College Physics I: 1511 Mechanics & Thermodynamics

Professor Jasper Halekas Van Allen Lecture Room 1 MWF 8:30-9:20 Lecture

Work-Energy Theorem(s)

- W = ΔKE
- $W_{NC} = \Delta E$

Work-Energy Theorem Example

What is the work done by friction in stopping the car???

Work-Energy Theorem Example

• One Way:

 $|W_{fric}| = F_{fric} \cdot |\Delta x| = \mu_K N \cdot |\Delta x|$

• Another Way (much better if Δx is unknown!): $|W_{fric}| = |W_{net}| = |\Delta KE| = (1/2) \text{ m v}^2$

A mass slides down a frictionless ramp of height h and hits a carpet with kinetic friction coefficient $\mu_{K} = 0.5$ Its initial speed is zero.

How far does the mass slide along the carpet?

A: h B: Less than h C: More than hD. Not enough information to decide.

A mass slides down a frictionless ramp of height h and hits a carpet with kinetic friction coefficient $\mu_{K} = 0.5$ Its initial speed is zero.

How far does the mass slide along the carpet?

Sliding Mass = PE. = mgh Ea at top Er at bettem = KEmax $E_1 = E_0$

On carpet

WNC = DE

or Whet = DKE

FF-DX = KEmax = mgh

Ff = mN = mmg

Energy Graph

A mass slides down a ramp (height h, length L) Its initial speed is v.

There is friction along the ramp (μ_K) When it reaches the bottom, what is the final kinetic

energy of the object?

A: 1/2 mv^2

- **B:** 1/2 mv^2 + mgh
- **C:** $1/2 \text{ mv}^2 + \text{mgh} \mu_K \text{ mgL}$
- **D:** $1/2 \text{ mv}^2 + \text{mgh} \mu_K \text{ mg } L \cos\theta$
- **E:** Not enough information to decide.

A mass slides down a ramp (height h, length L) Its initial speed is v.

There is friction along the ramp (μ_K) When it reaches the bottom, what is the final kinetic

energy of the object?

FF = MN Mg (os of = mmg (os of $E_{o} = mgh + y_2 mv^2$ = E. + Winc E, $= E_{e} - F_{F} - L$ = Eo - pring cost & L = mgh + 12mv2 - µmg cosol

Energy Graph: Low Friction

Energy Graph: High Friction

Projectile Motion Reanalyzed: 1-d

- Say you want to find the maximum height a projectile reaches
- Old way: Solve $v_y = v_{yo} gt = o$ and plug into y = $y_o + v_{yo}t - 1/2 gt^2$ to find highest point

New way:

• Solve $1/2 mv_{yo}^2 + mgy_o = mgy$

- Imagine a gun that fires projectiles with a constant kinetic energy. If you fire a dart with mass m, and then a dart with mass 2*m, how do their maximum heights compare?
- A. Second dart goes twice as high
- B. Second dart goes to the same height
- C. Second dart goes half as high
- D. Second dart hits me in the nose

- Imagine a gun that fires projectiles with a constant kinetic energy. If you fire a dart with mass m, and then a dart with mass 2*m, how do their maximum heights compare?
- A. Second dart goes twice as high
- B. Second dart goes to the same height
- C. Second dart goes half as high
- D. Second dart hits me in the nose

 $mg(\gamma f - \gamma o) = KE.$ mgh = KE. h = KÉo Mg

Projectile Motion Reanalyzed: 2-d

- Say you want to find the total velocity at a given height...
- Old way: Solve equations for vertical displacement and velocity to find vertical velocity, then use Pythagorean theorem to find total velocity
- New way:
 - Solve $1/2 \text{ mv}^2 + \text{mgy} = 1/2 \text{ mv}_0^2 + \text{mgy}_0$

[2-d projectile motion] 12 mv2 + mgy = J2mv.2 + mgys How high does projectile go if Vo = [Vxo, yy.]?

Projectile Motion Caveats

- Can't use conservation of energy to solve every aspect of projectile motion
- Conservation of energy tells you nothing (at least not directly) about the exact path the object follows
- Conservation of energy tells you nothing about how long it takes

Work of Uniform Circular Motion

As long as v = constant, no work is done in circular motion

If v varies (non-uniform circular motion), then work is done

Can Normal Forces Ever Do Work?

A. YesB. No

Can Normal Forces Ever Do Work?

