College Physics I: 1511 Mechanics \& Thermodynamics

Professor Jasper Halekas
Van Allen Lecture Room 1
MWF 8:30-9:20 Lecture

Forces

Forces:

$\begin{array}{lll}F_{G}=m g(@ \operatorname{surface}) & f_{s}^{M A X}=\mu_{S} F_{N} & f_{k}=\mu_{k} F_{N} \\ F_{C}=m a_{c}=\frac{m v^{2}}{r} & F_{\text {spring }}=-k x & \end{array}$

Gravity

Weight $=F_{g}=G \frac{\mathrm{M} \mid \mathrm{m}}{\mathrm{r}^{2}}=\mathrm{mg}$

M is the mass of the Earth
m is the mass of the object
r is the radius of the Earth
g is the acceleration due to gravity at the Earth's surface

Normal Forces

GRAVITY
NORMAL
FORCE
NORMAL
FORCE

Sample Question

A glider on a tilted air track is given a brief push uphill. The glider coasts up to near the top end, stops, and then slides back down.

When the glider is at the highest point of its path, its acceleration is..

A: straight down
B: downward along the track
C: upward along the track

Sample Question

A glider on a tilted air track is given a brief push uphill. The glider coasts up to near the top end, stops, and then slides back down.

When the glider is at the highest point of its path, its acceleration is..

A: straight down
B: downward along the track
C: upward along the track

$$
\vec{F}_{\text {net }}=m \vec{a}
$$

so \vec{a} down along track

Sample Question

- A mass m is accelerated down along a frictionless inclined plane. The magnitudes of the forces on the free-body diagram have not been drawn carefully, but the directions of the forces are correct. Which statement below must be true?
- A: $m g>N$
- $B: N>m g$
- C: $N=m g$

Sample Question

- A mass m is accelerated down along a frictionless inclined plane. The magnitudes of the forces on the free-body diagram have not been drawn carefully, but the directions of the forces are correct. Which statement below must be true?

[^0]

N balances $m g \cos \theta$
so $N<m g$

Friction

Sample Question

I push (with force Fext) on a block (mass m) which sits on the table.
The block is not moving, because there is static friction (coefficient $\mu \mathrm{s}$).
What can you say for sure about the frictional force, f (frictional force of table on block)?
A: $\mathrm{f}=\mu \mathrm{s} \mathrm{mg}$
B: $\mathrm{f}=\mathrm{Fext}$
C: $\mathrm{f}>\mathrm{Fext}$
D: $\mathrm{f}<\mathrm{Fext}$
E: Not enough information (or, MORE than one of the above)

Sample Question

I push (with force Fext) on a block (mass m) which sits on the table.
The block is not moving, because there is static friction (coefficient $\mu \mathrm{s}$).
What can you say for sure about the frictional force, f (frictional force of table on block)?
A: $\mathrm{f}=\mathrm{us} \mathrm{mg}$
B: $\mathrm{f}=$ Fext
C: f>Fext
D: $\mathrm{f}<\mathrm{Fext}$
E: Not enough information (or, MORE than one of the above)

$f=$ Fext since $a=0$

$$
\begin{aligned}
f_{\max } & =\mu_{s} F_{N} \\
& =\mu_{s} m g
\end{aligned}
$$

but f can be less than f max if not needed to balance feat

Centripetal Force

> Rotational Motion:
> $\theta=s / r \quad a_{c}=\frac{v^{2}}{r}$

Work and Energy

Work \& Energy:

$$
\begin{array}{lll}
K E_{\text {trans }}=\frac{1}{2} m v^{2} & \Delta K E=W_{\text {net }} & P E_{G}=m g h \quad P E_{\text {spring }}=\frac{1}{2} k x^{2} \\
E=K E+P E & \Delta E=W_{n c} & W=\vec{F} \cdot \Delta \vec{r}=|\vec{F}||\Delta \vec{r}| \cos \theta_{\text {Fdr }}
\end{array}
$$

High PE

Low PE

Work and Energy

Sample Question

- A 12-kg crate is pushed up an incline from point A to point B as shown in the figure. What is the change in the gravitational potential energy of the crate? Assume $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.
A. -600 J
B. -1200 J
$+1200 \mathrm{~J}$
This cannot be determined without knowing the angle of the incline.
E. +600 J

Sample Question

- A $12-\mathrm{kg}$ crate is pushed up an incline from point A to point B as shown in the figure. What is the change in the gravitational potential energy of the crate? Assume $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.
A. -600 J
B. -1200 J
C. +1200 J
D. This cannot be determined without knowing the angle of the incline.
E. +600J

$$
\begin{aligned}
\Delta P E_{g} & =m g h \\
& =12 \cdot 10 \cdot \mathrm{~s} \\
& =600 \mathrm{~J}
\end{aligned}
$$

Sample Question

- A woman stands on the edge of a cliff and throws a stone vertically downward with an initial speed of $10 \mathrm{~m} / \mathrm{s}$. The instant before the stone hits the ground below, it has 450 J of kinetic energy. If she were to throw the stone horizontally outward from the cliff with the same initial speed of $10 \mathrm{~m} / \mathrm{s}$, how much kinetic energy would it have just before it hits the ground?
- A. 950 J
- B. 50 J
- C. 100 J
- D. 450 J
- E. 800 J

Sample Question

- A woman stands on the edge of a cliff and throws a stone vertically downward with an initial speed of $10 \mathrm{~m} / \mathrm{s}$. The instant before the stone hits the ground below, it has 450 J of kinetic energy. If she were to throw the stone horizontally outward from the cliff with the same initial speed of $10 \mathrm{~m} / \mathrm{s}$, how much kinetic energy would it have just before it hits the ground?
- A. 950 J
- B. 50 J
- C. 100 J
- D. 450 J
- E. 800 J

$$
\begin{aligned}
& E=K E+P E=\text { const. } \\
& E_{0}=1 / 2 m v_{0}^{2}+m g y_{0} \\
& E_{1}=E_{0} \\
&
\end{aligned}
$$

KEf same in beth cases

Work and Energy: Non-

Conservative

Problem solving strategy

Problem statement
1
Non-conservative forces present?

$W_{N C}=\left(\frac{1}{2} \mathrm{~m} v^{2}+\mathrm{mg} h\right)-\left({ }_{2}^{1} \mathrm{~m} v_{0}^{2}+m g h_{0}\right)$
$\left(\sum f\right) \cdot d=\left(\frac{1}{2} \mathrm{~m} v^{2}-\frac{1}{2} \mathrm{~m} v_{0}^{2}\right)+\left(\underline{\mathrm{mg}} \mathrm{m}-m g h_{0}\right)$
Where Σ frepresents sum of all non-conservative forces present and d the distance covered during the application of non-conservative forces
$\left(\frac{1}{2} \mathrm{~m} v^{2}+\mathrm{mg} h\right)=\left(\frac{1}{2} \mathrm{~m} v_{0}^{2}+m g h_{0}\right)$

Substitute and calculate the unknowns

Sample Question

- An automobile approaches a barrier at a speed of $20 \mathrm{~m} / \mathrm{s}$ along a level road. The driver locks the brakes at a distance of 50 m from the barrier. What minimum coefficient of kinetic friction is required to stop the automobile before it hits the barrier? Assume $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.
$\begin{array}{ll}\text { A. } & 0.5 \\ \text { B. } & 0.6 \\ \text { C. } & 0.4 \\ \text { D. } & 0.7 \\ \text { E. } & 0.8\end{array}$

Sample Question

- An automobile approaches a barrier at a speed of $20 \mathrm{~m} / \mathrm{s}$ along a level road. The driver locks the brakes at a distance of 50 m from the barrier. What minimum coefficient of kinetic friction is required to stop the automobile before it hits the barrier? Assume $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.

A. B. B. $\mathbf{0 . 6}$	
C.	0.4
D.	0.7
E.	0.8

$$
\begin{aligned}
\Delta E & =w_{N c}=F \Delta r \cos \theta_{F r} \\
& =-F_{f} \Delta x \\
& =-\mu m g \cdot 50
\end{aligned}
$$

$$
\begin{aligned}
\Delta E & =\Delta K E+\Delta \rho E \\
& =\Delta\left(1 / 2 m v^{2}\right) \\
& =1 / 2 m v_{f}^{2}-1 / 2 m v_{0}^{2} \\
& =-1 / 2 m v_{0}^{2}
\end{aligned}
$$

so $-1 / 2 m v_{0}{ }^{2}=-\mu m g-s_{0}$

$$
=-500 \cdot \mu \cdot m
$$

ar $-y_{2} v_{0}{ }^{2}=-500 \mu$

$$
\begin{aligned}
\mu=\frac{1 / 2 v_{0}^{2}}{500} & =\frac{12.400}{500} \\
& =0.4
\end{aligned}
$$

[^0]: - $A: m g>N$
 - B: $\mathrm{N}>\mathrm{mg}$
 - C: $N=m g$

