College Physics I: 1511 Mechanics & Thermodynamics

Professor Jasper Halekas Van Allen Lecture Room 1 MWF 8:30-9:20 Lecture

Announcements

- We'll start using Turning Point Cloud on Friday
 - Please register for your account (through the link on ICON) before then if you want to participate
 - At the start of class I'll give you the session ID you can then access the polling through the app, the Turning Point web site, or https://rwpoll.com
 - We'll practice to make sure things are working!

Topics for Today

- Math review
 - Trigonometry
 - Vector math
 - Algebra

Position

- How do we specify the position of an object?
 - We must have a reference (coordinate system)
 - We need units (otherwise "how far" is meaningless)
 - We don't live in a one-dimensional world, so we need vectors

Units are Important

International System of Units (SI)

SI Base Units

0

Base Quantity	Name	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	S
Electric current	ampere	A
Temperature	kelvin	K
Amount of substance	mole	mol
Luminous intensity	candela	cd

SI Derived Units

Frequency hertz Hz	s ⁻¹
rioquonoy nortz riz	
Force newton N	m·kg·s ⁻²
Pressure pascal Pa	N/m ²
Energy joule J	N·m
Power watt W	J/s
Electric charge coulomb C	s-A
Electric potential volt V	W/A
Electric resistance ohm Ω	V/A
Celsius temperature degree Celsius °C	K*

*Unit degree Celcius is equal in magnitude to unit kelvin.

SI Prefixes

Factor	Name	Symbol	Numerical Value
1012	tera	T	1 000 000 000 000
10 ⁹	giga	G	1 000 000 000
10 ⁶	mega	M	1 000 000
10 ³	kilo	k	1 000
10 ²	hecto	h	100
10 ¹	deka	da	10
10-1	deci	d	0.1
10-2	centi	C	0.01
10-3	milli	m	0.001
10-6	micro	μ	0.000 001
10^{-9}	nano	n	0.000 000 001
10-12	pico	р	0.000 000 000 001

Adapted from NIST Special Publication 811

SI rules and style conventions recommend using spaces rather than commas to separate groups of three digits.

International Standards

Position of me to student A? w/ respect Ostudent A The front of and to
the right 11 - depends an
arient at ion of student Use fixed coordinates

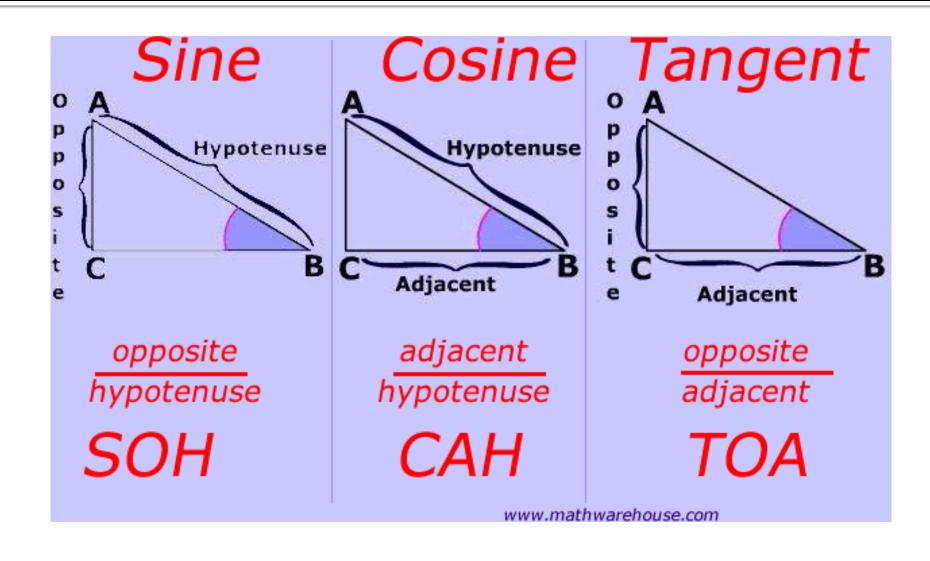
- How far are DX, Dy? - Need to specify units How far is student A from me? lythagerean theorem
says: $d^2 = \Delta x^2 + \Delta y^2$ d = VDx2 11 right triangle" that student A has to

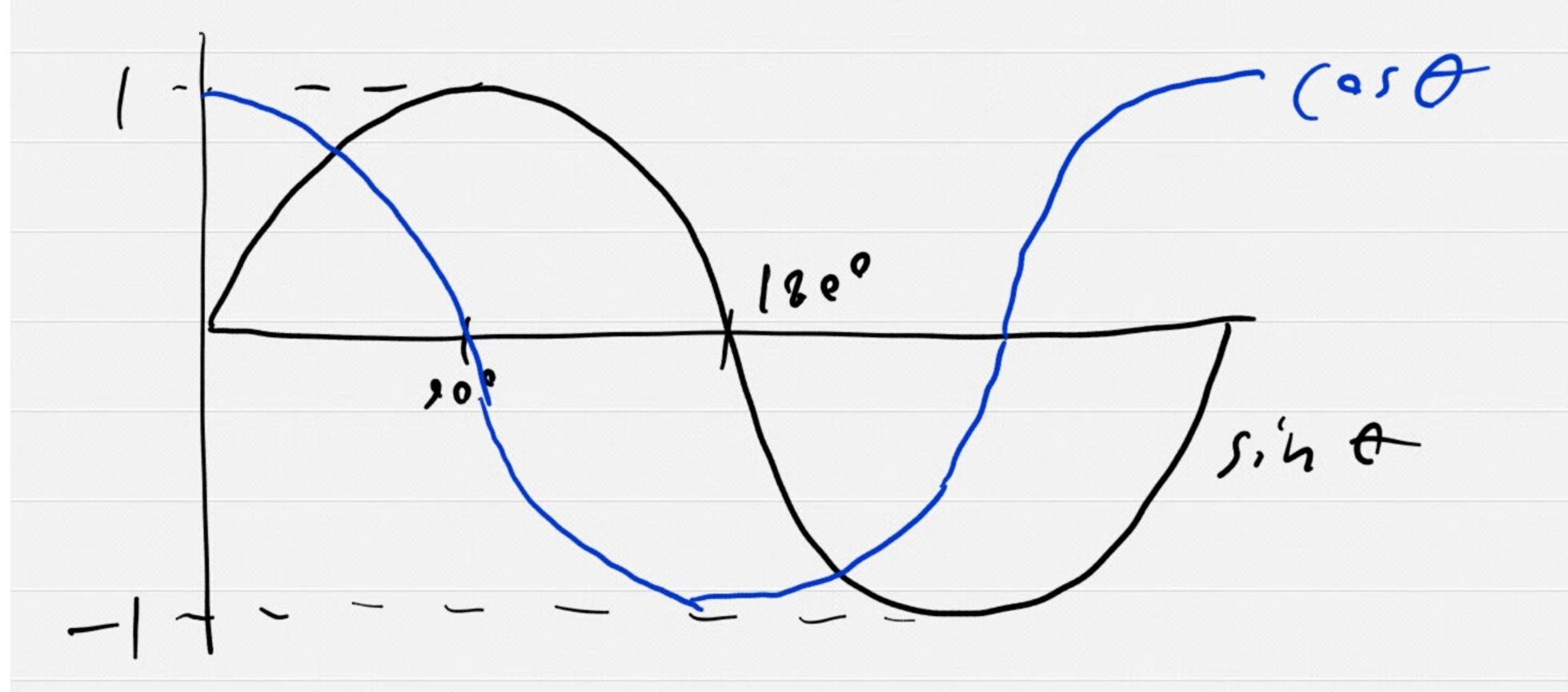
- Sum of angles in any triangle = 180° so other angle = 180° - 20° - 0 = 20° - 0

$$sin \theta = \Delta y/d$$

$$cos \theta = \Delta x/d$$

$$+ an \theta = \Delta y/\Delta x$$


$$\int_{\partial X}^{90-\Theta} dy$$


$$Sin(90^{\circ}-\Theta) = \frac{\delta \times d}{d}$$

$$\cos(90^{\circ}-\Theta) = \frac{\delta \times d}{d}$$

(omparing:
$$sin(fo^{\circ}-A) = (\circ sA)$$

 $(\circ s(fo^{\circ}-A) = sinA)$

SOHCAHTOA

Can solve for ununowns

The trong and
$$\theta$$
:

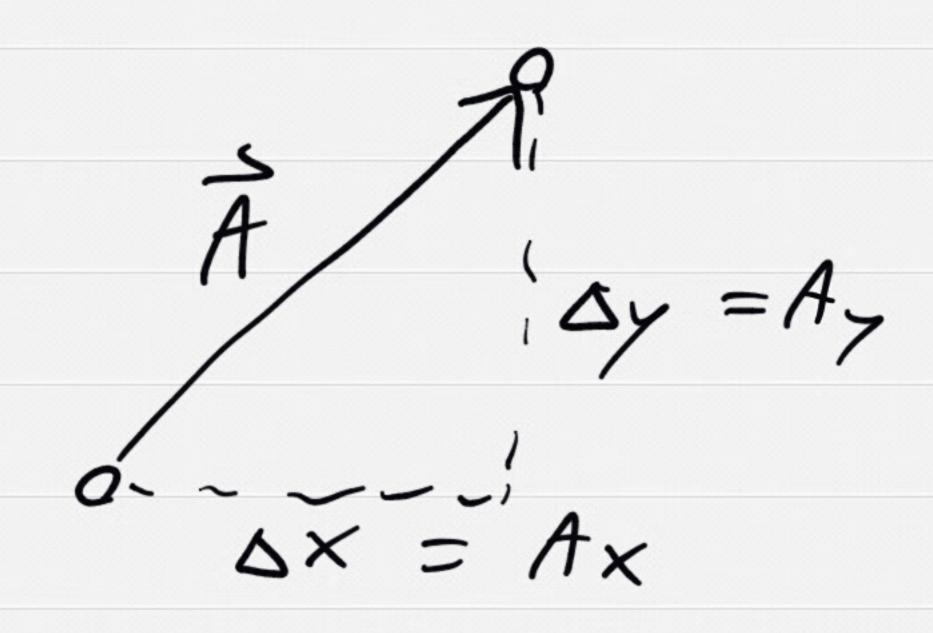
 $\delta x = i$
 $\delta x = i$

Know (ase = δx)

 $\delta x = i$

Multiply by δi :

 $\delta x = i$
 δx

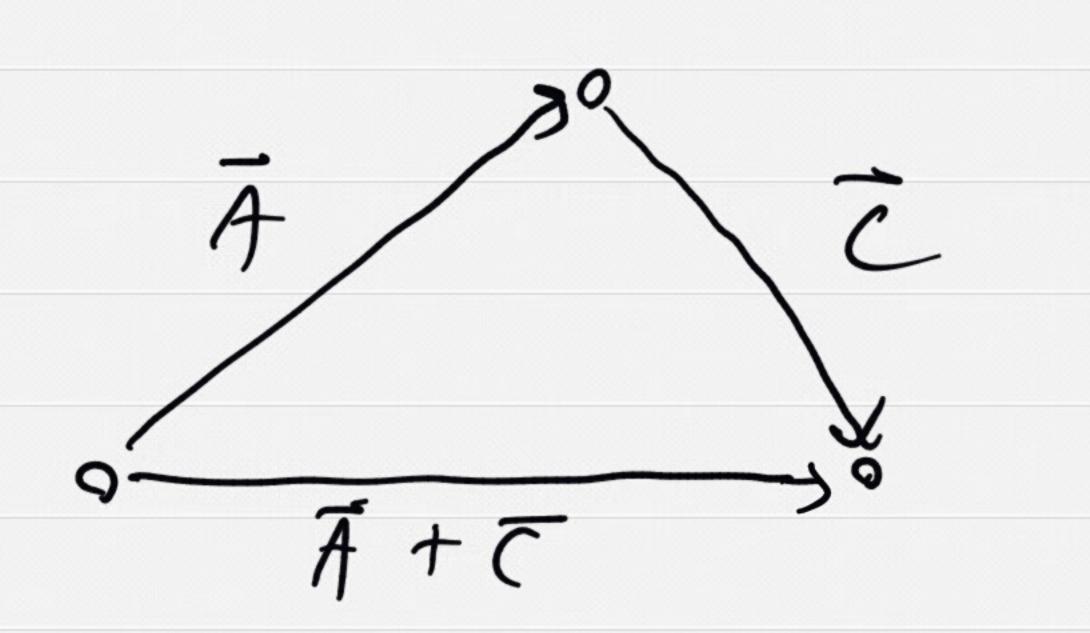

- My position we respect
to student A has both
magnitude and direction
- this is a vector!

Lets call it A

$$\overline{A} = [Ax, Ay, Az]$$

$$= [Dx, Dy, Dz]$$

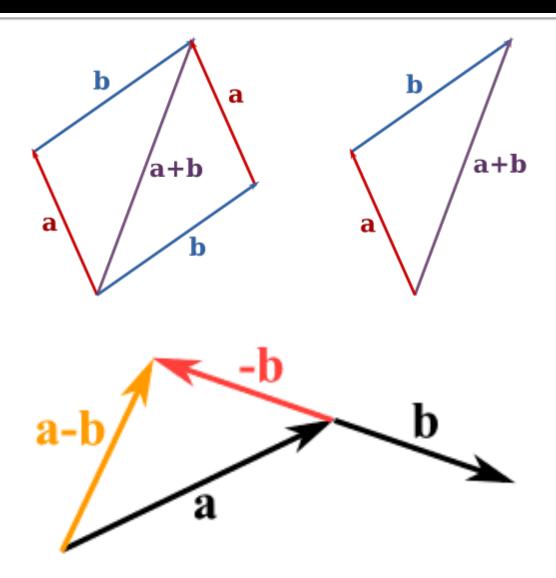
$$= [Dx, Dy, D]$$


Ac

- what about my position we respect to student B?

- what about position of student B w respect to me?

How for from student A to student D?



 $\vec{A} + \vec{C} = [A \times / A / A + \vec{J} + (x / y / C_4)]$ $= [A \times + (x / A / + C / A + C_2)]$ $= [A \times + \delta \times z / \Delta y - \Delta y / O]$ $= A + \vec{C} + \vec{C}$

notice $\vec{A} + \vec{C} = \vec{A} + (-\vec{0})$ = $\vec{A} - \vec{0}$

Fasiest to compute $\vec{A} - \vec{B}$ as $\vec{A} + (-\vec{B})$

Vector Math

Some algebra i 4x - 3 = 0 Always try to isolate Variables; Add 3 to both sides $4\times = 3$ Divide by 4 $X = \frac{3}{4}$ $V_{\text{ev}}(f_y) : 4(3/4) - 3 = 0$

What about;

$$x + 3y = 2$$

 $x - y = 3$
isolate x in Eq. 1
 $x = 2 - 3y$
elug in to Eq. 2
 $2 - 3y - y = 3$
 $\Rightarrow - 4y = 1$
 $\Rightarrow y = 1/4 = -1/4$
Now use Eq. 1 to get x
 $x = 2 - 3y = 2 - 3(-1/4)$

= 2 + 3/4 = (1/4)