College Physics I: 1511 Mechanics & Thermodynamics

Professor Jasper Halekas Van Allen Lecture Room 1 MWF 8:30-9:20 Lecture

Announcements

- Rescheduled office hours this week
 - No Tuesday office hours
 - Wednesday office hours extended 9:30-11:00
 - Thursday office hours extended 3:30-5:00

Rotational Quantities VI: Quantities Related to Moment of Inertia

Linear F = ma

Newton's Second Law

Angular $\tau = I\alpha$

Linear p = mv

Momentum

Angular $L = I\omega$

Moment of Inertia

Linear
$$KE = \frac{1}{2} mv^2$$

Kinetic Energy

Angular
$$KE = \frac{1}{2}I\omega^2$$

$$\operatorname{Linear} F_{net} d = \Delta \left(\frac{1}{2} m v^2 \right)$$

Work-Energy

Angular
$$\tau_{net}\theta = \Delta \left(\frac{1}{2}I\omega^2\right)$$

Linear Vs. Rotational Quantities

	Linear Motion		Rotational Motion		
meters	Position	X	θ	Angular position	radians
m/s	Velocity	$v = \frac{dx}{dt}$	$\omega = \frac{d\theta}{dt}$	Angular velocity	rads/s
m/s²	Acceleration	$a = \frac{dv}{dt}$	$\alpha = \frac{d\overline{\omega}}{dt}$	Angular acceleration	rads/s²
kg	Mass	m	I	Moment of inertia	kg m²
Newtons	Force	F = ma	$T = I\alpha$	Torque	Nm
kg m/s	Momentum	p = mv	$L = I\omega$	Angular Momentum	kg m²/s
Joules	Work	W = Fdx	$W = Td\theta$	Work	Joules
Joules	Kinetic Energy	$K = \frac{1}{2} m v^2$	$K = \frac{1}{2}I\omega^2$	Kinetic Energy	Joules
Watts	Power	P = Fv	$P = T\omega$	Power	Watts

Same Units Whether Linear or Rotational

Moment of Inertia for Different Mass Distributions

A sphere, a hoop, and a cylinder, all with the same mass M and same radius R, are rolling along, all with the same speed v.

Which has the most kinetic energy?

A: Sphere

B: Hoop

C: Disk

D: All have the same KE.

A sphere, a hoop, and a cylinder, all with the same mass M and same radius R, are rolling along, all with the same speed v.

Which has the most kinetic energy?

A: Sphere

B: Hoop

C: Disk

D: All have the same KE.

KE = KErry + KErry = 12 mv2 + 12 Iw2 for rolling w = /v KE = Limv2 + LIVII for constant V biggest KE Ihoop = mrz = $J_2 m r^2$ 1 (41 = 3/5 mr 2 I sph

Mixed Application: Kinetic Energy of Rolling Wheel

- Must combine translational and rotational kinetic energy
 - Translational kinetic energy = 1/2 mv²
 - Rotational kinetic energy = $1/2 \text{ I}\omega^2 = 1/2 \text{ mr}^2 (\text{v/r})^2 = 1/2 \text{ mv}^2$
 - (Assuming all mass concentrated at the rim)
 - Total kinetic energy = 1/2 mv² + 1/2 mv² = mv²

What About a Rolling Cylinder?

- Same problem but now I = 1/2 m r^2
 - Translational kinetic energy = 1/2 mv²
 - Rotational kinetic energy = 1/2 Iω^{2 =} 1/2 1/2 mr² (v/r)² = 1/4 mv²
 - Total kinetic energy = $1/2 \text{ mv}^2 + 1/4 \text{ mv}^2 = 3/4 \text{ mv}^2$

Conservation of Energy

- E = KE + PE
- $KE = 1/2 \text{ mV}^2 + 1/2 \text{ }I\omega^2$
- $PE = mgh + 1/2 kx^2$
- All are forms of energy

A hoop and a disk, each with the same mass M and same radius R, race down a hill. Who wins?

(Assume they roll without slipping, and neglect rolling friction)

A: Hoop wins

B: Disk wins

C: Tie!

A hoop and a disk, each with the same mass M and same radius R, race down a hill. Who wins?

(Assume they roll without slipping, and neglect rolling friction)

A: Hoop wins

B: Disk wins

C: Tie!

Race:

cons. energy PE+KE= (onst.

 $mgh + J_2mv^2 + J_2Iw^2 = const.$ $f_0 = mgh$

Ef = 12mv2 + 12 In2

= 12 mv2 + 12 I 1/22

Ihoop = mrz Idisk = homrz

Eth = 12mv2 + 12 mv2 /22 = m kg2

Efd = 1/2mv2 + 1/2 - 1/2mv2 V/2 = 34 mv32

Efd = Efh =) mvn2 = 34 mv32 => vh2 = 34 v32

Rotational Work

Sample Problem

You apply your brakes to slow your 2000 kg car, which has four 10 kg wheels (10 cm radius), from traveling at 10 m/s to rest. How much work do your brakes do to stop the car

and its wheels?

&KE+rans = W+rans = 12 m/2 -/2 m/0 - 0 - 12 mv. = - /2 · 2000 · 19² = - 1000 - 100 - 100,000 DKEr.+ = Wr.+ = 12 Fw2 - 12 Iw. 2 = - 12 Fw. 2 = -/2 mw r 2 · (Ver) } 1 if all mass ovim = -/2 mu vo2 - -/2 - 10 · 10 2 = - soo J per wheel <u>-4-500</u> 1 + ot = - 100,000

= (-102/000)

If I stop in 1000 m what are force 4 torque,?

$$W_{trans} = F S X$$

= -100,000 5
= F.1000 m

$$F = -100/000/000$$

$$= [-100]$$

$$7 - |0,000| = -2000$$

$$7 - 2000 = -2000$$

Angular Momentum

Conservation of Angular Momentum

- Just as with linear momentum:
 - The total angular momentum of a system of bodies is conserved, as long as no net external torque acts upon them

Angular Momentum: Change in Moment of Inertia

Angular Momentum: Transfer Between Bodies

$$I_{1}\omega_{1i} + I_{2}\omega_{2i} = I_{1}\omega_{1f} + I_{2}\omega_{2f}$$

 This is secretly a vector equation, because the direction of the spin axes matters

- Imagine I hold a spinning wheel on a stool, and start with the system at rest
- What happens if I flip the wheel over?
- A. Nothing
- B. I spin in same direction as the wheel (in its new orientation)
- I spin in opposite direction as the wheel (in its new orientation)
- D. I fall off the stool

- Imagine I hold a spinning wheel on a stool, and start with the system at rest
- What happens if I flip the wheel over?
- A. Nothing
- B. I spin in same direction as the wheel (in its new orientation)
- I spin in opposite direction as the wheel (in its new orientation)
- D. I fall off the stool