College Physics I: 1511 Mechanics \& Thermodynamics

Professor Jasper Halekas
Van Allen Lecture Room 1
MWF 8:30-9:20 Lecture

Harmonic Oscillator: Spring

Energy Bar Charts for a Mass on a Spring

Position A KE FE TME

Position B KE PE TME
 KE PE TME

Position D KE FE TME $\cdots: \begin{aligned} & \cdots \\ & \cdots\end{aligned}$

Position E KE FE TME

$x_{m}=A$
$v_{m}=\sqrt{ }(k / m) A$ $a_{m}=(k / m) A$ $f=1 /(2 \pi) \sqrt{ }(k / m)$

Harmonic Oscillator: Pendulum

$$
\begin{aligned}
& \mathrm{k}=\mathrm{mg} / \mathrm{L} \\
& \mathrm{k} / \mathrm{m}=\mathrm{g} / \mathrm{L} \\
& \\
& \mathrm{k}_{\mathrm{rot}}=\mathrm{mgL} \\
& \mathrm{k}_{\mathrm{rot}} / \mathrm{I}=\mathrm{g} / \mathrm{L}
\end{aligned}
$$

General Harmonic Oscillator

- Why is the frequency $1 /(2 \pi) \sqrt{ }(\mathrm{k} / \mathrm{m})$?
- Set by the ratio between the restoring force constant and the inertia
- In the case of a pendulum, force and inertia each have a factor of mass, so m cancels out

General Harmonic Oscillator

- Given a restoring force F = -kx:
- Frequency $=1 /(2 \pi) \sqrt{ }(\mathrm{k} / \mathrm{m})$
- Works with angular variables too, so given $\tau=-$ $\mathrm{k}_{\mathrm{rot}} \theta$:
- Frequency $=1 /(2 \pi) \sqrt{ }\left(k_{\text {rot }} / I\right)$
- For pendulum $k_{\text {rot }}=m g L, I=m L^{2}$, so $f=1 /(2 \pi) \sqrt{ }(g / L)$

Concept Check

- Imagine you form a harmonic oscillator with a mass m on a spring with constant k, and set it oscillating with amplitude A. As the mass reaches its greatest displacement ($x=A$), you attach a second mass m. What happens to the maximum velocity v_{m} of the subsequent motion?
A. v_{m} stays the same
B. v_{m} doubles
C. v_{m} is cut in half
D. v_{m} is cut by a factor $\sqrt{ } 2$

Concept Check

- Imagine you form a harmonic oscillator with a mass m on a spring with constant k, and set it oscillating with amplitude A. As the mass reaches its greatest displacement ($x=A$), you attach a second mass m. What happens to the maximum velocity v_{m} of the subsequent motion?
A. v_{m} stays the same
B. v_{m} doubles
C. v_{m} is cut in half
D. v_{m} is cut by a factor $\sqrt{2}$

$$
\begin{array}{rl}
P E_{m x} & =Y_{2} K x^{2} \\
& =x_{2} k A^{2} \\
& =K E_{m a x} \\
& =y_{2} m V_{m}^{2} \\
y_{2} m V_{m}^{2}=y_{2}(2 m) V_{m}^{\prime 2} \\
& V_{m}^{2}=2 V_{m}^{\prime 2} \\
& V_{m}^{\prime}=\frac{1}{2} V_{m}^{2} \\
V & V=\frac{1}{\sqrt{2}} V_{m}
\end{array}
$$

Also see

$$
\begin{aligned}
V_{m} & =\sqrt{\frac{k}{m}} A \\
V_{m}^{\prime} & =\sqrt{\frac{k}{2 m}} A \\
& =\frac{1}{\sqrt{2}} V_{m}
\end{aligned}
$$

Harmonic And Rotational Motion

"Reference Circle"

$\omega=2 \pi f=2 \pi / T$ for both kinds of motion

Frequency Vs. Angular Frequency: A Tale of Two Omegas

- Whatever the type of harmonic oscillator, it's useful to think about its frequency as an angular frequency (similar to angular velocity, and same units, but more general):
- $\omega_{h}=2 \pi f$ (applicable to any cyclical oscillation)
- For general harmonic oscillator:
- $\omega_{h}=\sqrt{ }(k / m)$
- For pendulum:
- $\omega_{h}=\sqrt{ }(\mathrm{g} / \mathrm{L})$

$$
\begin{aligned}
& W_{n}=2 \pi f \\
&-\sqrt{k / m} \text { for spring } \\
& \Rightarrow \quad V_{m}=W_{n} \times m=W_{h} A \\
& a_{m}=W_{h}^{2} A
\end{aligned}
$$

Conservation of Energy

- $E=P E_{\text {tot }}+K E_{\text {tot }}$
- $=P E_{\text {grav }}+P E_{\text {spring }}+K E_{\text {trans }}+K E_{\text {rot }}$
- $=m g h+1 / 2 k x^{2}+1 / 2 m v^{2}+1 / 2 I \omega^{2}$
- = Conserved in the absence of friction etc.
- Be careful!!!
- We have two meanings for the symbol ω
- One is angular velocity for circular motion
- One is angular frequency for harmonic motion ω_{h}
- They are related, but not always interchangeable
- Be careful to only use angular velocity in $1 / 2 / \omega^{2}$

Period Independent of Amplitude

- The periodT $=2 \pi / \omega_{h}=2 \pi \sqrt{ }(\mathrm{~m} / \mathrm{k})$
- Does not depend on amplitude
- How can this be?
- Maximum velocity and acceleration both depend on the amplitude of the motion
- Bigger displacement -> faster motion
- $x_{\max }=A$
- $v_{\max }=\omega_{h} A$
- $a_{\max }=\omega_{h}{ }^{2} A$

Physical Pendulum

Physical Pendulum

- Found that angular frequency of oscillation of a simple pendulum was:
- $\omega_{\mathrm{h}}=\sqrt{ }(\mathrm{mgL} / \mathrm{I})=\sqrt{ }\left(\mathrm{mgL} / \mathrm{mL}^{2}\right)=\sqrt{ }(\mathrm{g} / \mathrm{L})$
- For a physical pendulum almost the same formula applies:
- $\omega_{\mathrm{h}}=\sqrt{ }\left(\mathrm{mgL}_{\mathrm{CM}} / \mathrm{I}\right)$
- But now the details depend on the center of mass $L_{C M}$ and the moment of inertia I

Example of physical pendulum

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{CM}}=\mathrm{L} / 2 \\
& \mathrm{I}=1 / 3 \mathrm{ML}^{2} \\
& \begin{aligned}
\omega_{\mathrm{h}} & =\sqrt{ }\left(\mathrm{mgL} / 2 /\left(1 / 3 \mathrm{ML}^{2}\right)\right) \\
& =\sqrt{ }(3 \mathrm{~g} / 2 \mathrm{~L})
\end{aligned}
\end{aligned}
$$

Faster than simple pendulum since moment of inertia smaller

Concept Check

- A person swings on a swing. When the person sits still, the swing oscillates back and forth at its natural frequency. If, instead, the person stands on the swing, the natural frequency of the swing is..
- A: greater.
- B: the same.
- C: smaller.

Concept Check

- A person swings on a swing. When the person sits still, the swing oscillates back and forth at its natural frequency. If, instead, the person stands on the swing, the natural frequency of the swing is..
- A: greater.
- B: the same.
- C: smaller.

