PHYS1.511: College Physics 1 Mechanics, Heat and Sound
 Professor Scott Baalrud
 - substituting for Prof. Halekas
 - Van Allén Hall, LR1

Agenda for today

○ Banked curves
○ Satellites in Circular Orbit
○ Apparent Weightlessness
○ Vertical Circular Motion

On an unbanked curve, the static frictional force provides the centripetal force.

What is the max speed you

 can go before slipping?$$
\begin{gathered}
F_{c}=m \frac{v^{2}}{r}=f_{s}^{\max }=\mu_{s} F_{N} \\
F_{N}=m g
\end{gathered}
$$

SO

$$
v=\sqrt{r g \mu_{s}}
$$

On a frictionless banked curve, the centripetal force is the horizontal component of the normal force. The vertical component of the normal force balances the car's weight.

(a)

(b)

(a)

$$
F_{c}=F_{N} \sin \theta=m \frac{v^{2}}{r}
$$

(b)
$F_{N} \cos \theta=m g$

$$
F_{N} \sin \theta=m \frac{v^{2}}{r}
$$

$F_{N} \cos \theta=m g$

$$
\tan \theta=\frac{v^{2}}{r g}
$$

(a)

(b)

Example: The Daytona 500

The turns at the Daytona International Speedway have a maximum radius of 316 m and are steeply banked at 31 degrees. Suppose these turns were frictionless. At what speed would the cars have to travel around them in order to remain on the track?

$$
\begin{aligned}
\tan \theta & =\frac{v^{2}}{r g} \\
v & =\sqrt{(316 \mathrm{~m})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \tan 31^{\circ}}=43 \mathrm{~m} / \mathrm{s}(96 \mathrm{mph})
\end{aligned}
$$

There is only one speed that a satellite can have if the satellite is to remain in an orbit with a fixed radius

$$
F_{c}=G \frac{m M_{E}}{r^{2}}=m \frac{v^{2}}{r}
$$

Example 9: Orbital Speed of the Hubble Space Telescope

Determine the speed of the Hubble Space Telescope orbiting at a height of 598 km above the earth's surface.

$$
\begin{aligned}
& v=\sqrt{\frac{\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)\left(5.98 \times 10^{24} \mathrm{~kg}\right)}{6.38 \times 10^{6} \mathrm{~m}+598 \times 10^{3} \mathrm{~m}}} \\
& =7.56 \times 10^{3} \mathrm{~m} / \mathrm{s} \quad(16900 \mathrm{mi} / \mathrm{h})
\end{aligned}
$$

Two satellites A and B of the same mass are going around Earth in concentric circular orbits. The distance of satellite B from the Earth's center is twice that of satellite A. What is the ratio of the centripetal force acting on B to that acting on A ?
A. $1 / 8$
B. $1 / 4$
C. $1 / 2$
D. 1
E. 2

Two satellites A and B of the same mass are going around Earth in concentric circular orbits. The distance of satellite B from the Earth's center is twice that of satellite A. What is the ratio of the centripetal force acting on B to that acting on A ?
A. $1 / 8$
B. $1 / 4$

$$
F_{c}=G \frac{m M_{E}}{r^{2}}=m \frac{v^{2}}{r}
$$

C. $1 / 2$
D. 1
E. 2

$$
\frac{F_{B}}{F_{A}}=\left(\frac{r_{A}}{r_{B}}\right)^{2}=\frac{1}{4}
$$

Period of a circular orbit

$$
v=\sqrt{\frac{G M_{E}}{r}}=\frac{2 \pi r}{T}
$$

$$
T=\frac{2 \pi r^{3 / 2}}{\sqrt{G M_{E}}}
$$

Global Positioning System

$$
T=24 \text { hours } \quad T=\frac{2 \pi r^{3 / 2}}{\sqrt{G M_{E}}}
$$

(b)

(c)

Synchronous Satellites

Example: Apparent Weightlessness and Free Fall

In each case, what is the weight recorded by the scale?

Example: Artificial Gravity

At what speed must the surface of the space station move so that the astronaut experiences a push on his feet equal to his weight on earth? The radius is 1700 m .

$$
\begin{aligned}
& F_{c}=m \frac{v^{2}}{r}=m g \\
v & =\sqrt{r g} \\
= & \sqrt{(1700 \mathrm{~m})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)} \\
= & 130 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Vertical circular motion

$$
\begin{aligned}
& F_{N 1}-m g=m \frac{v_{1}^{2}}{r} \\
& F_{N 2}=m \frac{v_{2}^{2}}{r} \\
& F_{N 4}=m \frac{v_{4}^{2}}{r} \\
& F_{N 3}+m g=m \frac{v_{3}^{2}}{r}
\end{aligned}
$$

(a)

A stone is tied to a string and whirled around at a constant speed. Assuming the constant speed is the same in both cases, is the string more likely to break when the circle is
A. horizontal
B. vertical

A stone is tied to a string and whirled around at a constant speed. Assuming the constant speed is the same in both cases, is the string more likely to break when the circle is
A. horizontal
B. vertical

(b)

