College Physics I: 1511 Mechanics \& Thermodynamics

Professor Jasper Halekas
Van Allen Lecture Room 1
MWF 8:30-9:20 Lecture

Announcements

- Rescheduled office hours this week
- No Tuesday office hours
- Wednesday office hours extended 9:30-11:00
- Thursday office hours extended 3:30-5:00

Rotational Quantities VI: Quantities Related to Moment of Inertia

Linear $F=m a$ Newton's Second Law Angular $\tau=I \alpha$	Moment of Inertia\qquad	Linear $K E=\frac{1}{2} m v^{2}$ Kinetic Energy Angular $K E=\frac{1}{2} I \omega^{2}$
Linear $\quad p=m v$ Momentum Angular $L=I \omega$		${ }^{\text {Linear }} F_{n e t} d=\Delta\left(\frac{1}{2} m v^{2}\right)$ Work-Energy Angular $\tau_{\text {net }} \theta=\Delta\left(\frac{1}{2} I \omega^{2}\right)$

Linear Vs. Rotational Quantities

meters	Linear Motion		Rotational Motion		
	Position	x	θ	Angular position	radians
m/s	Velocity	$v=\frac{d x}{d t}$	$\omega=\frac{d \theta}{d t}$	Angular velocity	rads/s
$\mathrm{m} / \mathrm{s}^{2}$	Acceleration	$a=\frac{d v}{d t}$	$\alpha=\frac{d \omega}{d t}$	Angular acceleration	$\mathrm{rads} / \mathrm{s}^{2}$
kg	Mass	m		Moment of inertia	$\mathrm{kg} \mathrm{m}{ }^{2}$
			$T=I \alpha$	Torque	Nm
$\mathrm{kg} \mathrm{m} / \mathrm{s}$	Momentum	$p=m \nu$	$L=I \omega$	Angular Momentum	$\mathrm{kg} \mathrm{m} / \mathrm{s}$
Joules	Work	$W=F d x$	$W=T d \theta$	Work	Joules
Joules	Kinetic Energy	$K=\frac{1}{2} m v^{2}$	$K=\frac{1}{2} I \omega^{2}$	Kinetic Energy	Joules
Watts	Power	$P=F v$	$P=T \omega$	Power	Watts

Moment of Inertia for Different Mass Distributions

ectangular plate

$I=\frac{1}{12} M\left(a^{2}+b^{2}\right)$
Long thin rod with
rotation axis through end

$$
l=\frac{1}{3} M L^{2}
$$

Hoop or cylindrical shell

$I=M R^{2}$

Hollow cylinder

Thin spherical shell

Solid cylinder

Concept Check

A sphere, a hoop, and a cylinder, all with the same mass M and same radius R , are rolling along, all with the same speed v .

Which has the most kinetic energy?
A: Sphere
B: Hoop
C: Disk

D: All have the same KE.

Concept Check

A sphere, a hoop, and a cylinder, all with the same mass M and same radius R , are rolling along, all with the same speed v .

Which has the most kinetic energy?
A: Sphere
B: Hoop
C: Disk

D: All have the same KE.

$$
\begin{aligned}
K E & =K E_{\text {trans }}+K E_{v o t} \\
& =y_{2} m v^{2}+t_{2} I_{w^{2}}
\end{aligned}
$$

for rolling $w=V / r$

$$
K E=1_{2} m v^{2}+1_{2} I v^{2} / r^{2}
$$

for constant V,

$$
\text { biggest I } \rightarrow \text { biggest } k \text { E }
$$

$$
\begin{aligned}
& \text { I hoop }=m r^{2} \\
& I(y)=12 m r^{2} \\
& I s p h=2 / s m r^{2}
\end{aligned}
$$

Mixed Application: Kinetic Energy of Rolling Wheel

$+$

$=$

- Must combine translational and rotational kinetic energy
- Translational kinetic energy $=1 / 2 \mathrm{mv}^{2}$
- Rotational kinetic energy = $1 / 2 I \omega^{2}=1 / 2 \mathrm{mr}^{2}(\mathrm{v} / \mathrm{r})^{2}=1 / 2 \mathrm{mv}^{2}$ " (Assuming all mass concentrated at the rim)
- Total kinetic energy $=1 / 2 m v^{2}+1 / 2 m v^{2}=m v^{2}$

What About a Rolling Cylinder?

- Same problem but now $I=1 / 2 m r^{2}$
- Translational kinetic energy = $1 / 2 \mathrm{mv}^{2}$
- Rotational kinetic energy = $1 / 2 \mathrm{I} \omega^{2}=1 / 21 / 2 \mathrm{mr}^{2}(\mathrm{v} /$ $r)^{2}=1 / 4 \mathrm{mv}^{2}$
- Total kinetic energy =1/2 $m v^{2}+1 / 4 m v^{2}=3 / 4 m v^{2}$

Conservation of Energy

- $E=K E+P E$
- $K E=1 / 2 m v^{2}+1 / 2 I \omega^{2}$
- $\mathrm{PE}=\mathrm{mgh}+1 / 2 k x^{2}$
- All are forms of energy

Concept Check

A hoop and a disk, each with the same mass M and same radius R , race down a hill. Who wins?
(Assume they roll without slipping, and neglect rolling friction)

A: Hoop wins
B: Disk wins
C: Tie!

Concept Check

A hoop and a disk, each with the same mass M and same radius R , race down a hill. Who wins?
(Assume they roll without slipping, and neglect rolling friction)

A: Hoop wins
B: Disk wins
C: Tie!

Race i
cons. energy

$$
P E+K E=\text { const. }
$$

$$
\begin{aligned}
m g h & +1_{2} m v^{2}+1_{2} I w^{2}=\text { const. } \\
E \cdot & =m g 4 \\
E f & =1_{2} m v^{2}+\lambda_{2} I w^{2} \\
& =1_{2} m v^{2}+\lambda_{2} I v^{2} / v^{2}
\end{aligned}
$$

$$
\begin{aligned}
& I_{\text {hoop }}=m r^{2} \quad I_{\text {disk }}=12 m r^{2} \\
& \begin{aligned}
E_{f h} & =12 m v^{2}+\lambda m v^{2} v^{2} v^{2} \\
& =m v_{n}^{2}
\end{aligned} \\
& E_{f d}=1 / 2 m v^{2}+1 / 2-1 / 2 m r^{2} v / r^{2} \\
& =3 / 4 \mathrm{~m} v_{d}{ }^{2} \\
& E_{f d}=E_{f h} \Rightarrow m v_{n}{ }^{2}=\sqrt[3]{4} m v_{d}{ }^{2} \\
& \Rightarrow \quad v_{n}{ }^{2}=3 / 4 v_{d}{ }^{2}
\end{aligned}
$$

Rotational Work

Sample Problem

- You apply your brakes to slow your 2000 kg car, which has four 10 kg wheels (10 cm radius), from traveling at $10 \mathrm{~m} / \mathrm{s}$ to rest. How much work do your brakes do to stop the car and its wheels?

Braking car
Work -energy:

$$
\Delta K E_{\text {trans }}=W_{\text {trans }}
$$

$$
=1_{2} m v_{f}^{2}-r_{2} m v_{0}^{2}
$$

$$
=0-12 m v_{0}^{2}
$$

$$
=-12 \cdot 2000 \cdot 10^{2}
$$

$$
\begin{aligned}
& =-1000-100 \\
& =-100,000 \mathrm{~J}
\end{aligned}
$$

$$
\Delta K E_{r_{0} t}=W_{r_{0} t}
$$

$$
=1_{2} I w_{t}^{2}-\lambda_{2} I w_{0}^{2}
$$

$$
=-x_{2} \mp w .2
$$

$$
=-1 / 2 m_{w} r^{2} \cdot\left(v_{1} / r\right)^{2}
$$

\uparrow if all mass orin

$$
\begin{aligned}
& =-1 / 2 m_{w} v_{0}^{2} \\
& =-12-10 \cdot 10^{2}
\end{aligned}
$$

$$
=-500 \frac{1}{J} \text { per wheel }
$$

$$
\begin{aligned}
W_{\text {tot }} & =-100,000-4,500 \\
& =-102,000 \mathrm{~J}
\end{aligned}
$$

If F stop in 1000 m what are force \& torque?

$$
\begin{aligned}
W_{\text {trans }} & =F \Delta X \\
& =-100,000 \mathrm{~J} \\
& =F \cdot 1000 \mathrm{~m} \\
\Rightarrow F & =-100000 \\
& =-1000 \mathrm{~N}
\end{aligned}
$$

$$
\text { Wot }=\tau \Delta \theta=-2000 \tau
$$

$$
r \Delta \theta=S=\Delta x
$$

$$
\Rightarrow \Delta \theta=\Delta x / r
$$

$$
=10000.1
$$

$$
=10000 \mathrm{rad}
$$

$$
\begin{aligned}
T^{2}-10,000 & =-2000 \\
T & =-2000 / 10,000 \\
& =-0.2 \mathrm{Nm}
\end{aligned}
$$

Angular Momentum

The X implies simple multiplication here.

Conservation of Angular Momentum

- Just as with linear momentum:
- The total angular momentum of a system of bodies is conserved, as long as no net external torque acts upon them

Angular Momentum: Change in Moment of Inertia

Angular Momentum: Transfer Between Bodies

$=I_{1} \omega_{1 i}+I_{2} \omega_{2 i}=I_{1} \omega_{1 f}+I_{2} \omega_{2 f}$

- This is secretly a vector equation, because the direction of the spin axes matters

Concept Check

- Imagine I hold a spinning wheel on a stool, and start with the system at rest
- What happens if I flip the wheel over?
A. Nothing
B. I spin in same direction as the wheel (in its new orientation)
C. I spin in opposite direction as the wheel (in its new orientation)
D. I fall off the stool

Concept Check

- Imagine I hold a spinning wheel on a stool, and start with the system at rest
- What happens if I flip the wheel over?
A. Nothing
B. I spin in same direction as the wheel (in its new orientation)
C. I spin in opposite direction as the wheel (in its new orientation)
D. I fall off the stool

