College Physics I: 1511 Mechanics & Thermodynamics

Professor Jasper Halekas Van Allen Lecture Room 1 MWF 8:30-9:20 Lecture

Harmonic Oscillator: Spring

Harmonic Oscillator: Pendulum

General Harmonic Oscillator

- Why is the frequency $1/(2\pi) \sqrt{(k/m)}$?
- Set by the ratio between the restoring force constant and the inertia
- In the case of a pendulum, force and inertia each have a factor of mass, so m cancels out

General Harmonic Oscillator

- Given a restoring force F = -kx:
 - Frequency = $1/(2\pi) \sqrt{k/m}$
- Works with angular variables too, so given τ = k_{rot}θ:
 - Frequency = $1/(2\pi) \sqrt{(k_{rot}/I)}$
 - For pendulum $k_{rot} = mgL$, $I = mL^2$, so $f = 1/(2\pi) \sqrt{(g/L)}$

- Imagine you form a harmonic oscillator with a mass m on a spring with constant k, and set it oscillating with amplitude A. As the mass reaches its greatest displacement (x = A), you attach a second mass m. What happens to the maximum velocity v_m of the subsequent motion?
- A. v_m stays the same
- B. v_m doubles
- C. v_m is cut in half
- D. $v_m^{'''}$ is cut by a factor $\sqrt{2}$

- Imagine you form a harmonic oscillator with a mass m on a spring with constant k, and set it oscillating with amplitude A. As the mass reaches its greatest displacement (x = A), you attach a second mass m. What happens to the maximum velocity v_m of the subsequent motion?
- A. v_m stays the same
- B. v_m doubles
- C. v_m is cut in half
- D. v_m is cut by a factor $\sqrt{2}$

PEmm = V2KX2 = J2KA2 = KEmax = Jzm/m² $f_{2}mV_{m}^{2} = f_{2}(2m)V_{m}^{2}$

$$V_{m}^{2} = 2V_{m}^{2}$$

$$V_{m}^{2} = \pm V_{m}^{2}$$

$$V_{m}^{2} = \frac{1}{2}V_{m}^{2}$$

$$V_{m}^{2} = \frac{1}{\sqrt{2}}V_{m}$$

$$A \mid so see \quad V_{m} = \sqrt{\frac{k}{m}} A$$

$$V_{m}^{2} = \sqrt{\frac{k}{2m}} A$$

= TE Vm

Harmonic And Rotational Motion

 $\omega = 2\pi f = 2\pi/T$ for both kinds of motion

Frequency Vs. Angular Frequency: A Tale of Two Omegas

- Whatever the type of harmonic oscillator, it's useful to think about its frequency as an angular frequency (similar to angular velocity, and same units, but more general):
 - $\omega_h = 2\pi f$ (applicable to any cyclical oscillation)
 - For general harmonic oscillator:
 - $\omega_h = \sqrt{(k/m)}$
 - For pendulum:
 - $\omega_h = \sqrt{(g/L)}$

 $hh = 2\pi f$ - J/m for spring $\Rightarrow V_m = W_h X_m = W_h A$ $\alpha m = \omega_h^2 A$

Conservation of Energy

- $E = PE_{tot} + KE_{tot}$
 - = $PE_{grav} + PE_{spring} + KE_{trans} + KE_{rot}$
 - = mgh + $1/2kx^2 + 1/2mv^2 + 1/2I\omega^2$
 - = Conserved in the absence of friction etc.

Be careful!!!

- We have two meanings for the symbol ω
 - One is angular velocity for circular motion
 - One is angular frequency for harmonic motion ω_h
 - They are related, but not always interchangeable
 - Be careful to only use angular velocity in 1/2Iω²

Period Independent of Amplitude

- The period T = $2\pi/\omega_h = 2\pi\sqrt{(m/k)}$
 - Does not depend on amplitude
 - How can this be?
 - Maximum velocity and acceleration both depend on the amplitude of the motion
 - Bigger displacement -> faster motion

•
$$x_{max} = A$$

•
$$v_{max} = \omega_h A$$

•
$$a_{max} = \omega_h^2 A$$

Physical Pendulum

Physical Pendulum

Found that angular frequency of oscillation of a simple pendulum was:

•
$$\omega_h = \sqrt{(mgL/I)} = \sqrt{(mgL/mL^2)} = \sqrt{(g/L)}$$

- For a physical pendulum almost the same formula applies:
 - $\omega_h = \sqrt{(mgL_{CM}/I)}$
 - But now the details depend on the center of mass $L_{\rm CM}$ and the moment of inertia ${\rm I}$

Example of physical pendulum

 $L_{CM} = L/2$

$$ω_h = \sqrt{(mgL/2/(1/3ML^2))}$$

= $\sqrt{(3g/2L)}$

Faster than simple pendulum since moment of inertia smaller

- A person swings on a swing. When the person sits still, the swing oscillates back and forth at its natural frequency. If, instead, the person stands on the swing, the natural frequency of the swing is..
- A: greater.
- B: the same.
- **C:** smaller.

- A person swings on a swing. When the person sits still, the swing oscillates back and forth at its natural frequency. If, instead, the person stands on the swing, the natural frequency of the swing is..
- A: greater.
- B: the same.
- **C:** smaller.