College Physics I: 1511 Mechanics & Thermodynamics

Professor Jasper Halekas Van Allen Lecture Room 1 MWF 8:30-9:20 Lecture

Review: Uniform Circular Motion

Review: Circles

Rotational Quantities I: Angle

Rotational Quantities II: Angular Velocity

Tangential Velocity $\langle \sqrt{\tau} \rangle = \frac{5}{\Delta t}$ but $\int = r \Delta \theta$ $Sq(V_T) = r O Q$ define (W) = De/St (Vy) = V (W)

Tangential Vs. Angular Velocity

Tangential Velocity Vs. Angular Velocity

- Tangential velocity is the velocity of a body in the direction of the tangent to a circle
 - Tangential velocity (SI Unit: m/s) depends on the radius of the motion
- Angular velocity is the rate at which the angle of a body with respect to a set of coordinate axes changes
 - Angular velocity (SI Unit: rad/s) does not depend on the radius of the motion

Important Convention

 Angles and angular velocities are defined as positive if they are counter-clockwise, negative if they are clockwise

BIG BEN and a little alarm clock both keep perfect time. Which minute hand has the bigger angular velocity ω ?

A) Big Ben

B) little alarm clock

C) Both have the same ω

BIG BEN and a little alarm clock both keep perfect time. Which minute hand has the bigger angular velocity ω ?

A) Big Ben

B) little alarm clock

C) Both have the same ω

Big Ben! $W_0 = 2\pi v_{ad} = \frac{1}{60} 5$ Liftle Clock:

A small wheel and a large wheel are connected by a belt. The small wheel is turned at a constant angular velocity ω_s . How does the magnitude of the angular velocity of the large wheel ω_L compare to that of the small wheel?

A: $\omega_s = \omega_L$ B: $\omega_s > \omega_L$ C: $\omega_s < \omega_L$

A small wheel and a large wheel are connected by a belt. The small wheel is turned at a constant angular velocity ω_s . How does the magnitude of the angular velocity of the large wheel ω_L compare to that of the small wheel?

C:
$$\omega_{\rm s} < \omega_{\rm L}$$

Bicycle: Big wheel has angular velocity Wh DO = WL. t $S_L = r_L \Delta \varphi_L = r_L \omega_L \cdot t$ since belt connects two wheels $S_{S} = S_{L}$ $S_s = V_s \Delta \theta_s = V_s W_s \cdot t$

rihlit = rshsit 50: $=) V_L W_L = V_S W_S$

Bicycle Gears

Rotational Quantities III: Angular Acceleration

SI Unit of Angular acceleration: radian per second per second (rad/s2)

- A wheel starts from rest and undergoes an angular acceleration of 4 rad/s². After 5 s, what is its angular velocity?
- A. 10 rad/s
- B. 20 rad/s
- C. 40 rad/s
- D. 5 rad/s
- E. o rad/s

- A wheel starts from rest and undergoes an angular acceleration of 4 rad/s². After 5 s, what is its angular velocity?
- A. 10 rad/s
- B. 20 rad/s
- C. 40 rad/s
- D. 5 rad/s
- E. o rad/s

 $h = h \cdot t \alpha \Delta t$ $= 0 + 4 \cdot 5$ o ral 7

A ladybug is clinging to the rim of a spinning wheel which is spinning CCW very fast and is <u>slowing down</u>. At the moment shown, what is the approximate direction of the ladybug's total acceleration?

E) None of these

A ladybug is clinging to the rim of a spinning wheel which is spinning CCW very fast and is <u>slowing down</u>. At the moment shown, what is the approximate direction of the ladybug's total acceleration?

E) None of these

Centripetal and Tangential Acceleration

Angular Kinematic Variables

Angular Vs. Tangential Variables

Linear and Rotational Quantities					
Linear	Туре	Rota- tional	Relation $(\theta \text{ in radians})$		
S = <i>X</i>	displacement	θ	$S = x = R\theta$		
v	velocity	ω	$v = R\omega$		
a_{tan}	acceleration	α	$a_{\rm tan} = R\alpha$		