
cascade (eq. [8]) has a two-dimensional index equal to 10/3.
Line of sight variations in the direction of the mean magnetic
field would isotropize the spectrum so that it mimicked a three-
dimensional spectrum with index 13/3. The observed inter-
stellar electron density power spectrum appears to have a
three-dimensional index close to 11/3. Clearly, interstellar
turbulence cannot be weak 4-wave Alfvénic turbulence. More-
over, the inertial-range is of limited extent in k, (see eq. [9]).
For this range to span at least 6 decades in wavenumber, the
excitation amplitudes would have to be unrealistically small!
The theory of strong Alfvén turbulence developed in Paper 11
describes an anisotropic inertial-range energy spectrum with
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two-dimensional index equal to 8/3. Since line of sight averag-
ing would make this mimic a three-dimensional spectrum with
index equal to 11/3, it is a plausible candidate for a theory of
interstellar turbulence.

We end the paper on a cautionary note. Approximating the
ionized interstellar medium as an incompressible medium is
indeed an idealization we would like to relax! We must study
turbulence in a f ~ 1 plasma. In a compressible plasma, the
shear Alfvén wave traveling in one direction is no longer an
exact nonlinear solution to the equations of motion; nonlinear
interactions result in a steepening of the wave (Cohen &
Kulsrud 1974; Kennel et al. 1988). This allows for the possi-
bility of resonant 3-wave interactions. We invoked Barnes’
damping as a motivation to avoid consideration of the fast and
slow magnetosonic modes. However, it must be noted that, for
propagation nearly perpendicular to the mean magnetic field,
the fast mode suffers negligible damping. Even in those direc-
tions in which Barnes’ damping is significant, we must check
that the damping is efficient enough to kill fast and slow waves
quicker than the time over which they can themselves undergo
a cascade. All these caveats are but aspects of the com-
plications encountered in dealing with a compressible medium
that must be faced in the process of building a theory of inter-
stellar turbulence.
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referee’s comments on the manuscript were very useful, and a
free exchange of ideas with Robert Kraichnan was especially
influential in shaping our work. This research was supported in
part by NSF grant 89-13664 and NASA grant NAGW 2372.

APPENDIX

We have already shown in § 3.3 that a stationary solution of equation (33) that possesses a nonzero energy flux in g-space must have
v = 10/3. Here we prove that the g-space energy flux is positive as assumed in the heuristic treatment given in § 2.2.

For a stationary solution, we must have I* =1~
resemble each other as much as possible:

. We adopt the strategy of transforming equations (34) and (35) until they

(i) In equation (34) defining I *, eliminate ¢, using the 5-function, and let ¢ » —gq.

(ii) In equation (35) defining I,
letqg > —gq.

eliminate ¢, using the d-function, replace the dummy index ¢, by another dummy index —g¢,, and

(iii) Since both I* and I~ depend only on | ¢ |, we integrate them over ,, which is the (polar) angle giving the direction of ¢. Then,
q

we have

d% dq,
(9344 )(1 ™

2n1+ _ *(2+V)J\ J
0

2~ =

[4°F(q, a3, 945 2 + V) + F(q, 93, 945 )],

v dqsdq
(2+)J J ( 3)(1iv)[‘13F(l13,q,Q4,2+V)+F(‘13,q,qa,s2)]

where F(a, b, c; p) is a function of three positive numbers a, b, ¢, and an index p. It is constructed as follows. Given a, b, ¢, form three
vectors a, b, ¢ lying in a plane. Then

|6 xcl*lax b+
lb+cl*la+b+clt’

F(a, b, c; y) = §d0a d9, do,

is positive, symmetric in b and ¢, and homogeneous in g, b, and c:

F(la, Ac, Ab; p) = A*2"WF(@a, b, c; ) .
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(iv)InI*,let g3 = gr,and q, = gs.In 1", let g3 = g/r, and q, = q(s/r). Noting that F is homogeneous, we get

It = g#= J J # [F(,r,s;2+v) + F(L, 7, 53 2)],
0 0

drds

2’”‘”(8_3”[ J o9 LF(L 7 55249)  F(L 53 27710,
0 0

As found earlier in § 3.3, v = 10/3 gives a stationary solution.
We next compute the energy flux associated with this spectrum. Let us define two positive constants, W and m, that depend only
on the form of the excitation (m is of order unity);

[/ ()f(p)]?
f(p2) ’

L/ () f (p2)]*
fo

We use the detailed balance relation, (g5 — ¢) = — (g — ¢5), to rewrite equation (39). Detailed balancing implies that

AV,
=n—3" JdpdpzlplS(p, p2)

AV,
mWw =n—3A IdeP2|P|S@, p2)

J J d*q d*q;6(¢q; > ¢)=0.
9'>q Jg3>¢q

Adding this expression to the right side of equation (39), we get a more convenient expression for the energy flux:

2197 (q) =j d*q J d’q38(q5 - q) ;
q

q’ >
together with equation (38), this allows us to write the flux as the difference of two positive terms:
2mqF ) =W(IF" - 57),

where

g % q:1*|qs x q41*
gt =J qu’Jqu d*q3d*q,0(q + 42 — 43 — 44) —; ; (mq” + q5) ,
>a 27 AT e 20+ 0,1M092 9390 2

|93 + 941%(0'92 43 9%

It is evident that . and .# ~ bear a strong resemblence to I ™ and I~. We follow the same steps [(i)—(iv) given above] we used to
simplify I'* and I~. Then

_ , ) g x q:1*|qs x q4]* -
s =J d*q fdzqzdzqadzq45(q +q;,— g5 —qa) LR (mg} + q}) .
q9'>q

St = f dqq®—3 f j % [mF(1,r,s;2+v)+ F(1,r,s; 2)],
q o Jo (rs)

0 ce} o0 d
I = J dq'q®=> j J % [mF(1, r,s;2 +v) + F(1, 1, 55 2)]r® 19 |
q 0 0

and

q(10—3v)

® ['® drds
2nqF(q) = W 3 _10) J J P [mF(1, 7,552+ v)+ F(1, r, s; 2)J(1 — #3719 |
- o Jo

is well defined for v > 10/3. As v — v, = 10/3 from above, we have an indeterminate ratio of the form 0/0. Resolving this using
L’Hospital’s rule, we have

W a o0 e ¢)
35 .[ J % [mF(1, 7, 532 +v) + F(L, r, 5; 2)](1 — r®~19)
0 0

vo vo

_W o 0 dd
2 J J G [P 75524 + F(L, 7,55 )] n )
o Jo

vo

In the r — s plane, the region where rs < 1 makes a positive contribution to the flux, while the region rs > 1 makes a negative
contribution. We have evaluated the integrals numerically, and we find that the flux is positive.
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