College Physics I: 1511 Mechanics \& Thermodynamics

Professor Jasper Halekas
Van Allen Lecture Room 1
MWF 8:30-9:20 Lecture

Angular Kinematic Variables

Angular Vs. Tangential Variables

Linear and Rotational Quantities

Rota- Relation Linear Type tional (θ in radians)

$$
\begin{array}{rlrr}
\mathrm{s}=x & \text { displacement } & \theta & \mathrm{s}=x=R \theta \\
v & \text { velocity } & \omega & v=R \omega \\
a_{\mathrm{tan}} & \text { acceleration } & \alpha & a_{\mathrm{tan}}=R \alpha
\end{array}
$$

$$
\begin{aligned}
& \Delta x=S=v_{0} t+1 / 2 a t^{2} \\
& S=r \Delta \theta \\
& v=r a \\
& a=r a
\end{aligned}
$$

$$
r \Delta \theta=r \omega_{0} t+1 / 2 r \alpha t^{2}
$$

cancel res

$$
\Delta \theta=w_{0} t+y_{2} \alpha t^{2}
$$

- Same equation in angular

$$
\begin{aligned}
&- \text { Similarly } \\
& v^{2}=v 0^{2}+2 a \Delta x \\
&(w r)^{2}=\left(w_{0} r\right)^{2}+2 \alpha r \cdot r \Delta \theta \\
& w^{2} r^{2}=w_{0}^{2} r^{2}+2 \alpha r^{2} \Delta \theta \\
& w^{2}=w_{0}^{2}+2 \alpha \Delta \theta
\end{aligned}
$$

Angular Kinematic Equations

$$
\begin{array}{cc}
v=v_{o}+a t & \omega=\omega_{o}+\alpha t \\
\Delta x=\frac{1}{2}\left(v_{o}+v\right) t & \Delta \theta=\frac{1}{2}\left(\omega_{o}+\omega\right) t \\
v^{2}=v_{o}^{2}+2 a(\Delta x) & \omega^{2}=\omega_{o}^{2}+2 \alpha(\Delta \theta) \\
\Delta x=v_{o} t+\frac{1}{2} a t^{2} & \Delta \theta=\omega_{o} t+\frac{1}{2} \alpha t^{2}
\end{array}
$$

Concept Check

- A car slams on the brakes to avoid an accident, slowing its wheels from an initial angular velocity of $10 \mathrm{rad} / \mathrm{s}$ to rest. During this time, the wheels rotate 100 radians. What angular acceleration did the car wheels undergo?
A. $-1 \mathrm{rad} / \mathrm{s}^{2}$
B. $-2 \mathrm{rad} / \mathrm{s}^{2}$
C. $1 \mathrm{rad} / \mathrm{s}^{2}$
D. $-0.5 \mathrm{rad} / \mathrm{s}^{2}$
E. $0.5 \mathrm{rad} / \mathrm{s}^{2}$

Concept Check

- A car slams on the brakes to avoid an accident, slowing its wheels from an initial angular velocity of $10 \mathrm{rad} / \mathrm{s}$ to rest. During this time, the wheels rotate 100 radians. What angular acceleration did the car wheels undergo?

$$
\begin{array}{ll}
\text { A. } & -1 \mathrm{rad} / \mathrm{s}^{2} \\
\text { B. } & -2 \mathrm{rad} / \mathrm{s}^{2} \\
\text { C. } & 1 \mathrm{rad} / \mathrm{s}^{2} \\
\hline \text { D. } & -0.5 \mathrm{rad} / \mathrm{s}^{2} \\
\hline \text { E. } & 0.5 \mathrm{rad} / \mathrm{s}^{2}
\end{array}
$$

Braking Car

$$
\begin{aligned}
w^{2} & =w_{0}^{2}+2 a \Delta \theta \\
0 & =10^{2}+2 a \cdot 100 \\
& =100+200 a \\
a r & -100=200 a \\
& \Rightarrow a=-12 \mathrm{rat} \mathrm{~s}^{2}
\end{aligned}
$$

Rolling Motion \& Center of Mass

Cycloid

Newton's Second Law: Rotating Bodies

Angular acceleration $=$ Torque $/$ Moment of Inertia

Rotational Quantities IV: Torque

Units of Torque

- SI Units [N][m]
- Why an extra factor of r compared to force?
- Because you can more easily rotate a wheel if you push farther from the center...

Rotational Quantities V: Moment of Inertia

$I=m r^{2}=$ "Moment of Inertia"

Units of Moment of Inertia

- SI Units [kg][m²]
- Why an extra factor of r^{2} compared to mass?
- Because it is much harder to move mass that is farther from the center...

$$
\begin{aligned}
& F=m a \\
& T=r F \Rightarrow F=r / r \\
& I=m r^{2} \Rightarrow m=I / r^{2} \\
& \text { so } \begin{aligned}
T / r & =I / r^{2} a \\
& =I / r^{2} \cdot r \alpha \\
& \Rightarrow T=r \cdot I / r^{2} \cdot r \alpha \\
& \Rightarrow I=I a
\end{aligned}
\end{aligned}
$$

Line of Action \& Lever Arm

Concept Check

You are using a wrench and trying to loosen a rusty nut. Which of the arrangements shown is most effective in loosening the nut? $(\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4)$

Concept Check

You are using a wrench and trying to loosen a rusty nut. Which of the arrangements shown is most effective in loosening the nut? $(\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4)$

Concept Check

You are using a wrench and trying to loosen a rusty nut. Which of the arrangements shown is most effective in loosening the nut? $(\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4)$

Concept Check

You are using a wrench and trying to loosen a rusty nut. Which of the arrangements shown is most effective in loosening the nut? $(\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4)$

1.

$$
\prod_{0}^{F}
$$

2. $\underset{\int_{0}}{\vec{F}}$
3.

$$
\stackrel{\prod_{0} \vec{F} l}{\int_{0}^{F l}} \stackrel{4}{\rightarrow}
$$

