College Physics I: 1511 Mechanics \& Thermodynamics

Professor Jasper Halekas
Van Allen Lecture Room 1
MWF 8:30-9:20 Lecture

Announcements

- Sample Midterm \#1 Questions now available on the "Notes" tab on the main class web page
- Solutions will be posted next week
- Remember your other resources for studying:
- Me, your TAs, the TAs in the $3^{\text {rd }}$ floor Tile Room
- The book, class notes, Wiley Plus (including Orion)
- If anyone plans to ask for a makeup and has not yet done so please tell me ASAP!

Announcements II

- Final Exam is now officially scheduled for Monday December 12 at 8:00-10:00 pm in this room
- If you have qualified exam conflicts and intend to take advantage of the opportunity to request a different exam time please let me know sooner rather than later
- October 1 is the official deadline to do so

Conservation of Mechanical Energy

- $W_{\text {net }}=K E_{f}-K E_{o}$

$$
\mathrm{W}_{\text {cons }}=\mathrm{PE}_{0}-\mathrm{Pe}_{f}
$$

- $K_{f}-K E_{o}=P E_{o}-P E_{f}$
$\Delta K E=-\Delta P E$
- (only true for conservative forces with $\mathrm{W}_{\text {net }}=\mathrm{W}_{\text {cons }}$)
- $K E_{f}+P E_{f}=K E_{o}+P E_{o}=E$
(constant for conservative forces)

Kinetic Energy

Kinetic energy = $1 / 2 \mathrm{~m} \mathrm{~V}^{2}$

Kinetic energy

Gravitational Potential Energy

- $\mathrm{W}=-\mathrm{mgh}=-\triangle \mathrm{PE}$
- $\Delta \mathrm{PE}_{\mathrm{g}}=\mathrm{mgh}$

Spring Potential Energy

Concept Check

- Imagine a ball launched from rest at the top of a ramp of height h. Assuming no friction, will the ball make it to the top of a bump of height h ?
- A.Yes
- B. No
- C. Depends on mass
- D. Depends on how much coffee I've had this morning

Concept Check

- Imagine a ball launched from rest at the top of a ramp of height h. Assuming no friction, will the ball make it to the top of a bump of height h ?
- A.Yes
- B. No
- C. Depends on mass
- D. Depends on how much coffee I've had this morning

Concept Check

- A spring is depressed a distance d and used to launch a ball of mass m vertically upward. How much gravitational potential energy does it gain at the top of its flight (a vertical displacement h)?
A. $U_{g}=m g h$
B. $U_{g}=1 / 2 \mathrm{kd}^{2}$
C. Neither is correct
D. Both are correct

Concept Check

- A spring is depressed a distance d and used to launch a ball of mass m vertically upward. How much gravitational potential energy does it gain at the top of its flight (a vertical displacement h)?
A. $U_{g}=m g h$
B. $U_{g}=1 / 2 \mathrm{kd}^{2}$
C. Neither is correct
D. Both are correct

Spring Gun

$$
E=\rho E_{\text {spring }}+\rho E,+K E
$$

E (9) launch

$$
\begin{aligned}
& =\rho E_{\text {spring_max }} \\
& +\rho E_{g-m i n}=12 k d^{2}+m g y_{0}
\end{aligned}
$$

$E \Theta$ top

$$
=\rho E_{y}-m i n=m g y_{f}
$$

$E_{\text {toe }}=E_{\text {launch }}$

$$
\begin{aligned}
1_{2} k d^{2} & +m g y_{0}=m g y f \\
1_{2} k d^{2} & =m g\left(y f-y_{0}\right) \\
& =m g h
\end{aligned}
$$

Concept Check

A hockey puck slides without friction along a frozen lake toward an ice ramp and plateau as shown. The speed of the puck is $4 \mathrm{~m} / \mathrm{s}$ and the height of the plateau is 1 m . Will the puck make it all the way up the ramp?

$$
\mathrm{g} \sim 10 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\mathrm{h}=1 \mathrm{~m}
$$

A: Yes B: No
\mathbf{C} : impossible to determine without knowing the mass of the puck.

Concept Check

A hockey puck slides without friction along a frozen lake toward an ice ramp and plateau as shown. The speed of the puck is $4 \mathrm{~m} / \mathrm{s}$ and the height of the plateau is 1 m . Will the puck make it all the way up the ramp?

$$
\mathrm{g} \sim 10 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\mathrm{h}=1 \mathrm{~m}
$$

A: Yes B: No
\mathbf{C} : impossible to determine without knowing the mass of the puck.

Hockey Puck

$$
E_{0}=1_{2} m v_{0}^{2}+m g y_{0}
$$

to get to top must
have $E_{f}>m g y f$
but $E_{f}=E_{\text {o }}$
sa $1_{2} m v_{0}{ }^{2}+m g y_{0}>m g \varphi_{f}$
$\begin{aligned} \text { or } t_{2} m v_{0}^{2} & >m g\left(y f-y_{0}\right) \\ & =m g h\end{aligned}$

$$
=m g h
$$

$$
\begin{aligned}
1_{2} m v_{0}{ }^{2} & =12 m-4^{2} \\
& =8 m \\
m g h & =m \cdot 10-1 \\
& =10 m
\end{aligned}
$$

wont make it!

Non-Conservative Forces

- Forces that are not reversible, or whose work depends on the path that you take, are termed "non-conservative"
- Non-conservative does not mean that the total energy in the universe is not conserved
- It means that the energy is going somewhere else other than kinetic or potential energy of the body in question
- In the case of friction or air resistance, the energy goes into heat (thermal energy)

Work Done by Friction

$W_{F}=-F_{F}|\Delta x|$

Change of Mechanical Energy

- For conservative force:
- $\Delta \mathrm{E}=\Delta \mathrm{KE}+\Delta \mathrm{PE}=0$
- $\Delta \mathrm{E}=\mathrm{W}-\mathrm{W}=\mathrm{o}$
- For non-conservative forces, potential energy does not exist
- $\Delta E=\Delta K E+\triangle P E$
- $\Delta \mathrm{E}=\Delta \mathrm{KE}_{\mathrm{NC}}+\Delta \mathrm{KE}_{\text {cons }}+\Delta \mathrm{PE} \neq 0$
- $\Delta \mathrm{E}=\mathrm{W}_{\mathrm{NC}}+\mathrm{W}_{\text {cons }}-\mathrm{W}_{\text {cons }}$
- $\Delta \mathrm{E}=\mathrm{W}_{\mathrm{NC}}$

Work Done to Lift an Object

- Work done by gravity when lifting a body to height h
- $\mathrm{W}_{\mathrm{g}}=-\mathrm{mgh}$
- Work of gravity is conservative
- Work done by me to

Work Lifting an object

$$
\begin{aligned}
& W_{a \rho \rho}=m g h \\
& W_{g}=-m g h \\
& W_{n e t}=0 \\
& W_{n e t}=\Delta k E=0 \\
& E_{0}=12 m v_{0}^{2}+m g y_{0} \\
& E_{f}=12 m v_{f}^{2}+m g y \\
& E_{f}-E_{0}=\Delta E \\
& =\Delta K E+\Delta \rho E \\
& =O+m g\left(y-y_{0}\right) \\
& =m g h
\end{aligned}
$$

Where did energy come from?

From $W_{\text {app }}=W_{N C}$

$$
=m g h
$$

My work was non-conservative

