College Physics I: 1511 Mechanics \& Thermodynamics

Professor Jasper Halekas
Van Allen Lecture Room 1
MWF 8:30-9:20 Lecture

Review: Uniform Circular Motion

Review: Circles

Rotational Quantities I: Angle

Rotational Quantities II: Angular Velocity

Tangential velocity

$$
\begin{aligned}
& \left\langle v_{T}\right\rangle=s / \Delta t \\
& \text { but } s=r \Delta \theta \\
& \text { sa }\left\langle v_{T}\right\rangle=r \Delta \theta / \Delta t \\
& \text { define }\langle w\rangle=\Delta \theta / \Delta t \\
& \left\langle v_{T}\right\rangle=r\langle w\rangle
\end{aligned}
$$

Tangential Vs. Angular Velocity

BUT THE POINT ON THE RECORD'S EDGE HAS TO MAKE A BIGGER CIRCLE IN THE SAME TIME, SO IT GOES FISTER. SEE, TWO POINTS ON ONE DISK MONE AT TWO SPEEDS, EYEN THOUGH THEY BOTH MAKE THE SAME REVOLUTIONS PER MINUTE!

Tangential Velocity Vs. Angular Velocity

- Tangential velocity is the velocity of a body in the direction of the tangent to a circle
- Tangential velocity (SI Unit: m/s) depends on the radius of the motion
- Angular velocity is the rate at which the angle of a body with respect to a set of coordinate axes changes
- Angular velocity (SI Unit: rad/s) does not depend on the radius of the motion

Important Convention

Angles and angular velocities are defined as positive if they are counter-clockwise, negative if they are clockwise

Concept Check

BIG BEN and a little alarm clock both keep perfect time.
Which minute hand has the bigger angular velocity ω ?

A) Big Ben
B) little alarm clock
C) Both have the same ω

Concept Check

BIG BEN and a little alarm clock both keep perfect time.
Which minute hand has the bigger angular velocity ω ?

Big Ben:

$$
\omega_{B}=2 \pi \mathrm{rad} / 60 \mathrm{~s}
$$

Little Clock:

$$
\begin{aligned}
& w_{c}=2 \pi \mathrm{rad} \\
& 60 \mathrm{~s} \\
& w_{0}=w_{c}
\end{aligned}
$$

Concept Check

A small wheel and a large wheel are connected by a belt. The small wheel is turned at a constant angular velocity ω_{s}. How does the magnitude of the angular velocity of the large wheel ω_{L} compare to that of the small wheel?

$$
\mathrm{A}: \omega_{\mathrm{s}}=\omega_{\mathrm{L}} \quad \text { B: } \omega_{\mathrm{s}}>\omega_{\mathrm{L}} \quad \mathrm{C}: \omega_{\mathrm{s}}<\omega_{\mathrm{L}}
$$

Concept Check

A small wheel and a large wheel are connected by a belt. The small wheel is turned at a constant angular velocity ω_{s}. How does the magnitude of the angular velocity of the large wheel ω_{L} compare to that of the small wheel?

$$
\begin{array}{l|l|l}
\mathrm{A}: \omega_{\mathrm{s}}=\omega_{\mathrm{L}} & \text { B: } \omega_{\mathrm{s}}>\omega_{\mathrm{L}} & \mathrm{C}: \omega_{\mathrm{s}}<\omega_{\mathrm{L}}
\end{array}
$$

Bicycle:

Big wheel has angular velocity W_{L}

$$
\begin{gathered}
\Delta \theta=w_{L} \cdot t \\
s_{L}=r_{L} \Delta \theta_{L}=r_{L} w_{L} \cdot t
\end{gathered}
$$

since belt connects t wo wheels

$$
\begin{aligned}
& s_{s}=s_{L} \\
& s_{s}=r_{s} \Delta \theta_{s}=r_{s} w_{s} \cdot t
\end{aligned}
$$

so: $\quad r_{L} W_{L} \cdot t=r_{s} W_{S}-t$

$$
\begin{aligned}
& \Rightarrow r_{L} w_{L}=r_{S} w_{S} \\
& \Rightarrow \quad w_{S}=\frac{r_{L}}{r_{S}} v_{L} \geq w_{L}
\end{aligned}
$$

Bicycle Gears

Rotational Quantities III: Angular Acceleration

Average angular acceleration $=\frac{\text { Change in angular velocity }}{\text { Elapsed time }}$

$$
\bar{\alpha}=\frac{\omega-\omega_{o}}{t-t_{o}}=\frac{\Delta \omega}{\Delta t}
$$

Concept Check

- A wheel starts from rest and undergoes an angular acceleration of $4 \mathrm{rad} / \mathrm{s}^{2}$. After 5 s , what is its angular velocity?
A. $10 \mathrm{rad} / \mathrm{s}$
B. $20 \mathrm{rad} / \mathrm{s}$
C. $40 \mathrm{rad} / \mathrm{s}$
D. $5 \mathrm{rad} / \mathrm{s}$
E. orad/s

Concept Check

- A wheel starts from rest and undergoes an angular acceleration of $4 \mathrm{rad} / \mathrm{s}^{2}$. After 5 s , what is its angular velocity?
A. $10 \mathrm{rad} / \mathrm{s}$
B. $20 \mathrm{rad} / \mathrm{s}$
C. $40 \mathrm{rad} / \mathrm{s}$
D. $5 \mathrm{rad} / \mathrm{s}$
E. orad/s

$$
\begin{aligned}
\alpha & =\Delta w / \Delta t \\
& =(w-w \cdot) / \Delta t \\
\Rightarrow w-w_{0} & =\alpha \Delta t \\
\text { or } w & =w_{0}+\alpha \Delta t \\
& =0+4 \cdot \mathrm{~s} \\
& =20 \text { rad } / \mathrm{s}
\end{aligned}
$$

Concept Check

A ladybug is clinging to the rim of a spinning wheel which is spinning CCW very fast and is slowing down. At the moment shown, what is the approximate direction of the ladybug's total acceleration?

A) \downarrow
B) 4
C) $\boldsymbol{\Sigma}$
D) \backslash
E) None of these

Concept Check

A ladybug is clinging to the rim of a spinning wheel which is spinning CCW very fast and is slowing down. At the moment shown, what is the approximate direction of the ladybug's total acceleration?

> B) $<-$ D) \backslash
E) None of these

Centripetal and Tangential Acceleration

Angular Kinematic Variables

Angular Vs. Tangential Variables

Linear and Rotational Quantities

Rota- Relation Linear Type tional (θ in radians)

$$
\begin{array}{rlrr}
\mathrm{s}=x & \text { displacement } & \theta & \mathrm{s}=x=R \theta \\
v & \text { velocity } & \omega & v=R \omega \\
a_{\mathrm{tan}} & \text { acceleration } & \alpha & a_{\mathrm{tan}}=R \alpha
\end{array}
$$

