## Rotational Motion

## Rotational Motion:

$$
\begin{array}{lll}
\theta=s / r \quad\langle\omega\rangle=\frac{\left\langle v_{t}\right\rangle}{r}=\frac{\Delta \theta}{\Delta t} & \langle\alpha\rangle=\frac{\left\langle a_{t}\right\rangle}{r}=\frac{\Delta \omega}{\Delta t} & \\
\theta(t)=\theta_{o}+\omega_{o} t+\frac{1}{2} \alpha t^{2} & \omega(t)^{2}=\omega_{o}^{2}+2 \alpha \Delta \theta(t) & \\
\tau=r F \sin \theta_{r F}=F * \text { lever arm } & \sum \tau=I \alpha & L=m v r=I \omega \\
W_{\text {rot }}=\tau \Delta \theta & K E_{\text {rot }}=\frac{1}{2} I \omega^{2} & r_{C M}=\frac{\sum m_{i} r_{i}}{\sum m_{i}}
\end{array}
$$

## Rotational Dynamics

$$
\begin{gathered}
F=m a \\
F r=(m a) r \\
\tau=m(r \alpha) r=m r^{2} \alpha \\
\tau=I \alpha
\end{gathered}
$$

## Work and Energy

| Translational | Rotational |
| :--- | :---: |
| $W=F s \cos \theta$ | $W_{R}=\tau \theta$ |
| SI units: $\mathrm{N} \cdot \mathrm{m}=\mathrm{J}$ |  |
| $K E=\frac{1}{2} m v^{2}$ | $K E_{R}=\frac{1}{2} I \omega^{2}$ |
| SI units: $\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right) / \mathrm{s}^{2}=\mathrm{N} \cdot \mathrm{m}=\mathrm{J}$ |  |



## Practice Question

- A 1.0-kg solid disk rolls (without slipping) along a horizontal surface with a speed of $6.0 \mathrm{~m} / \mathrm{s}$. How much total work (linear and rotational) has to be done to slow the disk to rest?
A. 9.0 J
B. 18 J
C. 27 J
D. 36 J
E. 54 J


## Practice Question

- A 1.0-kg solid disk rolls (without slipping) along a horizontal surface with a speed of $6.0 \mathrm{~m} / \mathrm{s}$. How much total work (linear and rotational) has to be done to slow the disk to rest?

```
A. 9.0 J
B. 18 J
C. 27 J
D. 36 J
E. 54 J
```

$$
\begin{aligned}
& W=\Delta K E \\
& =\Delta K E_{\text {rot }}+\Delta K E_{\text {trans }} \\
& |w|=x_{2} m v_{0}^{2}+x_{2} I w_{0}^{2} \\
& I=\lambda_{2} m r^{2} \text { for disk } \\
& W=v / r \text { if not slinging } \\
& |W|=x_{2} m v^{2}+x_{2}-t_{2} m r^{2} \cdot v^{2} / r^{2} \\
& =12 m v^{2}+1_{4} m v^{2} \\
& =3 / 4 \cdot 6^{2} \\
& =275
\end{aligned}
$$

## Harmonic Motion Equations

## Harmonic Motion:

$\omega_{h}=2 \pi f_{h}=\frac{2 \pi}{T}=\sqrt{\frac{k}{m}}$

$$
x_{\max }=A \quad v_{\max }=A \omega_{h} \quad a_{\max }=A \omega_{h}^{2}
$$

$\omega_{h_{-} \text {pendulum }}=\sqrt{\frac{m g r_{C M}}{I}}=\sqrt{\frac{g}{L}}$ for simple pendulum of length $L$

## Harmonic Oscillator

- Any system with a linear restoring force
- Any such system oscillates around an equilibrium, maintaining a constant mechanical energy
- A linear restoring force is equivalent to having a $U$ shaped potential energy curve



## Harmonic Oscillator Energy



## Mass-Spring System



## Pendulum



## Practice Question

- A 4 kg mass on a spring ( $k=4 \mathrm{~N} / \mathrm{m}$ ) is stretched 1 m from equilibrium and released. What is the maximum speed that the mass reaches during its oscillation?
A. $10 \mathrm{~m} / \mathrm{s}$
B. $6.66667 \mathrm{~m} / \mathrm{s}$
C. $5 \mathrm{~m} / \mathrm{s}$
D. $3.33333 \mathrm{~m} / \mathrm{s}$
E. $1 \mathrm{~m} / \mathrm{s}$


## Practice Question

- A 4 kg mass on a spring ( $k=4 \mathrm{~N} / \mathrm{m}$ ) is stretched 1 m from equilibrium and released. What is the maximum speed that the mass reaches during its oscillation?
A. $10 \mathrm{~m} / \mathrm{s}$
B. $6.66667 \mathrm{~m} / \mathrm{s}$
C. $5 \mathrm{~m} / \mathrm{s}$
D. $3.33333 \mathrm{~m} / \mathrm{s}$
E. $1 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
v_{m} & =\sqrt{k / m} A \\
& =\sqrt{4 / 4}-1 \\
& =1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

## Practice Question

- A mass on a spring oscillates in harmonic motion. What happens to the amplitude of the motion if at the equilibrium position of the spring, half of the mass falls off?
A. A increases by 2
B. A decreases by 2
C. A increases by $\sqrt{2}$
D. A decreases by $\sqrt{ } 2$
E. A stays the same


## Practice Question

- A mass on a spring oscillates in harmonic motion. What happens to the amplitude of the motion if at the equilibrium position of the spring, half of the mass falls off?
A. A increases by 2
B. A decreases by 2
C. A increases by $\sqrt{2}$
D. A decreases by $\sqrt{ } 2$
E. A stays the same

Dropping $m \in$ equilibrium Changes $K E$

$$
\begin{aligned}
& E_{0}= y_{2} m V_{m}^{2} \\
& E_{f}=x_{2} m / 2 V_{m}^{2} \\
&=E_{0} / 2 \\
& E_{0}= y_{2} k A^{2} \\
& E f= y_{2} k A_{f}^{2}=E_{0} / 2 \\
& y_{2} k A_{f}{ }^{2}=1_{2} 1_{2} k A_{0}^{2} \\
& A_{f}^{2}=y_{2} A_{0}^{2} \\
& A_{f}=A_{0} \sqrt{2}
\end{aligned}
$$

Changing m © X om would not have had this effect.

## Fluid Equations

## Fluids:

$$
\begin{array}{lcc}
\rho=\text { mass } / \text { Volume } & P=F / A & P_{2}=P_{1}+\rho g d
\end{array} \quad F_{B}=W_{\text {fluid_displaced }} \text { a }
$$

## Practice Question

- Which exerts greater force on a $1 \mathrm{~m}^{2}$ rug - the atmosphere or a 100 kg mass sitting on the rug? Assume $P_{a t m}=10^{5} \mathrm{~Pa}$ and $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.
A. The atmosphere
B. The 100 kg mass
C. Both tie


## Practice Question

- Which exerts greater force on a $1 \mathrm{~m}^{2}$ rug - the atmosphere or a 100 kg mass sitting on the rug? Assume $P_{a t m}=10^{5} \mathrm{~Pa}$ and $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.


## A. The atmosphere

B. The 100 kg mass
C. Both tie

$$
\begin{aligned}
F_{\text {atm }} & =l_{\text {atm }} \cdot A \\
& =10^{5} \mathrm{~N} \\
F_{\text {mass }} & =m g=100-10 \\
F_{\text {atm }} & >F_{\text {mass }}
\end{aligned}
$$

## Fluid Pressure



Static fluid pressure does not depend on the shape, total mass, or surface area of the liquid.

$$
\text { Pressure }=\frac{\text { weight }}{\text { area }}=\frac{\mathrm{mg}}{\mathrm{~A}}=\frac{\rho \vee \mathrm{g}}{\mathrm{~A}}=\rho \mathrm{gh}
$$



## Pascal's Principle

## Pascal's Principle

> "The pressure exerted at one surface of an incompressible fluid is equal to the pressure exerted onanyothersurface."

This allows a small force applied to a small area to
Small Force be converted to a large force applied to a large area, as in the hydraulic lift below.


## Buoyancy



## Practice Question

The block A weighs 2 N (in air) and has a density twice that of water. When immersed in the beaker of water (but not dropped to the bottom), the reading on scale $E$ will:
A) be unchanged
B) increase by I N
C) increase by 2 N
D) decrease by I N
E) cannot determine


## Practice Question

The block A weighs 2 N (in air) and has a density twice that of water. When immersed in the beaker of water (but not dropped to the bottom), the reading on scale $E$ will:
A) be unchanged
B) increase by I N


$$
\begin{aligned}
& \left\{\begin{array}{l}
\left\{F_{B}=m_{\text {flud_disp }} \cdot g\right. \\
F_{W}=m_{\text {block }} \cdot g
\end{array}\right. \\
& F_{\theta}=\rho_{f} \cdot V_{6} \cdot g \\
& =\rho_{t / 2}-V_{6} \cdot g \\
& F_{W}=\rho_{t} \cdot V_{6} \cdot g \\
& F_{0}=F_{W} / 2=1 N
\end{aligned}
$$

- Farce on water opposite FB so weight on scale $E$ is $t / N$
- Weight an scale D decreases by IN.


## Continuity



