College Physics I: 1511 Mechanics \& Thermodynamics

Professor Jasper Halekas
Van Allen Lecture Room 1
MWF 8:30-9:20 Lecture

We are Now Finished with Mechanics!

The States of Matter

Definition: Mass Density

density $=$ mass $/$ volume

Mass Density Example

Force on Area => Pressure

Definition: Pressure

$P=\frac{\text { Force }}{\text { Area }}=\frac{F}{A}$

SI Units: [N]/[m²] = [Pascals]

1 atmosphere $=1.013 \times 10^{5} \mathrm{~Pa}$
1 pound per square inch (PSI) $=6895 \mathrm{~Pa}$
1 Torr $=133.3 \mathrm{~Pa}$

Why Pressure Instead of Force?

Pressure Due to Weight

$$
\begin{gathered}
\mathrm{mg}=\text { Weight } \\
100 \mathrm{~N}
\end{gathered}
$$

$$
\begin{aligned}
& A=0.1 \mathrm{~m}^{2} \\
& P=1000 \text { Pascals }
\end{aligned}
$$

$A=0.01 \mathrm{~m}^{2}$
$P=10,000$ Pascals

Same force, different area, different pressure

Concept Check

- You are walking out on a frozen lake and you begin to hear the ice cracking beneath you. What is your best strategy for getting off the ice safely?
a) stand absolutely still and don't move a muscle
b) jump up and down to lessen your contact time with the ice
c) try to leap in one bound to the bank of the lake
d) shuffle your feet (without lifting them) to move toward shore
e) lie down flat on the ice and crawl toward shore

Concept Check

- You are walking out on a frozen lake and you begin to hear the ice cracking beneath you. What is your best strategy for getting off the ice safely?
a) stand absolutely still and don't move a muscle
b) jump up and down to lessen your contact time with the ice
c) try to leap in one bound to the bank of the lake
d) shuffle your feet (without lifting them) to move toward shore
e) lie down flat on the ice and crawl toward shore

Pressure Due to Weight

Fluid Pressure Due to Weight

Volume $=A h$

Pressure of Fluid Vs. Pressure from

Solid

Pressure in Many Directions

Fluid Pressure and Direction of

Force

- The pressure in a static fluid at a given point is the same in all directions
- Otherwise the fluid would flow!
- This means force is exerted on all surrounding surfaces

Incompressibility of Fluids

- Many fluids are to a good approximation incompressible
- This means that no matter how hard you push on them, they do not change their volume
- This means that if you push on a fluid, it doesn't squeeze together, but instead transmits the pressure throughout
- Air is more compressible than water, but at a given temperature and altitude can still often be treated as incompressible

Concept Check

- Imagine you stretch a balloon over the mouth of a bottle, with the balloon inside
- What happens if you try to blow it up?
A. It blows up
B. It won't blow up
C. The bottle will break
D. The balloon will pop

Concept Check

- Imagine you stretch a balloon over the mouth of a bottle, with the balloon inside
- What happens if you try to blow it up?
A. It blows up
B. It won't blow up
C. The bottle will break
D. The balloon will pop

Fluid Pressure Due to Weight

Volume $=A h$

Tot al mass of fluid

$$
\begin{aligned}
m & =\rho A h \\
F & =m q \\
& =\rho A h q \\
P_{2} & =P_{1}+F / A \\
& =P_{1}+\rho q h
\end{aligned}
$$

Notice A cancels out!!

Works at any depth:

$$
\begin{aligned}
\rho_{2} & =\rho_{1}+F / A \\
& =\rho_{1}+m_{\text {abel }}-g / A \\
& =\rho_{1}+\rho_{1-g} / A \\
& =\rho_{1}+\rho_{\text {gd }}
\end{aligned}
$$

- Press ure goes up linearly with deg th for incompressible fluid.

Pressure Vs. Depth

Volume $=A h$

Pressure Vs. Depth

Volume $=A h$

What about pressure at intermediate depth d?
Only depends on mass m_{d} and volume V_{d} above depth d

Pressure P_{2} at depth d
$=P_{1}+m_{d} g / A$
$=P_{1}+\rho^{*} V d^{*} g / A$
$=P_{1}+\rho * A * d * g / A$
$=P_{1}+\rho g d$

Concept Check

- Which one of these containers has a higher pressure at the bottom?

Jug Graduated Cylinder Vase
A. Jug
B. Cylinder
C. Vase
D. All the same

Concept Check

- Which one of these containers has a higher pressure at the bottom?

Jug Graduated Cylinder Vase

Pressure Vs. Depth

- Static fluid pressure does not depend on the shape, total mass, or surface area of the liquid, but only on the mass density and the depth

Atmospheric Pressure

Atmospheric pressure from the weight of the atmosphere above us is constantly exerted upon us

This pressure is very large:
$\sim 10^{5} \mathrm{~Pa}=14.7 \mathrm{psi}$
Since atmosphere is a gas, we feel this pressure from all directions and we typically don't notice it

Force and Pressure Differential

Pressure P1

Force on Area A
$\mathrm{F}_{1}=\mathrm{P}_{1} * \mathrm{~A}$ to right

Force on Area A
$F_{2}=P_{2} * A$ to left

Total Force on Wall F $=\mathrm{F}_{1}-\mathrm{F}_{2}=\mathrm{P}_{1} \mathrm{~A}-\mathrm{P}_{2} \mathrm{~A}=\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right) \mathrm{A}$

Concept Check

- Where would a suction cup be hardest to remove after it is pushed on to a surface?
A. On the surface of the Earth
B. On top of a tall mountain
C. In space
D. At the bottom of your swimming pool

Concept Check

- Where would a suction cup be hardest to remove after it is pushed on to a surface?
A. On the surface of the Earth
B. On top of a tall mountain
C. In space
D. At the bottom of your swimming pool

Force and Pressure Differential

- We don't usually feel the force from the atmosphere or from a liquid, since it's balanced on all sides
- But, if you have atmosphere or liquid only on one side, it can exert a very large force
- Even the difference in pressure over a small change in depth can result in a force on an object...

