College Physics I: 1511 Mechanics \& Thermodynamics

Professor Jasper Halekas
Van Allen Lecture Room 1
MWF 8:30-9:20 Lecture

Kinematics Equation \#4

$$
v^{2}=v_{0}^{2}+2 a \Delta x
$$

$1 / 2 \mathrm{~m} *\left[v^{2}=v_{0}^{2}+2 a \Delta x\right]$

$$
\begin{aligned}
& \text { Wavk-Energy } \\
& v^{2}=v_{0}^{2}+2 a \Delta x \\
& 1 / 2 m v^{2}=1 / 2 m v_{0}^{2}+m a \Delta x \\
& m a \Delta x=1 / 2 m v^{2}-1 / 2 m v_{0}^{2} \\
& \text { Fnct } \Delta x=1 / 2 m v^{2}-1 / 2 m v_{0}^{2} \\
& \text { Work }=\text { Change in }
\end{aligned}
$$

Kinetic Energy

Definition: Work

- For a 1-d constant force:
- W $=F_{x} * \Delta x$
- In more dimensions:
- $\mathrm{W}=|\mathrm{F}||\Delta \mathrm{r}| \cos \theta_{\mathrm{Fr}}$
- Units = [Newton][meters] = [Joules]

Work: Direction Matters

$W=F d \cos \theta$

Work Done By Gravity (Free-Fall)

Worn of Gravity
Free - fall

$$
\begin{aligned}
& y_{i} d F=W=m g \\
& \begin{aligned}
W & =F \cdot d \cdot \cos 0 \\
& =F \cdot d \\
& =m g d
\end{aligned}
\end{aligned}
$$

Concept Check

- I lift an object with mass m at a constant speed v to a height d. How much work did I do?
A. $-m g d$
B. mgd
C. mvd
D. $m v^{2} / d$

Concept Check

- I lift an object with mass m at a constant speed v to a height d. How much work did ! do?

A. -mgd
B. mgd
C. mvd^{\prime}
D. $\mathrm{mv}^{2} / \mathrm{d}$

Lifting an object

$$
\begin{aligned}
W_{m e} & =F_{n p p}-d \cdot \cos 0 \\
& =m g d
\end{aligned}
$$

$$
\begin{aligned}
\text { Wgravity } & =m g d \cos \left(180^{\circ}\right) \\
& =-m g d
\end{aligned}
$$

Work done by me and by gravity are equal and opposite since the forces are equal and - opposite

Work Done on/by an Object

- In this part of the course we mostly talk about work done on or to objects
- Later in the course we will talk about work done by objects (e.g. ideal gases)
- Since Newton's 3 ${ }^{\text {rd }}$ law tells us that $F_{a b}=-F_{b a}$:
- The work done by an object is equal and opposite to the work done on an object

Work by Individual Forces

- Work can be decomposed into that done by individual forces
- The total should be the net work done by the net force

Sliding Block

$$
\Delta x=1 \mathrm{~m}
$$

$$
\begin{aligned}
W_{\text {ext }} & =F_{\text {ext }} \cdot \Delta x \cdot \cos (0) \\
& =10 \mathrm{~N} \cdot 1 \mathrm{~m} \\
& =10 \mathrm{~J} \\
& =F_{f}-\Delta x-\cos (180) \\
& =-F_{f} \cdot 1 \mathrm{~m} \\
W_{f} & \left|F_{f}\right|=1 F_{\text {ext }} \mid \text { since } V \text { cont. } \\
W_{f} & =-10 \mathrm{~J}
\end{aligned}
$$

Concept Check Part-I

You push a beer keg up a (frictionless) ramp with constant speed. Suppose you push parallel to the ramp, with force "F".
The ramp travels a distance d along the ramp, ending at height h as shown.

How much work did YOU do on the keg?

A) Fd
B) $\mathrm{Fd} \cos \theta$
D) Fh (which is equal to $\mathrm{Fd} \sin \theta$)

C) zero
E) None of these

Concept Check Part-I

You push a beer keg up a (frictionless) ramp with constant speed. Suppose you push parallel to the ramp, with force "F".
The ramp travels a distance d along the ramp, ending at height h as shown.

How much work did YOU do on the keg?

A) Fd
B) $\mathrm{Fd} \cos \theta$
D) Fh (which is equal to $\mathrm{Fd} \sin \theta$)

C) zero
E) None of these

Concept Check Part-II

- How much work did GRAVITY do on the keg?
- A) -mg d
- B) $-m g d \cos \theta$
- C) $+m g d \cos \theta$
D) $-m g h(-m g d \sin \theta)$
E) $+m g h(+m g d \sin \theta)$

Concept Check Part-II

- How much work did GRAVITY do on the keg?
- A) -mg d
- B) $-m g d \cos \theta$
- C) $+\mathrm{mg} \mathrm{d} \cos \theta$
D) $-m g h(-m g d \sin \theta)$
- E) $+m g h(+m g d \sin \theta)$

Beer keg

$$
\begin{array}{r}
W_{\text {ext }}=F_{\text {ext }}-d \cdot \cos \theta_{F \alpha} \\
=F \cdot d
\end{array}
$$

W, gravity

$$
\text { FD } \quad \begin{aligned}
\theta_{F D} & =180-(90-\theta) \\
& =\theta+80^{\circ} \\
\cos \left(\theta_{F 0}\right) & =\cos \left(\theta+90^{\circ}\right) \\
& =-\sin (\theta)
\end{aligned}
$$

$$
\begin{aligned}
\text { Wgravity } & =-m g d \sin \theta \\
& =-m g h
\end{aligned}
$$

- depends only on height

$$
\text { Recall } F=m g \sin \theta
$$ t- balance tangential component of weight force

sa Nape $=m g \sin \theta d$

$$
=- \text { Wgrquity }
$$

Definition: Energy

- Many Kinds of Energy
- Kinetic Energy
- Thermal Energy
- Electromagnetic Energy
- Potential Energy (Lots of kinds)
- Etc.
- All Forms of Energy Have Units of Joules in SI
- [J] $=[\mathrm{kg}]\left[\mathrm{m}^{2}\right] /\left[\mathrm{s}^{2}\right]=[\mathrm{N}][\mathrm{m}]$

Energy Flow

The big bang starts nuclear reactions in the sun

1

Corn uses the energy from the sun to make molecules, with chemical metabolic energy stored in them.

The pedals push the wheels around, making mechanical energy into kinetic energy.
At the top of the hill, the kinetic energy has become potential energy.

Kinetic energy is released.

The bike will roll down.

Energy Conservation

- Energy is always (always!!!!) conserved
- Energy can be converted from one form to another, or transferred between bodies
- This can make it difficult to see that the total energy is conserved
- But it is an unbreakable law that the (total) energy of a closed system is always conserved

Other Units for Energy

- Calories are also units of energy
- One calorie = 4.18 J
- One calorie provides enough energy to lift a ~400g mass one meter high, or to give a one kg mass a $\sim 3 \mathrm{~m} / \mathrm{s}$ velocity
- Our units for food calories are actually kilocalories, or one thousand times as large!

