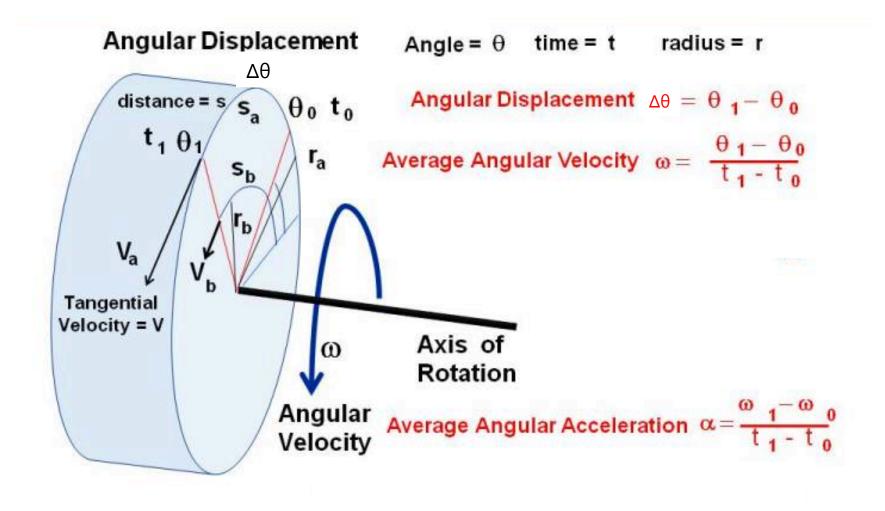
College Physics I: 1511 Mechanics & Thermodynamics

Professor Jasper Halekas Van Allen Lecture Room 1 MWF 8:30-9:20 Lecture

Angular Kinematic Variables



Angular Vs. Tangential Variables

Linear and Rotational Quantities				
Linear	Туре		Relation $(\theta \text{ in radians})$	
S = <i>X</i>	displacement	θ	$S = x = R\theta$	
v	velocity	ω	$v = R\omega$	
a_{tan}	acceleration	α	$a_{\rm tan} = R\alpha$	

 $\Delta x = S = V \cdot t + z \cdot a t^2$ $\int = r \Delta \theta$ V = V W $a = r \alpha$ r DA = rw.t t/2 rat2 Cancel rs DA = W.t + / Lat2 - Same equation in angular Variables - limilarly v² = V.² + 2a &X $(wr)^2 = (w.r)^2 + 2\alpha r \cdot r\Delta \Theta$ wzrz = worz t zarzst $h^2 = h^2 + 2a \Delta \theta$

Angular Kinematic Equations

$v = v_o + at$	$\omega = \omega_{o} + \alpha t$
$\Delta x = \frac{1}{2} (v_o + v) t$	$\Delta \boldsymbol{\theta} = \frac{1}{2} (\boldsymbol{\omega}_o + \boldsymbol{\omega}) t$
$v^2 = v_o^2 + 2a(\Delta x)$	$\boldsymbol{\omega}^2 = \boldsymbol{\omega}_o^2 + 2\boldsymbol{\alpha}(\Delta\boldsymbol{\theta})$
$\Delta x = v_o t + \frac{1}{2}at^2$	$\Delta \theta = \omega_o t + \frac{1}{2} \alpha t^2$

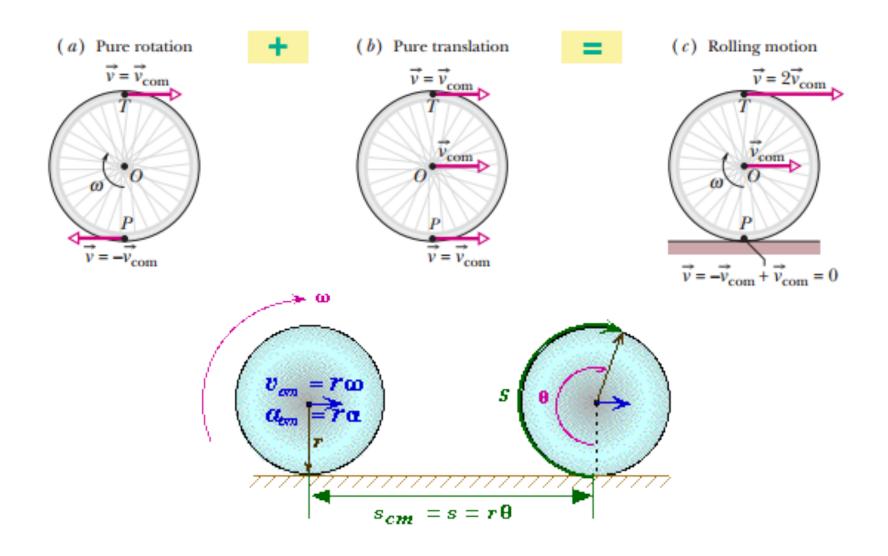
- A car slams on the brakes to avoid an accident, slowing its wheels from an initial angular velocity of 10 rad/s to rest. During this time, the wheels rotate 100 radians. What angular acceleration did the car wheels undergo?
- A. -1 rad/s^2
- B. -2 rad/s²
- C. 1 rad/s^2
- D. -0.5 rad/s²
- E. 0.5 rad/s^2

- A car slams on the brakes to avoid an accident, slowing its wheels from an initial angular velocity of 10 rad/s to rest. During this time, the wheels rotate 100 radians. What angular acceleration did the car wheels undergo?
- A. -1 rad/s²
 B. -2 rad/s²
 C. 1 rad/s²
 D. -0.5 rad/s²
 E. 0.5 rad/s²

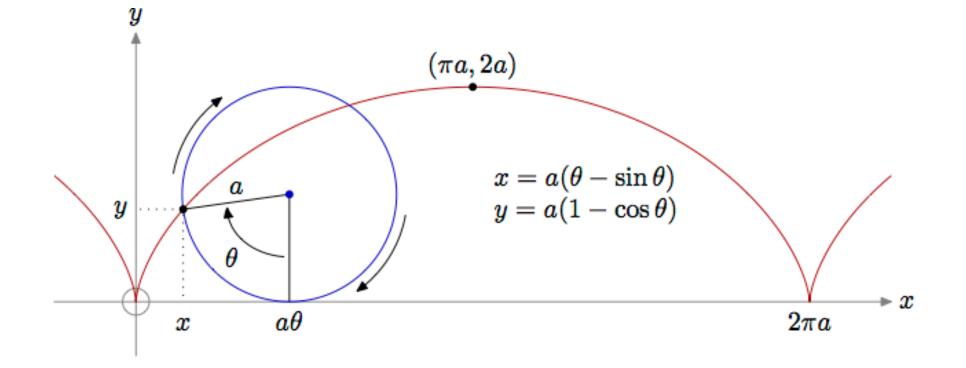
Braking Car $w^2 = w^2 + 2\alpha D \theta$ $0 = 10^2 + 2\alpha - 100$ = 100 + 200 a

or -100 = 200 a $= - f_2$ =>

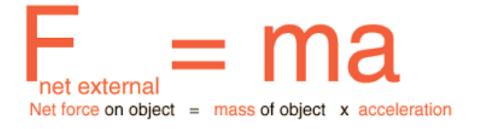
Rolling Motion & Center of Mass

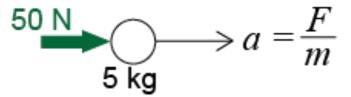


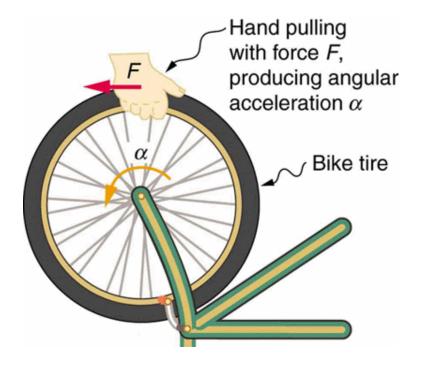
Cycloid

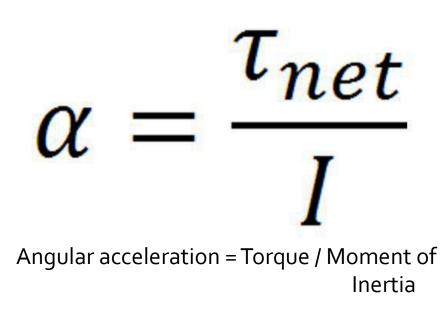


Newton's Second Law: Rotating Bodies

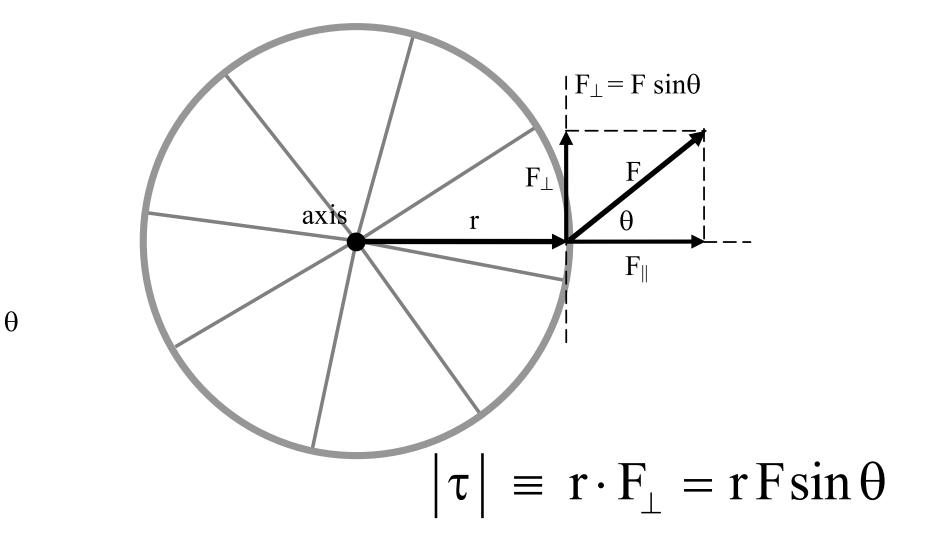






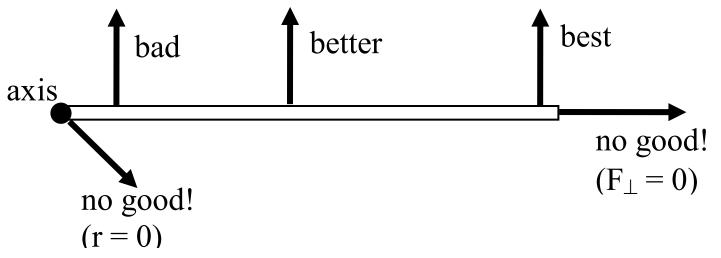


Rotational Quantities IV: Torque

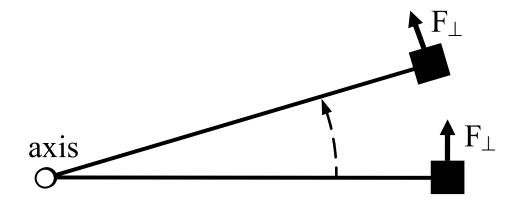


Units of Torque

- SI Units [N][m]
- Why an extra factor of r compared to force?
- Because you can more easily rotate a wheel if you push farther from the center...



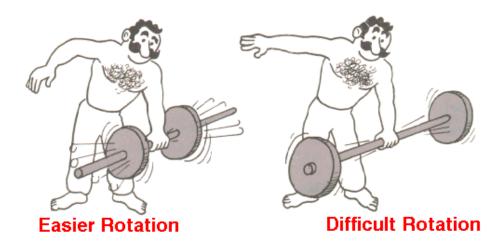
Rotational Quantities V: Moment of Inertia

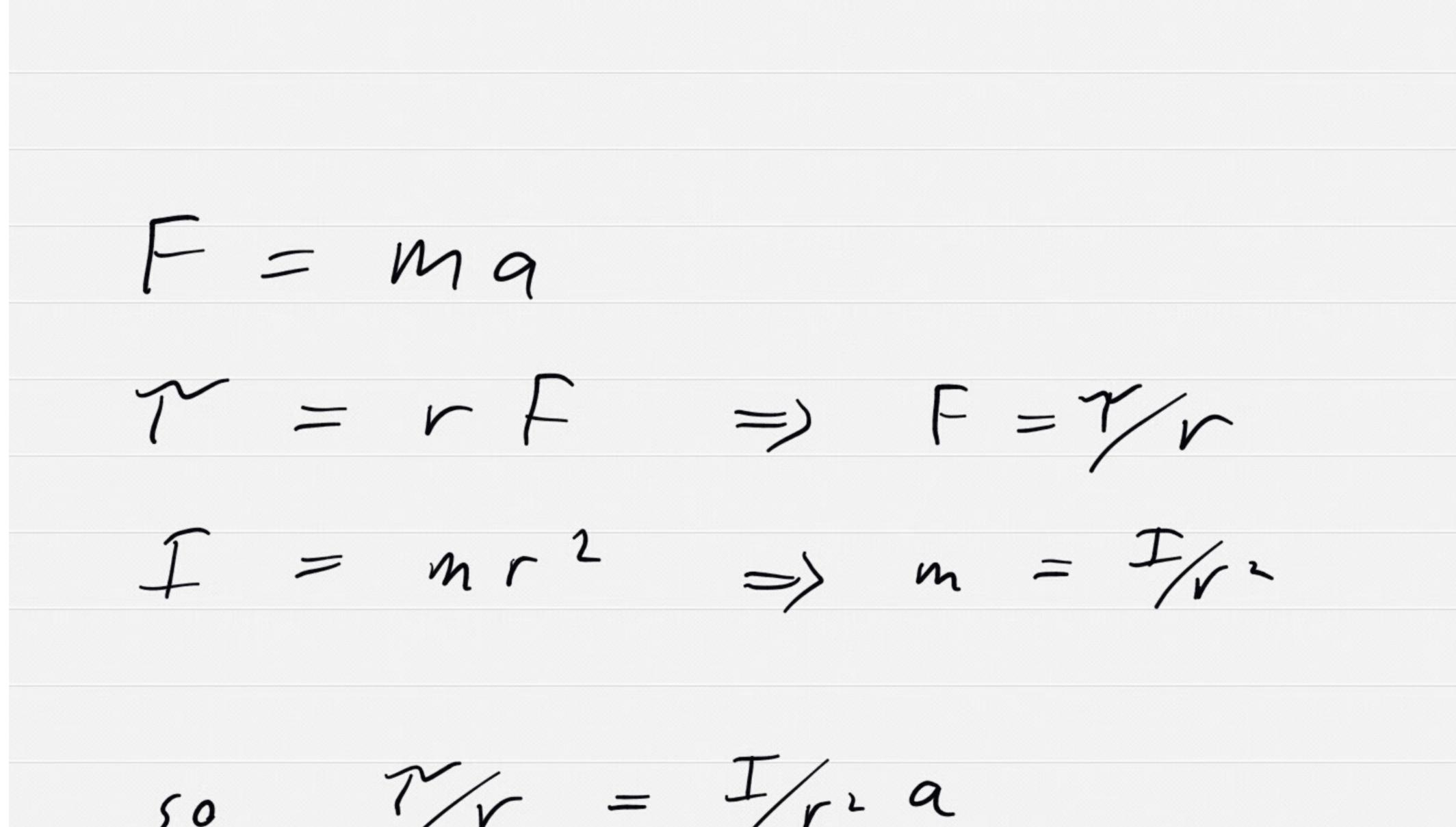


I = mr² = "Moment of Inertia"

Units of Moment of Inertia

- SI Units [kg][m²]
- Why an extra factor of r² compared to mass?
- Because it is much harder to move mass that is farther from the center...





= I/r · ra = r - t/2 · r d

Line of Action & Lever Arm

