College Physics I: 1511 Mechanics & Thermodynamics

Professor Jasper Halekas Van Allen Lecture Room 1 MWF 8:30-9:20 Lecture

Announcements

- We will only be covering part of Ch. 10
 - We already covered part of 10.1 (springs)
 - This week we will cover the remainder of 10.1, 10.3, and 10.4
 - We will not cover 10.2 or 10.5-10.8

Spring Force (Hooke's Law)

Spring Potential Energy

Conservation of Energy

You stretch a mass on a spring a distance x_m from its equilibrium and let go of it. The mass reaches a maximum speed v_m. You then stretch the spring a distance 2x_m. What is the maximum speed of the mass this time?

A.
$$V_m/\sqrt{2}$$

B. V_m
C. $\sqrt{2} V_m$
D. $2V_m$
E. $4V_m$

You stretch a mass on a spring a distance x_m from its equilibrium and let go of it. The mass reaches a maximum speed v_m. You then stretch the spring a distance 2x_m. What is the maximum speed of the mass this time?

A.
$$V_m/\sqrt{2}$$

B. V_m
C. $\sqrt{2} V_m$
D. $2V_m$
E. $4V_m$

E = hikxi + timvi = (.nst. $F_{f} = J_{2} \kappa \chi_{m}^{2}$ $F_{f} = J_{2} m V_{m}^{2}$ timumi = tik Xm² $mVm^2 = K\chim^2$ Xm Double Xm > Double Vm

Spring Potential and Kinetic Energy

Position D								
KE	. PE	Th	Œ					
••••	••••							

Position B

KE PE TME

Position C

KE PE TME

Spring Potential and Kinetic Energy

$$\begin{aligned} Harmonic Oscillator \\ |Xm| &= A \\ |Vm| &= \int K_m |Xm| = \int K_m A \\ PEmax &= k K Xm L = k K A L \end{aligned}$$

(1- 1941

KEmax = YLKA2 $= J_L m V_m^2$ $= K | X_m |$ = K A Fmax = IFnax /m anax = K/m A = ([Km) 2 A

Spring as a Harmonic Oscillator

Frequency of oscillation $f = 1/(2\pi) \sqrt{(k/m)}$ with units [cycles]/[second]

What is a Harmonic Oscillator?

- The system has a restoring force proportional to the displacement from equilibrium: F ∝ -x
 - The potential energy is proportional to the square of the displacement: PE $\propto x^2$
 - The position x, the velocity v, and the acceleration a all vary sinusoidally in time.
 - The period T or frequency f = 1 / T is independent of the amplitude of the motion.

Forces on Simple Pendulum

Pendulum

= - mg OL

= - KatA

Pendulum as Harmonic Oscillator

- For small angles, the pendulum satisfies the condition for being a harmonic oscillator
 - F = -mgθ = -mg S/L
 - $\tau = -mg\theta L = -gI/L\theta$
- => The period T or frequency f = 1 / T is independent of the amplitude of the motion
 - For a pendulum the frequency of the motion is:
 - 1/(2π) * √(g/L)

Concept Check Revisited

Two light (massless) rods, labeled A and B, each are connected to the ceiling by a frictionless pivot. Rod A has length L and has mass m at the end of the rod. Rod B has length L/2 and has a mass 2m at its end. Both rods are released from rest in a horizontal position.

Which one falls to the vertical position fastest?

A: A B: B C: Both fall at the same rate.

- Your beautiful antique grandfather clock is gaining time (it is running too fast). To fix it, you could...
- A) Use a file to shorten the pendulum
- B) Hang something off the bottom to lengthen the pendulum
- C) Use a file to scrape some mass off the sides of the pendulum
- **D)** None of these things could possibly help.

- Your beautiful antique grandfather clock is gaining time (it is running too fast). To fix it, you could...
- A) Use a file to shorten the pendulum
- B) Hang something off the bottom to lengthen the pendulum
- C) Use a file to scrape some mass off the sides of the pendulum
- **D)** None of these things could possibly help.