College Physics I: 1511 Mechanics \& Thermodynamics

Professor Jasper Halekas
Van Allen Lecture Room 1
MWF 8:30-9:20 Lecture

Public Service Announcement

- Iowa Voter Registration Deadline is October 29 (two weeks away).
- Make sure you are registered
- Make sure your voice is heard!

Equilibrium

$$
\Sigma \mathrm{F}=\mathrm{ma} \quad \Sigma \tau=\mathrm{I} \alpha
$$

- Acceleration = 0
- Net External Force = o
- All external forces balanced
- Angular acceleration = o
- Net External Torque = o
- All external torques balanced

Concept Check

- A meter stick is balanced at its midpoint. I put a 1 kg mass at the end of the stick $(x=50 \mathrm{~cm})$. If I also have a 5 kg mass, where should I place it so that the meter stick is balanced?
A. $x=-50 \mathrm{~cm}$
B. $x=-10 \mathrm{~cm}$
C. $x=10 \mathrm{~cm}$
D. $x=-20 \mathrm{~cm}$
E. $x=-25 \mathrm{~cm}$

Concept Check

- A meter stick is balanced at its midpoint. I put a 1 kg mass at the end of the stick ($\mathrm{x}=50 \mathrm{~cm}$). If I also have a 5 kg mass, where should I place it so that the meter stick is balanced?

$$
\begin{aligned}
& \text { A. } x=-50 \mathrm{~cm} \\
& \hline \text { B. } x=-10 \mathrm{~cm} \\
& \hline \text { C. } x=10 \mathrm{~cm} \\
& \text { D. } x=-20 \mathrm{~cm} \\
& \text { E. } x=-25 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{x_{2}=?} \cdot \frac{x_{1}=50}{\sqrt{F_{2}} F_{1}} \\
& \sum \tau=\sum F r \sin e_{f r} \\
& =\Sigma F l \\
& T_{1}=F_{1} x_{1} C W \\
& =-m_{1} g x_{1} \\
& =-9 \cdot 0.5 \\
& T_{2}=F_{2} x_{2} \text { CCW } \\
& =-m_{2} g x_{2} \\
& =-5 \cdot 9 \cdot x_{2} \\
& \Sigma \tau=\tau_{1}+\tau_{2} \\
& =-59 x_{2}-0.59=0 \\
& \Rightarrow \mathrm{~s}, x_{2}=-0.59 \\
& \Rightarrow x_{2}=-0.1 \mathrm{~m} \\
& =-10 \mathrm{~cm}
\end{aligned}
$$

Center of Mass / Center of Gravity

Center of Mass

(This would also be center of Gravity since the object is in uniform gravitational field)

$$
\begin{aligned}
& \tau=F \cdot x \\
& \tau_{i}=F_{i} \cdot x_{i} \text { for } i=1,2, \ldots \\
& \tau_{+++\infty l}=\sum \tau_{1} \\
&=\sum F_{1} x_{i} \\
& \text { if } F_{i}=m_{i} g \\
& \tau_{\text {total }}=\sum m_{1} g x_{i} \\
& \text { but } \sum m_{i} x_{i}=M x_{c m} \\
& \Rightarrow \tau_{+++a l}=M g x_{c m}
\end{aligned}
$$

Acts as if all mass
O center of mass

Gravitational Torque on a Solid Object

- Torque = Force F * Lever Arm L
- Torque on a portion of an object m_{i} at position x_{i}
- $\tau_{i}=F_{i} * x_{i}$
- Total torque
- $\tau=\Sigma F_{i} x_{i}=\sum m_{i} a_{i} x_{i}=M *\left(\sum m_{i} a_{i} x_{i} / M\right)=M * g * L_{c}$
- Since gravitational acceleration g is the same for every portion of the object:
- Can treat object as if total mass M at center of mass L_{c}
- Use CM/CG with translational force/acceleration

Torque and Center of Mass

Triceps

(a)
pick elbow as pivot.

$$
\begin{aligned}
& \tau_{E}=F_{E} r_{E}=9 \\
& \tau_{B}=F_{B} \cdot r_{B}=F_{B} \cdot 0.04 \\
& \tau_{a}=-m_{a} g \cdot r_{a}=-2.5 \cdot g \cdot 0.16 \\
& \tau_{b}=-m_{0} g \cdot r_{6}=-4 g \cdot 0.38 \\
& \Sigma \tau=0 \\
& =F_{3} \cdot 0.04-2.5 \cdot 9 \cdot 0.16 \\
& -4 \text {, } 0.38 \\
& =F_{D}-0.04-3.92-14.9 \\
& =F_{0}-0.04-18.82 \mathrm{Nm} \\
& \Rightarrow F B-0.04=18.82 \\
& \text { or } F_{B}=470 \mathrm{~N}
\end{aligned}
$$

- Much bigger than weight since lever arm so small

Concept Check

- Imagine that we balance a meter stick weighing 160 g with a suspended weight on one end that also weighs 160 g . Where should the balance point be located?
$A: x=0$
$B: x=0.25$
$C: x=0.5$
$D: x=0.75$

Concept Check

- Imagine that we balance a meter stick weighing 160 g with a suspended weight on one end that also weighs 160 g . Where should the balance point be located?

$$
A: x=0 \quad B: x=0.25 \quad C: x=0.5 \quad D: x=0.75
$$

Treat meter stick as if all mass (c) CM.
$-C M$ is at $x=0.5$

- put pivot © $\quad x=x_{c}$

$$
m_{1}=m_{2}=160 \mathrm{y}
$$

$$
\begin{aligned}
& r_{1}=\mid-x_{c} \\
& r_{2}=x_{c}-0.5 \\
& \left|\tau_{1}\right|=\left|\tau_{2}\right| \\
& m_{1}\left(1-x_{c}\right)=m_{2}\left(x_{c}-0.5\right) \\
& 1-x_{c}=x_{c}-0.5 \\
& 1=2 x_{c}-0.5 \\
& 1.5=2 x_{c} \\
& x_{c}=0.75
\end{aligned}
$$

Non-Equilibrium

$\Sigma F=m a$

$\Sigma \tau=I \alpha$

Moment of Inertia

I = mr² = "Moment of Inertia"

Moment of Inertia

$$
\begin{aligned}
I & =\sum_{i=1}^{N} m_{i} r_{i}^{2} \\
& =\int_{0}^{M} r^{2} d m
\end{aligned}
$$

N point particles

Solid of mass M

Concept Check

Consider two masses, each of size 2 m at the ends of a light rod of length L with the axis of rotation through the center of the rod. The rod is doubled in length and the masses are halved. What happens to I?

A

A: I_{A} is bigger
$B: I_{B}$ is bigger
C: $\mathrm{I}_{\mathrm{A}}=\mathrm{I}_{\mathrm{B}}$

Concept Check

Consider two masses, each of size 2 m at the ends of a light rod of length L with the axis of rotation through the center of the rod. The rod is doubled in length and the masses are halved. What happens to I?

A
B

A: I_{A} is bigger
$B: I_{B}$ is bigger
C: $\mathrm{I}_{\mathrm{A}}=\mathrm{I}_{\mathrm{B}}$

$$
\begin{aligned}
I & =\sum m r^{2} \\
I_{1} & =2 m \cdot(L / 2)^{2}+2 m(L / 2)^{2} \\
& =2 m L^{2} / 4+2 m L^{2} / 4 \\
& =m L^{2} \\
I_{2} & =m L^{2}+m L^{2} \\
& =2 m L^{2}
\end{aligned}
$$

Concept Check

Two light (massless) rods, labeled A and B, each are connected to the ceiling by a frictionless pivot. Rod A has length L and has mass m at the end of the rod. Rod B has length $L / 2$ and has a mass 2 m at its end. Both rods are released from rest in a horizontal position.

Which one experiences the larger torque?
A: A B: B \quad : Both have the same size τ.

Concept Check

Two light (massless) rods, labeled A and B, each are connected to the ceiling by a frictionless pivot. Rod A has length L and has mass m at the end of the rod. Rod B has length $L / 2$ and has a mass 2 m at its end. Both rods are released from rest in a horizontal position.

Which one experiences the larger torque?
A: A B: B
C: Both have the same size τ.

Concept Check

Two light (massless) rods, labeled A and B, each are connected to the ceiling by a frictionless pivot. Rod A has length L and has mass m at the end of the rod. Rod B has length $L / 2$ and has a mass 2 m at its end. Both rods are released from rest in a horizontal position.

Which one falls to the vertical position fastest?
A: A
B: B
C: Both fall at the same rate.
(Hint: $\alpha=\frac{\tau}{I}$)

Concept Check

Two light (massless) rods, labeled A and B, each are connected to the ceiling by a frictionless pivot. Rod A has length L and has mass m at the end of the rod. Rod B has length $L / 2$ and has a mass 2 m at its end. Both rods are released from rest in a horizontal position.

Which one falls to the vertical position fastest?
A: A \quad B: B \quad C: Both fall at the same rate.
(Hint: $\alpha=\frac{\tau}{\mathrm{I}}$)

$$
\begin{aligned}
l & =L \sin \theta \\
\pi & =F l \\
& =m g L \sin \theta
\end{aligned}
$$

$$
\begin{array}{rlrl}
I & =m L^{2} & I & =2 m(L / 2)^{2} \\
& =1 / 2 m L^{2} \\
\alpha=T / I & d & =T / I \\
& =\frac{m g \sin \theta}{m L^{2}} & & =\frac{m g L \sin \theta}{12 m L^{2}} \\
=\frac{9 \sin \theta}{L} & & =\frac{2 q \sin \theta}{L}
\end{array}
$$

