College Physics I: 1511 Mechanics \& Thermodynamics

Professor Jasper Halekas
Van Allen Lecture Room 1
MWF 8:30-9:20 Lecture

Announcements

- We will only be covering part of Ch. 10
- We already covered part of 10.1 (springs)
- This week we will cover the remainder of 10.1, 10.3, and 10.4
- We will not cover 10.2 or 10.5-10.8

Spring Force (Hooke's Law)

Spring Potential Energy

Conservation of Energy

Concept Check

- You stretch a mass on a spring a distance x_{m} from its equilibrium and let go of it. The mass reaches a maximum speed v_{m}. You then stretch the spring a distance $2 \mathrm{x}_{\mathrm{m}}$. What is the maximum speed of the mass this time?

```
A. }\mp@subsup{v}{m}{}/\sqrt{}{}
B.}
C. \sqrt{}{2}\mp@subsup{v}{m}{}
D. 2V m
E. 4V
```


Concept Check

- You stretch a mass on a spring a distance x_{m} from its equilibrium and let go of it. The mass reaches a maximum speed v_{m}. You then stretch the spring a distance $2 \mathrm{x}_{\mathrm{m}}$. What is the maximum speed of the mass this time?

$\begin{aligned} & \text { B. } v_{m} \\ & \text { C. } \sqrt{2} v_{m} \\ & \hline \text { D. } 2 v_{m} \\ & \hline \text { E. } \\ & 4 \mathrm{~V}_{\mathrm{m}} \end{aligned}$	

$$
\begin{gathered}
E=1_{2} k x^{2}+1_{2} m v^{2}=\text { coast. } \\
E=x_{2} k x_{m}^{2} \\
E \in=1_{2} m v_{m}^{2} \\
y_{2} m v_{m}^{2}=x_{2} k x_{m}^{2} \\
m v_{m}^{2}=k x_{m}{ }^{2} \\
v_{m}^{2}=k k x_{m}^{2} \\
V_{m}=\sqrt{\frac{k}{m}} x_{m}
\end{gathered}
$$

Double $x_{m} \rightarrow$ Double V_{m}

Spring Potential and Kinetic Energy

Energy Bar Charts for a Mass on a Spring

C

D

Position A
KE FE TME

Position D
KE FE TME

Position E
KE FE TME

Spring Potential and Kinetic Energy

Harmonic Oscillator

$$
\begin{aligned}
\left|X_{m}\right| & =A \\
\left|V_{m}\right| & =\sqrt{k / m}\left|x_{m}\right|=\sqrt{k / m} A \\
\rho E_{m a x} & =y_{2} k x_{m}{ }^{2}=1 / k A^{2} \\
K E_{m a x} & =y_{2 m v_{m} 2}=k k A^{2} \\
\left|F_{\max }\right| & =k\left|x_{m}\right| \\
& =k A \\
a_{\max } & =\left|F_{m a x}\right| / m \\
& =k / m A \\
& =(\sqrt{k / m})^{2} A \\
& =\sqrt{k / m}\left|V_{m}\right|
\end{aligned}
$$

Spring as a Harmonic Oscillator

Frequency of oscillation $f=1 /(2 \pi) \sqrt{ }(k / m)$ with units [cycles]/[second]

What is a Harmonic Oscillator?

- The system has a restoring force proportional to the displacement from equilibrium: $\mathrm{F} \propto-\mathrm{x}$
- The potential energy is proportional to the square of the displacement: PE $\propto x^{2}$
- The position x, the velocity v, and the acceleration a all vary sinusoidally in time.
- The period T or frequency $f=1 / T$ is independent of the amplitude of the motion.

Forces on Simple Pendulum

Pendulum

$$
F=-m g \sin \theta
$$

for $\operatorname{sinall} \operatorname{singles}$:
so $F \sim-m g \theta$

$$
\begin{aligned}
& \theta=S / L \\
& \text { sa } F \sim-\frac{m g}{L} S
\end{aligned}
$$

same form as
$F \sim-k x$

$$
\begin{aligned}
& w / k \sim m g / L \\
& s o f=1 /(2 \pi) \sqrt{k / m} \\
&=1 /(2 \pi) \sqrt{\% / L}
\end{aligned}
$$

Pendulum

$$
\begin{aligned}
& \tau=F_{\perp} r \\
& =-m g \theta L \\
& =-\kappa_{a}+\theta \\
& w / k_{\text {rot }}=m g l \\
& f=\gamma_{(2 T)} \sqrt{\frac{k n+t}{I}} \\
& =1 /(2 \pi) \sqrt{\frac{m L}{m L^{2}}} \\
& =1 /(2 \pi) \sqrt{9 / L}
\end{aligned}
$$

Pendulum as Harmonic Oscillator

- For small angles, the pendulum satisfies the condition for being a harmonic oscillator
- $\mathrm{F}=-\mathrm{mg} \theta=-\mathrm{mg} \mathrm{S} / \mathrm{L}$
- $\tau=-m g \theta L=-g I / L \theta$
$=>$ The period T or frequency $f=1 / T$ is independent of the amplitude of the motion
- For a pendulum the frequency of the motion is:
- $1 /(2 \pi) * \sqrt{ }(\mathrm{~g} / \mathrm{L})$

Concept Check Revisited

Two light (massless) rods, labeled A and B, each are connected to the ceiling by a frictionless pivot. Rod A has length L and has mass m at the end of the rod. Rod B has length $L / 2$ and has a mass $2 m$ at its end. Both rods are released from rest in a horizontal position.

Which one falls to the vertical position fastest?
A: A
B: B
C: Both fall at the same rate.

Concept Check

- Your beautiful antique grandfather clock is gaining time (it is running too fast). To fix it, you could...
- A) Use a file to shorten the pendulum
- B) Hang something off the bottom to lengthen the pendulum
- C) Use a file to scrape some mass off the sides of the pendulum
- D) None of these things could possibly help.

Concept Check

- Your beautiful antique grandfather clock is gaining time (it is running too fast). To fix it, you could...
- A) Use a file to shorten the pendulum
- B) Hang something off the bottom to lengthen the pendulum
- C) Use a file to scrape some mass off the sides of the pendulum
- D) None of these things could possibly help.

